Default edgeR analysis
Analyze the data using edgeR, by using the code in the RNA-seq analysis intro lecture. In all analyses, focus on the contrast comparing DPN treatment to control at 48h.
 
 Impact of blocking
Assess the difference in number of DE genes when not blocking on patient, i.e., removing the patient effect of the model. Compare the p-value distributions between these two models (i.e., with and without blocking).
 
 Analyze dataset using full-quantile normalization
 Implement and apply full-quantile normalization
### implement FQ normalization
FQnorm <- function(counts){
  ...
}
### normalize the data using FQ
 
 Visualize effect of FQ normalization
Visualize the distributions of log1p-transformed counts (use the density function) to compare sample-specific count distributions before and after FQ normalization. What’s the impact of FQ normalization on the differences in distribution between samples?
 
 edgeR analysis using full-quantile normalized data
Don’t forget to remove the calcNormFactors step in the edgeR analysis as data have already been normalized when using FQ-normalized counts as input!
### use FQ-normalized data as input to the edgeR analysis
 
 Compare DE genes at 5% FDR
### Get list of DE genes using TMM and FQ normalization
### Compare list using, e.g., a Venn diagram
 
 
LS0tCnRpdGxlOiAnU2VxdWVuY2luZzogQnVsayBSTkEtc2VxIGhvbWV3b3JrJwphdXRob3I6ICJBZGQgeW91ciBuYW1lcyBoZXJlIgpkYXRlOiAiOC82LzIwMjEiCm91dHB1dDogCiAgcGRmX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGxhdGV4X2VuZ2luZTogeGVsYXRleAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQotLS0KCmBgYHtyIGZ1bmN0aW9ucywgaW5jbHVkZT1GQUxTRX0KIyBBIGZ1bmN0aW9uIGZvciBjYXB0aW9uaW5nIGFuZCByZWZlcmVuY2luZyBpbWFnZXMKZmlnIDwtIGxvY2FsKHsKICAgIGkgPC0gMAogICAgcmVmIDwtIGxpc3QoKQogICAgbGlzdCgKICAgICAgICBjYXA9ZnVuY3Rpb24ocmVmTmFtZSwgdGV4dCkgewogICAgICAgICAgICBpIDw8LSBpICsgMQogICAgICAgICAgICByZWZbW3JlZk5hbWVdXSA8PC0gaQogICAgICAgICAgICBwYXN0ZSgiRmlndXJlICIsIGksICI6ICIsIHRleHQsIHNlcD0iIikKICAgICAgICB9LAogICAgICAgIHJlZj1mdW5jdGlvbihyZWZOYW1lKSB7CiAgICAgICAgICAgIHJlZltbcmVmTmFtZV1dCiAgICAgICAgfSkKfSkKYGBgIAoKYGBge3IsIGVjaG89RkFMU0UsIGV2YWw9VFJVRX0Kc3VwcHJlc3NQYWNrYWdlU3RhcnR1cE1lc3NhZ2VzKHsKICBsaWJyYXJ5KGtuaXRyKQogIGxpYnJhcnkocm1hcmtkb3duKQogIGxpYnJhcnkoZ2dwbG90MikKfSkKaWYoISJCaW9jTWFuYWdlciIgJWluJSBpbnN0YWxsZWQucGFja2FnZXMoKVssMV0pewogIGluc3RhbGwucGFja2FnZXMoIkJpb2NNYW5hZ2VyIikKfQppZighImxpbW1hIiAlaW4lIGluc3RhbGxlZC5wYWNrYWdlcygpWywxXSl7CiAgQmlvY01hbmFnZXI6Omluc3RhbGwoImxpbW1hIikKfQppZighImVkZ2VSIiAlaW4lIGluc3RhbGxlZC5wYWNrYWdlcygpWywxXSl7CiAgQmlvY01hbmFnZXI6Omluc3RhbGwoImVkZ2VSIikKfQpgYGAKCgojIERlZmF1bHQgYGVkZ2VSYCBhbmFseXNpcwoKQW5hbHl6ZSB0aGUgZGF0YSB1c2luZyBgZWRnZVJgLCBieSB1c2luZyB0aGUgY29kZSBpbiB0aGUgUk5BLXNlcSBhbmFseXNpcyBpbnRybyBsZWN0dXJlLgoqKkluIGFsbCBhbmFseXNlcywgZm9jdXMgb24gdGhlIGNvbnRyYXN0IGNvbXBhcmluZyBEUE4gdHJlYXRtZW50IHRvIGNvbnRyb2wgYXQgNDhoLioqCgojIEltcGFjdCBvZiBibG9ja2luZwoKQXNzZXNzIHRoZSBkaWZmZXJlbmNlIGluIG51bWJlciBvZiBERSBnZW5lcyB3aGVuIG5vdCBibG9ja2luZyBvbiBwYXRpZW50LCBpLmUuLCByZW1vdmluZyB0aGUgYHBhdGllbnRgIGVmZmVjdCBvZiB0aGUgbW9kZWwuCkNvbXBhcmUgdGhlIHAtdmFsdWUgZGlzdHJpYnV0aW9ucyBiZXR3ZWVuIHRoZXNlIHR3byBtb2RlbHMgKGkuZS4sIHdpdGggYW5kIHdpdGhvdXQgYmxvY2tpbmcpLgoKCiMgQW5hbHl6ZSBkYXRhc2V0IHVzaW5nIGZ1bGwtcXVhbnRpbGUgbm9ybWFsaXphdGlvbgoKIyMgSW1wbGVtZW50IGFuZCBhcHBseSBmdWxsLXF1YW50aWxlIG5vcm1hbGl6YXRpb24KCmBgYHtyfQojIyMgaW1wbGVtZW50IEZRIG5vcm1hbGl6YXRpb24KRlFub3JtIDwtIGZ1bmN0aW9uKGNvdW50cyl7CiAgLi4uCn0KCiMjIyBub3JtYWxpemUgdGhlIGRhdGEgdXNpbmcgRlEKCmBgYAoKIyMgVmlzdWFsaXplIGVmZmVjdCBvZiBGUSBub3JtYWxpemF0aW9uCgpWaXN1YWxpemUgdGhlIGRpc3RyaWJ1dGlvbnMgb2YgYGxvZzFwYC10cmFuc2Zvcm1lZCBjb3VudHMgKHVzZSB0aGUgYGRlbnNpdHlgIGZ1bmN0aW9uKSB0byBjb21wYXJlIHNhbXBsZS1zcGVjaWZpYyBjb3VudCBkaXN0cmlidXRpb25zIGJlZm9yZSBhbmQgYWZ0ZXIgRlEgbm9ybWFsaXphdGlvbi4KV2hhdCdzIHRoZSBpbXBhY3Qgb2YgRlEgbm9ybWFsaXphdGlvbiBvbiB0aGUgZGlmZmVyZW5jZXMgaW4gZGlzdHJpYnV0aW9uIGJldHdlZW4gc2FtcGxlcz8KCiMjIGBlZGdlUmAgYW5hbHlzaXMgdXNpbmcgZnVsbC1xdWFudGlsZSBub3JtYWxpemVkIGRhdGEKCkRvbid0IGZvcmdldCB0byByZW1vdmUgdGhlIGBjYWxjTm9ybUZhY3RvcnNgIHN0ZXAgaW4gdGhlIGBlZGdlUmAgYW5hbHlzaXMgYXMgZGF0YSBoYXZlIGFscmVhZHkgYmVlbiBub3JtYWxpemVkIHdoZW4gdXNpbmcgRlEtbm9ybWFsaXplZCBjb3VudHMgYXMgaW5wdXQhCgpgYGB7cn0KIyMjIHVzZSBGUS1ub3JtYWxpemVkIGRhdGEgYXMgaW5wdXQgdG8gdGhlIGVkZ2VSIGFuYWx5c2lzCmBgYAoKIyMgQ29tcGFyZSBERSBnZW5lcyBhdCA1JSBGRFIKCmBgYHtyfQojIyMgR2V0IGxpc3Qgb2YgREUgZ2VuZXMgdXNpbmcgVE1NIGFuZCBGUSBub3JtYWxpemF0aW9uCgojIyMgQ29tcGFyZSBsaXN0IHVzaW5nLCBlLmcuLCBhIFZlbm4gZGlhZ3JhbQpgYGAKCgoK