

《曰》 《國》 《臣》 《臣》

12

Statistical Genomics: Master of Science in Bioinformatics and Master of Science in Statistical Data Analysis

Lieven Clement Ghent University, Belgium

Scientific Integrity and Reproducible Research Bio-informatics research is based on empirical data

NATURE METHODS | VOL.12 (80.7 | JULY 2015 | 445

Mass spectrometrists should search only for peptides they care about Willing Suffeet Solds

Scientific Integrity and Reproducible Research Bio-informatics research is based on empirical data

- $\rightarrow\,$ Number of observations <<< number of features
- \rightarrow Need for statistics to distinguish real patterns from random patterns in high dimensional data

2/19

Genomics

- The genome is entire hereditary information of an organism
- Contains all info needed for each function of an organism
- Most of the functions are carried out by proteins
- Gene is genomic region that directs synthesis of a protein
- Genomics studies all genetic information of an organism together: specific code, effects, functions and interactions

Genomics

- The genome is entire hereditary information of an organism
- Contains all info needed for each function of an organism
- Most of the functions are carried out by proteins
- Gene is genomic region that directs synthesis of a protein
- Genomics studies all genetic information of an organism together: specific code, effects, functions and interactions

Levels of Organization

イロト 不得 トイヨト イヨト

Genome - DNA

- Is stored in DNA (DeoxyriboNucleic Acid)(for many types of viruses in RNA)
- A code of 4 nucleotides
 - purines: adenine (A) and guanine (G)
 - pyrimidines: thymine (T) and cytosine (C)
 - a phosphate group;
 - a deoxyribose sugar;
- Double helix structure (2-3 hydrogen bounds)
- Organized in chromosomes
- Most of it is in the nucleus, also a part in mitochondrion (energy organelle of the cell)

DNA structure

- Polynucleotide chains are directional molecules with slightly different ends: 3' end and 5' end.
- 3' and 5' refers to carbon atom numbering in the sugar ring. (3' hydroxyl group, 5' phosphate group)
- Complementary DNA strands are antiparallel (i.e, 5' to 3' ends for each strand are opposite)
- Most of it is coiled and condensed: very stable

Transcription-Translation

- Genome/DNA all genetic info in each cell: "Hard Drive". Four letter code: A, C, T, G
- Transcriptome/RNA: genetic info actively used by cell: "RAM"
- Transcription
 - Unwinding of DNA
 - RNA polymerase
 - DNA template: antisense strand
 - Single complementary RNA strand
 - Splicing

Transcription-Translation

- Genome/DNA: "Hard Drive"
- Transcriptome/RNA: active genetic info in cell: "RAM"
- Proteome
- $\bullet \ \ {\sf Translation} \ \ {\sf RNA} {\rightarrow} {\sf Protein}$
 - At ribosomes: factories of the cell
 - 24 amino acids (aa)
 - 3 consecutive bases codon
 - tRNA: with antisense codon, caries one type of aa
 - several codons exist for same aa
 - start codon AUG (methionine, often removed)
 - stop codon UAG, UAA, UGA

ヘロン 人間 とくほと くほとう

Post-translational modification+protein folding

Proteins

science daily

- Humans: 2 \times 3 billion base pairs
- 2 meters of DNA
- \pm 20.000 protein coding genes (500-4000/ chromosome)
- 99.9% in common with each-other
- Only 2% is protein coding

- Humans: 2 \times 3 billion base pairs
- 2 meters of DNA
- \pm 20.000 protein coding genes (500-4000/ chromosome)
- $\bullet~99.9\%$ in common with each-other
- Only 2% is protein coding
- 96% in common with chimp

- Humans: 2×3 billion base pairs
- 2 meters of DNA
- \pm 20.000 protein coding genes (500-4000/ chromosome)
- $\bullet~99.9\%$ in common with each-other
- Only 2% is protein coding
- 96% in common with chimp
- 50% in common with banana

- Humans: 2×3 billion base pairs
- 2 meters of DNA
- \pm 20.000 protein coding genes (500-4000/ chromosome)
- 99.9% in common with each-other
- Only 2% is protein coding
- 96% in common with chimp
- 50% in common with banana
- Organized in 23 pairs of chromosomes
 - 22 autosomal pairs
 - One sex chromosome pair: XX for females and XY for males
 - In each pair, one paternally other maternally inherited (cf. meiosis)

イロン 不良と 不良と 不良とう き

All cells of organism have same genome: still huge differences between different cells and over time? Brain vs liver cell

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q (C 10 / 19 All cells of organism have same genome: still huge differences between different cells and over time? Brain vs liver cell

Development of butterfly

Differential Gene Expression

- Different genes are expressed in different cells and at different times
- Genes are expressed at different levels in different cells and over time

Tissue/Cell	Number of genes*	Fraction of genes*	Ensembl genes†
Skeletal muscle ¹	11,276	0.61	11,953
Liver ^{1,3}	11,392	0.61	12,191
BT474 ⁺	11,844	0.64	12,808
MB435 ⁴	11,847	0.64	12,726
HME ⁵	12,084	0.65	12,920
T47D ⁴	12,205	0.66	12,983
Heart	12,209	0.65	13,159
MCF7 ⁴	12,281	0.65	13,216
Adipose tissue	12,553	0.68	13,503
Colon	13,016	0.70	14,052
Cerebellum ^{2,8}	13,132	0.70	14,043
Kidney	13,235	0.71	14,177
Brain ¹	13,298	0.71	14,107
Breast	13,406	0.72	14,537
Lymph node	13,534	0.73	14,686
Testes	15,518	0.84	16,869

Human

genes detected in mouse: skeletal muscle 11 799; liver 11 201; brain

standard deviation for samples from different individuals: 106

mean number for different individuals.

buman mammary epithelial cell line doi:10.1371/journal.pcbi.1000598.t002

Ramsköld D et al. (2009) PLoS Comput Biol

Arabidopsis Clock Gene

De Beuf et al. (2012) BMC bioinformatics

イロト 不得 トイヨト イヨト

Differential gene expression

📁 0 2002 Macmillan Magazines Ltd

Pomeroy et al. (2002) Nature 415 12/19

'omics profiling

- Study all of the genome simultaneously by high throughput 'omics profiling
- Huge number of variables/features for every sample (p features)
- Number of observations *n* <<< *p*
- Statistics is key to distinguish real patterns from random patterns that are observed because of we look in high dimensional data
- We can now profile gene expression at the level of individual cells!! scRNA-seq

Topics

Module I: Quantitative Proteomics

- Identification and quantification of peptides and proteins
- ② Data exploration and quality control using plots
- Preprocessing: log-transformation, Filtering, Normalization, Summarization
- Obealing with batch effects and other confounders
- Statistical Concepts
 - Linear models/Linear mixed models
 - Trade-off between biological relevance/effect size vs statistical significance
 - Impirical Bayes Methods
 - Ø Multiple testing

Module II: Next generation sequencing (NGS, Transcriptomics)

- In NGS Data exploration
- Preprocessing/normalization
- Additional Statistical Concepts
 - Generalized linear models (GLM) for binary data
 - Ø GLM for count data
 - Overdispersion

Organisation

Theory and Tutorials are blended

- Module I: week 1-5
- Module II: week 6-10
- Project: week 1-10 via small assignments + week 11-12
- Ommunication and submission of projects via Ufora
- All tutorials from week 2 onwards are based on R/Bioconductor
 - via R-studio
 - Scripts are made in R/markdown: a file format to combine text, R code and R output.
 - $\rightarrow\,$ This makes it very easy to document your analysis and to distribute them in a way which is reproducible.

Organisation

Project

- Projects: 10/20
- Written Exam: 10/20.
 - Open book
 - Deep insight expected
 - Critical assessment of R-output,

Projects + Master thesis

- Project 201415, Master thesis 201516: Genome biology https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1406-4
- Project 201516: Frontiers in Neuroscience https://www.frontiersin.org/articles/10.3389/fnins.2018.00136/full?report=
- Project 201516: Analytical Chemistry https://pubs.acs.org/doi/10.1021/acs.analchem.9b04375
- Master thesis 201516: Nature Methods https://www.nature.com/articles/nmeth.4338
- Design Project 201718: Pitfalls in re-analysis of observational omics studies: a post-mortem of the human pathology atlas. submitted to Science.

https://www.biorxiv.org/content/10.1101/2020.03.16.994038v1

- Master thesis 201617: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1951-y
- Master thesis 201819: Scalable differential transcript usage analysis for single-cell applications (paper in preparation, talk and poster at euroBioC meeting)

Projects + Master thesis

- Project 201920: Fast analysis of scRNA-seq data using quasi-likelihood regression. paper in preparation
- Continuing on statistical genomics project for thesis is possible.