Creative Commons License


1 Need for a good control

  • A good control group is crucial.

  • To assess the effect of an intervention, we need to compare a test and control group.

  • This is often not possible in a pretest/post-test design: e.g. effect before and after administering a drug without the use of a placebo group.

  • Groups in an observational study are often not comparable: advanced statistical methods are required to draw causal conclusions.

  • Double blinding

  • We have to be aware of confounding!

  • Randomized studies: random assignment of subjects in the study to the different treatment arms \(\rightarrow\) comparable groups.


2 Randomization

  • Randomization completely at random (no systematic allocation).

2.1 Simple Randomization

  • Can lead to differences in the number of experimental units in each treatment arm

  • in 5% of the cases we might observe an imbalance of

    • of at least 60:40 in a study with 100 subjects, and
    • of at least 531:469 in a study with 1000 subjects.
  • This imbalance is not problematic, but causes a loss in precision.


2.2 Balanced Randomization

  • Equal numbers of each treatment are assigned to a block of 2 or 4 patients.

      1. AB, (2) BA
      1. AABB, (2) ABAB, (3) ABBA, (4) BABA, (5) BAAB, (6) BBAA
  • Balanced Randomization ensures \(\pm\) the same number of people in the control and the treatment arm of the experiment.

  • Does not make that we have an equal number of males with and without the treatment, etc.

  • In small studies, it is possible that the groups are unbalanced in other characteristics (e.g. gender, race, age …)

  • This is not problematic because it occurs at random, but, again it causes a loss in precision.


2.3 Stratified randomization

  • The imbalance according to for instance gender can be avoided using stratified Randomization: balanced randomization per stratum
Stratified Randomization
Stratified Randomization

3 Sample size

  • The sample size and the design are crucial.

  • The larger the sample size, the more precise the results.

4 Bad design example

  • dm: diabetic medium, nd: non diabetic medium, co: control

  • 4 bio-reps, 2 techreps/biorep

  • dm: diabetic medium, nd: non diabetic medium, co: control

  • 4 bio-reps, 2 techreps/biorep, 2 plates A & B

  • Treatment and plate almost entirely confounded


5 Wrap-up

  • Sample size is very important.

  • To assess the effect of a treatment, we should compare comparable and representative groups of subjects with and without the treatment (a good control!).

  • In observational studies, the researcher cannot choose the treatment. It was the patient or their MD who had chosen it

  • In experimental studies, the researcher assigns the treatment.

  • Confounding can be avoided via randomization.

  • We can also correct for confounding in the statistical analysis for the confounders that have been registered.

LS0tCnRpdGxlOiAiMy4gU29tZSBjb25jZXB0cyBvbiBleHBlcmltZW50YWwgZGVzaWduIgphdXRob3I6ICJMaWV2ZW4gQ2xlbWVudCIKZGF0ZTogInN0YXRPbWljcywgR2hlbnQgVW5pdmVyc2l0eSAoaHR0cHM6Ly9zdGF0b21pY3MuZ2l0aHViLmlvKSIKb3V0cHV0OgogIGJvb2tkb3duOjpwZGZfZG9jdW1lbnQyOgogICAgdG9jOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGxhdGV4X2VuZ2luZTogeGVsYXRleAphbHdheXNfYWxsb3dfaHRtbDogdHJ1ZQotLS0KCjxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLXNhLzQuMCI+PGltZyBhbHQ9IkNyZWF0aXZlIENvbW1vbnMgTGljZW5zZSIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtc2EvNC4wLzg4eDMxLnBuZyIgLz48L2E+Cgo8aWZyYW1lIHdpZHRoPSI1NjAiIGhlaWdodD0iMzE1IiBzcmM9Imh0dHBzOi8vd3d3LnlvdXR1YmUuY29tL2VtYmVkL0x2Nk96WWZQYTljP3NpPTVja1V6U0tmSWQxZS1oeWkiIHRpdGxlPSJZb3VUdWJlIHZpZGVvIHBsYXllciIgZnJhbWVib3JkZXI9IjAiIGFsbG93PSJhY2NlbGVyb21ldGVyOyBhdXRvcGxheTsgY2xpcGJvYXJkLXdyaXRlOyBlbmNyeXB0ZWQtbWVkaWE7IGd5cm9zY29wZTsgcGljdHVyZS1pbi1waWN0dXJlOyB3ZWItc2hhcmUiIHJlZmVycmVycG9saWN5PSJzdHJpY3Qtb3JpZ2luLXdoZW4tY3Jvc3Mtb3JpZ2luIiBhbGxvd2Z1bGxzY3JlZW4+PC9pZnJhbWU+CgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRSwgY2FjaGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBpbmNsdWRlID0gVFJVRSwgY29tbWVudCA9IE5BLCBlY2hvID0gVFJVRSwKICBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgY2FjaGUgPSBUUlVFCikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoTkhBTkVTKQpgYGAKCmBgYHtyIHBvcDJTYW1wMlBvcCwgb3V0LndpZHRoPSc4MCUnLGZpZy5hc3A9LjgsIGZpZy5hbGlnbj0nY2VudGVyJyxlY2hvPUZBTFNFfQppZiAoInBpIiAlaW4lIGxzKCkpIHJtKCJwaSIpCmtvcHZvZXRlciA8LSBmdW5jdGlvbih4LCB5LCBhbmdsZSA9IDAsIGwgPSAuMiwgY2V4LmRvdCA9IC41LCBwY2ggPSAxOSwgY29sID0gImJsYWNrIikgewogIGFuZ2xlIDwtIGFuZ2xlIC8gMTgwICogcGkKICBwb2ludHMoeCwgeSwgY2V4ID0gY2V4LmRvdCwgcGNoID0gcGNoLCBjb2wgPSBjb2wpCiAgbGluZXMoYyh4LCB4ICsgbCAqIGNvcygtcGkgLyAyICsgYW5nbGUpKSwgYyh5LCB5ICsgbCAqIHNpbigtcGkgLyAyICsgYW5nbGUpKSwgY29sID0gY29sKQogIGxpbmVzKGMoeCArIGwgLyAyICogY29zKC1waSAvIDIgKyBhbmdsZSksIHggKyBsIC8gMiAqIGNvcygtcGkgLyAyICsgYW5nbGUpICsgbCAvIDQgKiBjb3MoYW5nbGUpKSwgYyh5ICsgbCAvIDIgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSwgeSArIGwgLyAyICogc2luKC1waSAvIDIgKyBhbmdsZSkgKyBsIC8gNCAqIHNpbihhbmdsZSkpLCBjb2wgPSBjb2wpCiAgbGluZXMoYyh4ICsgbCAvIDIgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSwgeCArIGwgLyAyICogY29zKC1waSAvIDIgKyBhbmdsZSkgKyBsIC8gNCAqIGNvcyhwaSArIGFuZ2xlKSksIGMoeSArIGwgLyAyICogc2luKC1waSAvIDIgKyBhbmdsZSksIHkgKyBsIC8gMiAqIHNpbigtcGkgLyAyICsgYW5nbGUpICsgbCAvIDQgKiBzaW4ocGkgKyBhbmdsZSkpLCBjb2wgPSBjb2wpCiAgbGluZXMoYyh4ICsgbCAqIGNvcygtcGkgLyAyICsgYW5nbGUpLCB4ICsgbCAqIGNvcygtcGkgLyAyICsgYW5nbGUpICsgbCAvIDIgKiBjb3MoLXBpIC8gMiArIHBpIC8gNCArIGFuZ2xlKSksIGMoeSArIGwgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSwgeSArIGwgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSArIGwgLyAyICogc2luKC1waSAvIDIgKyBwaSAvIDQgKyBhbmdsZSkpLCBjb2wgPSBjb2wpCiAgbGluZXMoYyh4ICsgbCAqIGNvcygtcGkgLyAyICsgYW5nbGUpLCB4ICsgbCAqIGNvcygtcGkgLyAyICsgYW5nbGUpICsgbCAvIDIgKiBjb3MoLXBpIC8gMiAtIHBpIC8gNCArIGFuZ2xlKSksIGMoeSArIGwgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSwgeSArIGwgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSArIGwgLyAyICogc2luKC1waSAvIDIgLSBwaSAvIDQgKyBhbmdsZSkpLCBjb2wgPSBjb2wpCn0KCnBhcihtYXIgPSBjKDAsIDAsIDAsIDApLCBtYWkgPSBjKDAsIDAsIDAsIDApKQpwbG90KDAsIDAsIHhsYWIgPSAiIiwgeWxhYiA9ICIiLCB4bGltID0gYygwLCAxMCksIHlsaW0gPSBjKDAsIDEwKSwgY29sID0gMCwgeGF4dCA9ICJub25lIiwgeWF4dCA9ICJub25lIiwgYXhlcyA9IEZBTFNFKQpyZWN0KDAsIDYsIDEwLCAxMCwgYm9yZGVyID0gInJlZCIsIGx3ZCA9IDIpCnRleHQoLjUsIDgsICJwb3B1bGF0aW9uIiwgc3J0ID0gOTAsIGNvbCA9ICJyZWQiLCBjZXggPSAyKQpzeW1ib2xzKDMsIDgsIGNpcmNsZXMgPSAxLjUsIGNvbCA9ICJyZWQiLCBhZGQgPSBUUlVFLCBmZyA9ICJyZWQiLCBpbmNoZXMgPSBGQUxTRSwgbHdkID0gMikKc2V0LnNlZWQoMzMwKQpncmlkIDwtIHNlcSgwLCAxLjMsIC4wMSkKCmZvciAoaSBpbiAxOjUwKQp7CiAgYW5nbGUxIDwtIHJ1bmlmKG4gPSAxLCBtaW4gPSAwLCBtYXggPSAzNjApCiAgYW5nbGUyIDwtIHJ1bmlmKG4gPSAxLCBtaW4gPSAwLCBtYXggPSAzNjApCiAgcmFkaXVzIDwtIHNhbXBsZShncmlkLCBwcm9iID0gZ3JpZF4yICogcGkgLyBzdW0oZ3JpZF4yICogcGkpLCBzaXplID0gMSkKICBrb3B2b2V0ZXIoMyArIHJhZGl1cyAqIGNvcyhhbmdsZTEgLyAxODAgKiBwaSksIDggKyByYWRpdXMgKiBzaW4oYW5nbGUxIC8gMTgwICogcGkpLCBhbmdsZSA9IGFuZ2xlMikKfQp0ZXh0KDcuNSwgOCwgIkNob2xlc3Rlcm9sIGluIHBvcHVsYXRpb24iLCBjb2wgPSAicmVkIiwgY2V4ID0gMS4yKQoKcmVjdCgwLCAwLCAxMCwgNCwgYm9yZGVyID0gImJsdWUiLCBsd2QgPSAyKQp0ZXh0KC41LCAyLCAic2FtcGxlIiwgc3J0ID0gOTAsIGNvbCA9ICJibHVlIiwgY2V4ID0gMikKc3ltYm9scygzLCAyLCBjaXJjbGVzID0gMS41LCBjb2wgPSAicmVkIiwgYWRkID0gVFJVRSwgZmcgPSAiYmx1ZSIsIGluY2hlcyA9IEZBTFNFLCBsd2QgPSAyKQpmb3IgKGkgaW4gMDoyKSB7CiAgZm9yIChqIGluIDA6NCkKICB7CiAgICBrb3B2b2V0ZXIoMi4xICsgaiAqICgzLjkgLSAyLjEpIC8gNCwgMS4xICsgaSkKICB9Cn0KdGV4dCg3LjUsIDIsICJDaG9sZXN0ZXJvbCBpbiBzYW1wbGUiLCBjb2wgPSAiYmx1ZSIsIGNleCA9IDEuMikKCmFycm93cygzLCA1LjksIDMsIDQuMSwgY29sID0gImJsYWNrIiwgbHdkID0gMykKYXJyb3dzKDcsIDQuMSwgNywgNS45LCBjb2wgPSAiYmxhY2siLCBsd2QgPSAzKQp0ZXh0KDEuNSwgNSwgIkVYUC4gREVTSUdOICgxKSIsIGNvbCA9ICJibGFjayIsIGNleCA9IDEuMikKdGV4dCg4LjUsIDUsICJFU1RJTUFUSU9OICZcbklORkVSRU5DRSAoMykiLCBjb2wgPSAiYmxhY2siLCBjZXggPSAxLjIpCnRleHQoNy41LCAuNSwgIkRBVEEgRVhQTE9SQVRJT04gJlxuREVTQ1JJUFRJVkUgU1RBVElTVElDUyAoMikiLCBjb2wgPSAiYmxhY2siLCBjZXggPSAxLjIpCmBgYAoKLS0tCgojIE5lZWQgZm9yIGEgZ29vZCBjb250cm9sCgotIEEgZ29vZCBjb250cm9sIGdyb3VwIGlzIGNydWNpYWwuCgotIFRvIGFzc2VzcyB0aGUgZWZmZWN0IG9mIGFuIGludGVydmVudGlvbiwgd2UgbmVlZCB0byBjb21wYXJlIGEgdGVzdCBhbmQgY29udHJvbCBncm91cC4KCi0gVGhpcyBpcyBvZnRlbiBub3QgcG9zc2libGUgaW4gYSBwcmV0ZXN0L3Bvc3QtdGVzdCBkZXNpZ246IGUuZy4gZWZmZWN0IGJlZm9yZSBhbmQgYWZ0ZXIgYWRtaW5pc3RlcmluZyBhIGRydWcgd2l0aG91dCB0aGUgdXNlIG9mIGEgcGxhY2VibyBncm91cC4KCi0gR3JvdXBzIGluIGFuIG9ic2VydmF0aW9uYWwgc3R1ZHkgYXJlIG9mdGVuIG5vdCBjb21wYXJhYmxlOiBhZHZhbmNlZCBzdGF0aXN0aWNhbCBtZXRob2RzIGFyZSByZXF1aXJlZCB0byBkcmF3IGNhdXNhbCBjb25jbHVzaW9ucy4KCi0gRG91YmxlIGJsaW5kaW5nCgotIFdlIGhhdmUgdG8gYmUgYXdhcmUgb2YgY29uZm91bmRpbmchCgotIFJhbmRvbWl6ZWQgc3R1ZGllczogcmFuZG9tIGFzc2lnbm1lbnQgb2Ygc3ViamVjdHMgaW4gdGhlIHN0dWR5IHRvIHRoZSBkaWZmZXJlbnQgdHJlYXRtZW50IGFybXMgJFxyaWdodGFycm93JCBjb21wYXJhYmxlIGdyb3Vwcy4KCi0tLQoKIyBSYW5kb21pemF0aW9uCgotIFJhbmRvbWl6YXRpb24gY29tcGxldGVseSBhdCByYW5kb20gKG5vIHN5c3RlbWF0aWMgYWxsb2NhdGlvbikuCgojIyBTaW1wbGUgUmFuZG9taXphdGlvbgoKLSBDYW4gbGVhZCB0byBkaWZmZXJlbmNlcyBpbiB0aGUgbnVtYmVyIG9mIGV4cGVyaW1lbnRhbCB1bml0cyBpbiBlYWNoIHRyZWF0bWVudCBhcm0KCi0gaW4gNSUgb2YgdGhlIGNhc2VzIHdlIG1pZ2h0IG9ic2VydmUgYW4gaW1iYWxhbmNlIG9mCiAgICAtIG9mIGF0IGxlYXN0IDYwOjQwIGluIGEgc3R1ZHkgd2l0aCAxMDAgc3ViamVjdHMsIGFuZAogICAgLSBvZiBhdCBsZWFzdCA1MzE6NDY5IGluIGEgc3R1ZHkgd2l0aCAxMDAwIHN1YmplY3RzLgoKLSBUaGlzIGltYmFsYW5jZSBpcyBub3QgcHJvYmxlbWF0aWMsIGJ1dCBjYXVzZXMgYSBsb3NzIGluIHByZWNpc2lvbi4KCi0tLQoKIyMgQmFsYW5jZWQgUmFuZG9taXphdGlvbgoKLSBFcXVhbCBudW1iZXJzIG9mIGVhY2ggdHJlYXRtZW50IGFyZSBhc3NpZ25lZCB0byBhIGJsb2NrIG9mIDIgb3IgNCBwYXRpZW50cy4KICAgIC0gKDEpIEFCLCAoMikgQkEKICAgIC0gKDEpIEFBQkIsICgyKSBBQkFCLCAoMykgQUJCQSwgKDQpIEJBQkEsICg1KSBCQUFCLCAoNikgQkJBQQoKLSBCYWxhbmNlZCBSYW5kb21pemF0aW9uIGVuc3VyZXMgJFxwbSQgdGhlIHNhbWUgbnVtYmVyIG9mIHBlb3BsZSBpbiB0aGUgY29udHJvbCBhbmQgdGhlIHRyZWF0bWVudCBhcm0gb2YgdGhlIGV4cGVyaW1lbnQuCgotIERvZXMgbm90IG1ha2UgdGhhdCB3ZSBoYXZlIGFuIGVxdWFsIG51bWJlciBvZiBtYWxlcyB3aXRoIGFuZCB3aXRob3V0IHRoZSB0cmVhdG1lbnQsIGV0Yy4KCi0gSW4gc21hbGwgc3R1ZGllcywgaXQgaXMgcG9zc2libGUgdGhhdCB0aGUgZ3JvdXBzIGFyZSB1bmJhbGFuY2VkIGluIG90aGVyIGNoYXJhY3RlcmlzdGljcyAoZS5nLiBnZW5kZXIsIHJhY2UsIGFnZSAuLi4pCgotIFRoaXMgaXMgbm90IHByb2JsZW1hdGljIGJlY2F1c2UgaXQgb2NjdXJzIGF0IHJhbmRvbSwgYnV0LCBhZ2FpbiBpdCBjYXVzZXMgYSBsb3NzIGluIHByZWNpc2lvbi4KCi0tLQoKIyMgU3RyYXRpZmllZCByYW5kb21pemF0aW9uCgotIFRoZSBpbWJhbGFuY2UgYWNjb3JkaW5nIHRvIGZvciBpbnN0YW5jZSBnZW5kZXIgY2FuIGJlIGF2b2lkZWQgdXNpbmcgc3RyYXRpZmllZCBSYW5kb21pemF0aW9uOiBiYWxhbmNlZCByYW5kb21pemF0aW9uIHBlciBzdHJhdHVtCgohW1N0cmF0aWZpZWQgUmFuZG9taXphdGlvbl0oLi9maWd1cmVzL3N0cmF0aWZpY2F0aW9uLnBuZyl7IHdpZHRoPTUwJSB9CgotLS0KCiMgU2FtcGxlIHNpemUKCi0gVGhlIHNhbXBsZSBzaXplIGFuZCB0aGUgZGVzaWduIGFyZSBjcnVjaWFsLgoKLSBUaGUgbGFyZ2VyIHRoZSBzYW1wbGUgc2l6ZSwgdGhlIG1vcmUgcHJlY2lzZSB0aGUgcmVzdWx0cy4KCgojIEJhZCBkZXNpZ24gZXhhbXBsZQoKLSBkbTogZGlhYmV0aWMgbWVkaXVtLCBuZDogbm9uIGRpYWJldGljIG1lZGl1bSwgY286IGNvbnRyb2wKLSA0IGJpby1yZXBzLCAyIHRlY2hyZXBzL2Jpb3JlcAohW10oLi9maWd1cmVzL3FwY3JCYWREZXNpZ24xLnBuZyl7IHdpZHRoPTEwMCUgfQoKLSBkbTogZGlhYmV0aWMgbWVkaXVtLCBuZDogbm9uIGRpYWJldGljIG1lZGl1bSwgY286IGNvbnRyb2wKLSA0IGJpby1yZXBzLCAyIHRlY2hyZXBzL2Jpb3JlcCwgMiBwbGF0ZXMgQSAmIEIKLSBUcmVhdG1lbnQgYW5kIHBsYXRlIGFsbW9zdCBlbnRpcmVseSBjb25mb3VuZGVkCgohW10oLi9maWd1cmVzL3FwY3JCYWREZXNpZ24yLnBuZyl7IHdpZHRoPTEwMCUgfQoKLS0tCgoKIyBXcmFwLXVwCgotIFNhbXBsZSBzaXplIGlzIHZlcnkgaW1wb3J0YW50LgoKLSBUbyBhc3Nlc3MgdGhlIGVmZmVjdCBvZiBhIHRyZWF0bWVudCwgd2Ugc2hvdWxkIGNvbXBhcmUgY29tcGFyYWJsZSBhbmQgcmVwcmVzZW50YXRpdmUgZ3JvdXBzIG9mIHN1YmplY3RzIHdpdGggYW5kIHdpdGhvdXQgdGhlIHRyZWF0bWVudCAoYSBnb29kIGNvbnRyb2whKS4KCi0gSW4gb2JzZXJ2YXRpb25hbCBzdHVkaWVzLCB0aGUgcmVzZWFyY2hlciBjYW5ub3QgY2hvb3NlIHRoZSB0cmVhdG1lbnQuIEl0IHdhcyB0aGUgcGF0aWVudCBvciB0aGVpciBNRCB3aG8gaGFkIGNob3NlbiBpdAoKLSBJbiBleHBlcmltZW50YWwgc3R1ZGllcywgdGhlIHJlc2VhcmNoZXIgYXNzaWducyB0aGUgdHJlYXRtZW50LgoKLSBDb25mb3VuZGluZyBjYW4gYmUgYXZvaWRlZCB2aWEgcmFuZG9taXphdGlvbi4KCi0gV2UgY2FuIGFsc28gY29ycmVjdCBmb3IgY29uZm91bmRpbmcgaW4gdGhlIHN0YXRpc3RpY2FsIGFuYWx5c2lzIGZvciB0aGUgY29uZm91bmRlcnMgdGhhdCBoYXZlIGJlZW4gcmVnaXN0ZXJlZC4K