Creative Commons License


1 Need for a good control

  • A good control group is crucial.

  • To assess the effect of an intervention, we need to compare a test and control group.

  • This is often not possible in a pretest/post-test design: e.g. effect before and after administering a drug without the use of a placebo group.

  • Groups in an observational study are often not comparable: advanced statistical methods are required to draw causal conclusions.

  • Double blinding

  • We have to be aware of confounding!

  • Randomized studies: random assignment of subjects in the study to the different treatment arms \(\rightarrow\) comparable groups.


2 Randomization

  • Randomization completely at random (no systematic allocation).

2.1 Simple Randomization

  • Can lead to differences in the number of experimental units in each treatment arm

  • in 5% of the cases we might observe an imbalance of

    • of at least 60:40 in a study with 100 subjects, and
    • of at least 531:469 in a study with 1000 subjects.
  • This imbalance is not problematic, but causes a loss in precision.


2.2 Balanced Randomization

  • Equal numbers of each treatment are assigned to a block of 2 or 4 patients.

      1. AB, (2) BA
      1. AABB, (2) ABAB, (3) ABBA, (4) BABA, (5) BAAB, (6) BBAA
  • Balanced Randomization ensures \(\pm\) the same number of people in the control and the treatment arm of the experiment.

  • Does not make that we have an equal number of males with and without the treatment, etc.

  • In small studies, it is possible that the groups are unbalanced in other characteristics (e.g. gender, race, age …)

  • This is not problematic because it occurs at random, but, again it causes a loss in precision.


2.3 Stratified randomization

  • The imbalance according to for instance gender can be avoided using stratified Randomization: balanced randomization per stratum

Stratified Randomization


3 Sample size

  • The sample size and the design are crucial.

  • The larger the sample size, the more precise the results.

4 Bad design example

  • dm: diabetic medium, nd: non diabetic medium, co: control

  • 4 bio-reps, 2 techreps/biorep

  • dm: diabetic medium, nd: non diabetic medium, co: control

  • 4 bio-reps, 2 techreps/biorep, 2 plates A & B

  • Treatment and plate almost entirely confounded


5 Wrap-up

  • Sample size is very important.

  • To assess the effect of a treatment, we should compare comparable and representative groups of subjects with and without the treatment (a good control!).

  • In observational studies, the researcher cannot choose the treatment. It was the patient or their MD who had chosen it

  • In experimental studies, the researcher assigns the treatment.

  • Confounding can be avoided via randomization.

  • We can also correct for confounding in the statistical analysis for the confounders that have been registered.

LS0tCnRpdGxlOiAiMy4gU29tZSBjb25jZXB0cyBvbiBleHBlcmltZW50YWwgZGVzaWduIgphdXRob3I6ICJMaWV2ZW4gQ2xlbWVudCIKZGF0ZTogInN0YXRPbWljcywgR2hlbnQgVW5pdmVyc2l0eSAoaHR0cHM6Ly9zdGF0b21pY3MuZ2l0aHViLmlvKSIKLS0tCgo8YSByZWw9ImxpY2Vuc2UiIGhyZWY9Imh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjAiPjxpbWcgYWx0PSJDcmVhdGl2ZSBDb21tb25zIExpY2Vuc2UiIHN0eWxlPSJib3JkZXItd2lkdGg6MCIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLXNhLzQuMC84OHgzMS5wbmciIC8+PC9hPgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0UsIGNhY2hlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgaW5jbHVkZSA9IFRSVUUsIGNvbW1lbnQgPSBOQSwgZWNobyA9IFRSVUUsCiAgbWVzc2FnZSA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIGNhY2hlID0gVFJVRQopCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KE5IQU5FUykKYGBgCgpgYGB7ciBwb3AyU2FtcDJQb3AsIG91dC53aWR0aD0nODAlJyxmaWcuYXNwPS44LCBmaWcuYWxpZ249J2NlbnRlcicsZWNobz1GQUxTRX0KaWYgKCJwaSIgJWluJSBscygpKSBybSgicGkiKQprb3B2b2V0ZXIgPC0gZnVuY3Rpb24oeCwgeSwgYW5nbGUgPSAwLCBsID0gLjIsIGNleC5kb3QgPSAuNSwgcGNoID0gMTksIGNvbCA9ICJibGFjayIpIHsKICBhbmdsZSA8LSBhbmdsZSAvIDE4MCAqIHBpCiAgcG9pbnRzKHgsIHksIGNleCA9IGNleC5kb3QsIHBjaCA9IHBjaCwgY29sID0gY29sKQogIGxpbmVzKGMoeCwgeCArIGwgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSksIGMoeSwgeSArIGwgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSksIGNvbCA9IGNvbCkKICBsaW5lcyhjKHggKyBsIC8gMiAqIGNvcygtcGkgLyAyICsgYW5nbGUpLCB4ICsgbCAvIDIgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSArIGwgLyA0ICogY29zKGFuZ2xlKSksIGMoeSArIGwgLyAyICogc2luKC1waSAvIDIgKyBhbmdsZSksIHkgKyBsIC8gMiAqIHNpbigtcGkgLyAyICsgYW5nbGUpICsgbCAvIDQgKiBzaW4oYW5nbGUpKSwgY29sID0gY29sKQogIGxpbmVzKGMoeCArIGwgLyAyICogY29zKC1waSAvIDIgKyBhbmdsZSksIHggKyBsIC8gMiAqIGNvcygtcGkgLyAyICsgYW5nbGUpICsgbCAvIDQgKiBjb3MocGkgKyBhbmdsZSkpLCBjKHkgKyBsIC8gMiAqIHNpbigtcGkgLyAyICsgYW5nbGUpLCB5ICsgbCAvIDIgKiBzaW4oLXBpIC8gMiArIGFuZ2xlKSArIGwgLyA0ICogc2luKHBpICsgYW5nbGUpKSwgY29sID0gY29sKQogIGxpbmVzKGMoeCArIGwgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSwgeCArIGwgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSArIGwgLyAyICogY29zKC1waSAvIDIgKyBwaSAvIDQgKyBhbmdsZSkpLCBjKHkgKyBsICogc2luKC1waSAvIDIgKyBhbmdsZSksIHkgKyBsICogc2luKC1waSAvIDIgKyBhbmdsZSkgKyBsIC8gMiAqIHNpbigtcGkgLyAyICsgcGkgLyA0ICsgYW5nbGUpKSwgY29sID0gY29sKQogIGxpbmVzKGMoeCArIGwgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSwgeCArIGwgKiBjb3MoLXBpIC8gMiArIGFuZ2xlKSArIGwgLyAyICogY29zKC1waSAvIDIgLSBwaSAvIDQgKyBhbmdsZSkpLCBjKHkgKyBsICogc2luKC1waSAvIDIgKyBhbmdsZSksIHkgKyBsICogc2luKC1waSAvIDIgKyBhbmdsZSkgKyBsIC8gMiAqIHNpbigtcGkgLyAyIC0gcGkgLyA0ICsgYW5nbGUpKSwgY29sID0gY29sKQp9CgpwYXIobWFyID0gYygwLCAwLCAwLCAwKSwgbWFpID0gYygwLCAwLCAwLCAwKSkKcGxvdCgwLCAwLCB4bGFiID0gIiIsIHlsYWIgPSAiIiwgeGxpbSA9IGMoMCwgMTApLCB5bGltID0gYygwLCAxMCksIGNvbCA9IDAsIHhheHQgPSAibm9uZSIsIHlheHQgPSAibm9uZSIsIGF4ZXMgPSBGQUxTRSkKcmVjdCgwLCA2LCAxMCwgMTAsIGJvcmRlciA9ICJyZWQiLCBsd2QgPSAyKQp0ZXh0KC41LCA4LCAicG9wdWxhdGlvbiIsIHNydCA9IDkwLCBjb2wgPSAicmVkIiwgY2V4ID0gMikKc3ltYm9scygzLCA4LCBjaXJjbGVzID0gMS41LCBjb2wgPSAicmVkIiwgYWRkID0gVFJVRSwgZmcgPSAicmVkIiwgaW5jaGVzID0gRkFMU0UsIGx3ZCA9IDIpCnNldC5zZWVkKDMzMCkKZ3JpZCA8LSBzZXEoMCwgMS4zLCAuMDEpCgpmb3IgKGkgaW4gMTo1MCkKewogIGFuZ2xlMSA8LSBydW5pZihuID0gMSwgbWluID0gMCwgbWF4ID0gMzYwKQogIGFuZ2xlMiA8LSBydW5pZihuID0gMSwgbWluID0gMCwgbWF4ID0gMzYwKQogIHJhZGl1cyA8LSBzYW1wbGUoZ3JpZCwgcHJvYiA9IGdyaWReMiAqIHBpIC8gc3VtKGdyaWReMiAqIHBpKSwgc2l6ZSA9IDEpCiAga29wdm9ldGVyKDMgKyByYWRpdXMgKiBjb3MoYW5nbGUxIC8gMTgwICogcGkpLCA4ICsgcmFkaXVzICogc2luKGFuZ2xlMSAvIDE4MCAqIHBpKSwgYW5nbGUgPSBhbmdsZTIpCn0KdGV4dCg3LjUsIDgsICJDaG9sZXN0ZXJvbCBpbiBwb3B1bGF0aW9uIiwgY29sID0gInJlZCIsIGNleCA9IDEuMikKCnJlY3QoMCwgMCwgMTAsIDQsIGJvcmRlciA9ICJibHVlIiwgbHdkID0gMikKdGV4dCguNSwgMiwgInNhbXBsZSIsIHNydCA9IDkwLCBjb2wgPSAiYmx1ZSIsIGNleCA9IDIpCnN5bWJvbHMoMywgMiwgY2lyY2xlcyA9IDEuNSwgY29sID0gInJlZCIsIGFkZCA9IFRSVUUsIGZnID0gImJsdWUiLCBpbmNoZXMgPSBGQUxTRSwgbHdkID0gMikKZm9yIChpIGluIDA6MikgewogIGZvciAoaiBpbiAwOjQpCiAgewogICAga29wdm9ldGVyKDIuMSArIGogKiAoMy45IC0gMi4xKSAvIDQsIDEuMSArIGkpCiAgfQp9CnRleHQoNy41LCAyLCAiQ2hvbGVzdGVyb2wgaW4gc2FtcGxlIiwgY29sID0gImJsdWUiLCBjZXggPSAxLjIpCgphcnJvd3MoMywgNS45LCAzLCA0LjEsIGNvbCA9ICJibGFjayIsIGx3ZCA9IDMpCmFycm93cyg3LCA0LjEsIDcsIDUuOSwgY29sID0gImJsYWNrIiwgbHdkID0gMykKdGV4dCgxLjUsIDUsICJFWFAuIERFU0lHTiAoMSkiLCBjb2wgPSAiYmxhY2siLCBjZXggPSAxLjIpCnRleHQoOC41LCA1LCAiRVNUSU1BVElPTiAmXG5JTkZFUkVOQ0UgKDMpIiwgY29sID0gImJsYWNrIiwgY2V4ID0gMS4yKQp0ZXh0KDcuNSwgLjUsICJEQVRBIEVYUExPUkFUSU9OICZcbkRFU0NSSVBUSVZFIFNUQVRJU1RJQ1MgKDIpIiwgY29sID0gImJsYWNrIiwgY2V4ID0gMS4yKQpgYGAKCi0tLQoKIyBOZWVkIGZvciBhIGdvb2QgY29udHJvbAoKLSBBIGdvb2QgY29udHJvbCBncm91cCBpcyBjcnVjaWFsLgoKLSBUbyBhc3Nlc3MgdGhlIGVmZmVjdCBvZiBhbiBpbnRlcnZlbnRpb24sIHdlIG5lZWQgdG8gY29tcGFyZSBhIHRlc3QgYW5kIGNvbnRyb2wgZ3JvdXAuCgotIFRoaXMgaXMgb2Z0ZW4gbm90IHBvc3NpYmxlIGluIGEgcHJldGVzdC9wb3N0LXRlc3QgZGVzaWduOiBlLmcuIGVmZmVjdCBiZWZvcmUgYW5kIGFmdGVyIGFkbWluaXN0ZXJpbmcgYSBkcnVnIHdpdGhvdXQgdGhlIHVzZSBvZiBhIHBsYWNlYm8gZ3JvdXAuCgotIEdyb3VwcyBpbiBhbiBvYnNlcnZhdGlvbmFsIHN0dWR5IGFyZSBvZnRlbiBub3QgY29tcGFyYWJsZTogYWR2YW5jZWQgc3RhdGlzdGljYWwgbWV0aG9kcyBhcmUgcmVxdWlyZWQgdG8gZHJhdyBjYXVzYWwgY29uY2x1c2lvbnMuCgotIERvdWJsZSBibGluZGluZwoKLSBXZSBoYXZlIHRvIGJlIGF3YXJlIG9mIGNvbmZvdW5kaW5nIQoKLSBSYW5kb21pemVkIHN0dWRpZXM6IHJhbmRvbSBhc3NpZ25tZW50IG9mIHN1YmplY3RzIGluIHRoZSBzdHVkeSB0byB0aGUgZGlmZmVyZW50IHRyZWF0bWVudCBhcm1zICRccmlnaHRhcnJvdyQgY29tcGFyYWJsZSBncm91cHMuCgotLS0KCiMgUmFuZG9taXphdGlvbgoKLSBSYW5kb21pemF0aW9uIGNvbXBsZXRlbHkgYXQgcmFuZG9tIChubyBzeXN0ZW1hdGljIGFsbG9jYXRpb24pLgoKIyMgU2ltcGxlIFJhbmRvbWl6YXRpb24KCi0gQ2FuIGxlYWQgdG8gZGlmZmVyZW5jZXMgaW4gdGhlIG51bWJlciBvZiBleHBlcmltZW50YWwgdW5pdHMgaW4gZWFjaCB0cmVhdG1lbnQgYXJtCgotIGluIDUlIG9mIHRoZSBjYXNlcyB3ZSBtaWdodCBvYnNlcnZlIGFuIGltYmFsYW5jZSBvZgogICAgLSBvZiBhdCBsZWFzdCA2MDo0MCBpbiBhIHN0dWR5IHdpdGggMTAwIHN1YmplY3RzLCBhbmQKICAgIC0gb2YgYXQgbGVhc3QgNTMxOjQ2OSBpbiBhIHN0dWR5IHdpdGggMTAwMCBzdWJqZWN0cy4KCi0gVGhpcyBpbWJhbGFuY2UgaXMgbm90IHByb2JsZW1hdGljLCBidXQgY2F1c2VzIGEgbG9zcyBpbiBwcmVjaXNpb24uCgotLS0KCiMjIEJhbGFuY2VkIFJhbmRvbWl6YXRpb24KCi0gRXF1YWwgbnVtYmVycyBvZiBlYWNoIHRyZWF0bWVudCBhcmUgYXNzaWduZWQgdG8gYSBibG9jayBvZiAyIG9yIDQgcGF0aWVudHMuCiAgICAtICgxKSBBQiwgKDIpIEJBCiAgICAtICgxKSBBQUJCLCAoMikgQUJBQiwgKDMpIEFCQkEsICg0KSBCQUJBLCAoNSkgQkFBQiwgKDYpIEJCQUEKCi0gQmFsYW5jZWQgUmFuZG9taXphdGlvbiBlbnN1cmVzICRccG0kIHRoZSBzYW1lIG51bWJlciBvZiBwZW9wbGUgaW4gdGhlIGNvbnRyb2wgYW5kIHRoZSB0cmVhdG1lbnQgYXJtIG9mIHRoZSBleHBlcmltZW50LgoKLSBEb2VzIG5vdCBtYWtlIHRoYXQgd2UgaGF2ZSBhbiBlcXVhbCBudW1iZXIgb2YgbWFsZXMgd2l0aCBhbmQgd2l0aG91dCB0aGUgdHJlYXRtZW50LCBldGMuCgotIEluIHNtYWxsIHN0dWRpZXMsIGl0IGlzIHBvc3NpYmxlIHRoYXQgdGhlIGdyb3VwcyBhcmUgdW5iYWxhbmNlZCBpbiBvdGhlciBjaGFyYWN0ZXJpc3RpY3MgKGUuZy4gZ2VuZGVyLCByYWNlLCBhZ2UgLi4uKQoKLSBUaGlzIGlzIG5vdCBwcm9ibGVtYXRpYyBiZWNhdXNlIGl0IG9jY3VycyBhdCByYW5kb20sIGJ1dCwgYWdhaW4gaXQgY2F1c2VzIGEgbG9zcyBpbiBwcmVjaXNpb24uCgotLS0KCiMjIFN0cmF0aWZpZWQgcmFuZG9taXphdGlvbgoKLSBUaGUgaW1iYWxhbmNlIGFjY29yZGluZyB0byBmb3IgaW5zdGFuY2UgZ2VuZGVyIGNhbiBiZSBhdm9pZGVkIHVzaW5nIHN0cmF0aWZpZWQgUmFuZG9taXphdGlvbjogYmFsYW5jZWQgcmFuZG9taXphdGlvbiBwZXIgc3RyYXR1bQoKIVtTdHJhdGlmaWVkIFJhbmRvbWl6YXRpb25dKGh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9HVFBCL1BTTFMyMC9naC1wYWdlcy9hc3NldHMvZmlncy9zdHJhdGlmaWNhdGlvbi5wbmcpeyB3aWR0aD01MCUgfQoKLS0tCgojIFNhbXBsZSBzaXplCgotIFRoZSBzYW1wbGUgc2l6ZSBhbmQgdGhlIGRlc2lnbiBhcmUgY3J1Y2lhbC4KCi0gVGhlIGxhcmdlciB0aGUgc2FtcGxlIHNpemUsIHRoZSBtb3JlIHByZWNpc2UgdGhlIHJlc3VsdHMuCgoKIyBCYWQgZGVzaWduIGV4YW1wbGUKCi0gZG06IGRpYWJldGljIG1lZGl1bSwgbmQ6IG5vbiBkaWFiZXRpYyBtZWRpdW0sIGNvOiBjb250cm9sCi0gNCBiaW8tcmVwcywgMiB0ZWNocmVwcy9iaW9yZXAKIVtdKGh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9HVFBCL1BTTFMyMC9naC1wYWdlcy9hc3NldHMvZmlncy9xcGNyQmFkRGVzaWduMS5wbmcpeyB3aWR0aD0xMDAlIH0KCi0gZG06IGRpYWJldGljIG1lZGl1bSwgbmQ6IG5vbiBkaWFiZXRpYyBtZWRpdW0sIGNvOiBjb250cm9sCi0gNCBiaW8tcmVwcywgMiB0ZWNocmVwcy9iaW9yZXAsIDIgcGxhdGVzIEEgJiBCCi0gVHJlYXRtZW50IGFuZCBwbGF0ZSBhbG1vc3QgZW50aXJlbHkgY29uZm91bmRlZAoKIVtdKGh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9HVFBCL1BTTFMyMC9naC1wYWdlcy9hc3NldHMvZmlncy9xcGNyQmFkRGVzaWduMi5wbmcpeyB3aWR0aD0xMDAlIH0KCi0tLQoKCiMgV3JhcC11cAoKLSBTYW1wbGUgc2l6ZSBpcyB2ZXJ5IGltcG9ydGFudC4KCi0gVG8gYXNzZXNzIHRoZSBlZmZlY3Qgb2YgYSB0cmVhdG1lbnQsIHdlIHNob3VsZCBjb21wYXJlIGNvbXBhcmFibGUgYW5kIHJlcHJlc2VudGF0aXZlIGdyb3VwcyBvZiBzdWJqZWN0cyB3aXRoIGFuZCB3aXRob3V0IHRoZSB0cmVhdG1lbnQgKGEgZ29vZCBjb250cm9sISkuCgotIEluIG9ic2VydmF0aW9uYWwgc3R1ZGllcywgdGhlIHJlc2VhcmNoZXIgY2Fubm90IGNob29zZSB0aGUgdHJlYXRtZW50LiBJdCB3YXMgdGhlIHBhdGllbnQgb3IgdGhlaXIgTUQgd2hvIGhhZCBjaG9zZW4gaXQKCi0gSW4gZXhwZXJpbWVudGFsIHN0dWRpZXMsIHRoZSByZXNlYXJjaGVyIGFzc2lnbnMgdGhlIHRyZWF0bWVudC4KCi0gQ29uZm91bmRpbmcgY2FuIGJlIGF2b2lkZWQgdmlhIHJhbmRvbWl6YXRpb24uCgotIFdlIGNhbiBhbHNvIGNvcnJlY3QgZm9yIGNvbmZvdW5kaW5nIGluIHRoZSBzdGF0aXN0aWNhbCBhbmFseXNpcyBmb3IgdGhlIGNvbmZvdW5kZXJzIHRoYXQgaGF2ZSBiZWVuIHJlZ2lzdGVyZWQuCg==