1 Course Description

High-throughput ’omics studies generate ever larger datasets and, as a consequence, complex data interpretation challenges. This course focusses on statistical concepts involved in preprocessing, quantification, normalization, visualization, integration and differential analysis of single-cell ’omics data. The course will rely exclusively on free and user-friendly open-source tools in R/Bioconductor. We hope that this will provide a solid basis for beginners, but will also bring new perspectives to those already familiar with standard data analysis workflows for proteomics and next-generation sequencing applications.

2 Prerequisites

The prerequisites are the successful completion of a basic course of statistics that covers topics on data exploration and descriptive statistics, statistical modeling, and inference: linear models, confidence intervals, t-tests, F-tests, anova, chi-squared test. The basis concepts may be revisited in the online course at https://gtpb.github.io/PSLS20/ (English) and in https://statomics.github.io/statistiekCursusNotas/ (Dutch).

In addition, knowledge of programming in R is preferred. A primer to R and Data visualization in R can be found at:

3 Software

  • Participants are required to bring their own laptop with R version 4.1.1 or greater.

  • We also recommend to also install the latest version of RStudio.

  • Participants who have issues with the installation of the R/Rstudio can use an Rstudio instance in the cloud with all packages installed for the course in the mean time. Note, that this is instance is not for routine use.

Binder

5 Detailed Program

  1. Positioning of the course: slides.

5.1 Theory Session I (Nov. 17, 2021)

  1. Lecture: A brief introduction to sequencing technology: HTML, [PDF].
  2. Lecture: The two most popular single-cell RNA-seq protocols: HTML, [PDF].
  3. Lecture: single-cell RNA-seq analysis: general concepts and workflow: slides.
LS0tCnRpdGxlOiAiSVBWVy9JQ0VTIHNpbmdsZS1jZWxsIGNvdXJzZSAyMDIxLTIwMjIiCi0tLQoKCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9CmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCIuL2ZpZ3VyZXMvd3BHcmFwaC5qcGVnIikKYGBgCgojIENvdXJzZSBEZXNjcmlwdGlvbgoKSGlnaC10aHJvdWdocHV0ICdvbWljcyBzdHVkaWVzIGdlbmVyYXRlIGV2ZXIgbGFyZ2VyIGRhdGFzZXRzIGFuZCwgYXMgYSBjb25zZXF1ZW5jZSwgY29tcGxleCBkYXRhIGludGVycHJldGF0aW9uIGNoYWxsZW5nZXMuIFRoaXMgY291cnNlIGZvY3Vzc2VzIG9uIHN0YXRpc3RpY2FsIGNvbmNlcHRzIGludm9sdmVkIGluIHByZXByb2Nlc3NpbmcsIHF1YW50aWZpY2F0aW9uLCBub3JtYWxpemF0aW9uLCB2aXN1YWxpemF0aW9uLCBpbnRlZ3JhdGlvbiBhbmQgZGlmZmVyZW50aWFsIGFuYWx5c2lzIG9mIHNpbmdsZS1jZWxsICdvbWljcyBkYXRhLiBUaGUgY291cnNlIHdpbGwgcmVseSBleGNsdXNpdmVseSBvbiBmcmVlIGFuZCB1c2VyLWZyaWVuZGx5IG9wZW4tc291cmNlIHRvb2xzIGluIFIvQmlvY29uZHVjdG9yLiBXZSBob3BlIHRoYXQgdGhpcyB3aWxsIHByb3ZpZGUgYSBzb2xpZCBiYXNpcyBmb3IgYmVnaW5uZXJzLCBidXQgd2lsbCBhbHNvIGJyaW5nIG5ldyBwZXJzcGVjdGl2ZXMgdG8gdGhvc2UgYWxyZWFkeSBmYW1pbGlhciB3aXRoIHN0YW5kYXJkIGRhdGEgYW5hbHlzaXMgd29ya2Zsb3dzIGZvciBwcm90ZW9taWNzIGFuZCBuZXh0LWdlbmVyYXRpb24gc2VxdWVuY2luZyBhcHBsaWNhdGlvbnMuCgojIFByZXJlcXVpc2l0ZXMKClRoZSBwcmVyZXF1aXNpdGVzICBhcmUgdGhlIHN1Y2Nlc3NmdWwgY29tcGxldGlvbiBvZiBhIGJhc2ljIGNvdXJzZSBvZiBzdGF0aXN0aWNzIHRoYXQgY292ZXJzIHRvcGljcyBvbiBkYXRhIGV4cGxvcmF0aW9uIGFuZCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzLCBzdGF0aXN0aWNhbCBtb2RlbGluZywgYW5kIGluZmVyZW5jZTogbGluZWFyIG1vZGVscywgY29uZmlkZW5jZSBpbnRlcnZhbHMsIHQtdGVzdHMsIEYtdGVzdHMsIGFub3ZhLCBjaGktc3F1YXJlZCB0ZXN0LgpUaGUgYmFzaXMgY29uY2VwdHMgbWF5IGJlIHJldmlzaXRlZCBpbiB0aGUgb25saW5lIGNvdXJzZSBhdCBodHRwczovL2d0cGIuZ2l0aHViLmlvL1BTTFMyMC8gKEVuZ2xpc2gpIGFuZCBpbiBodHRwczovL3N0YXRvbWljcy5naXRodWIuaW8vc3RhdGlzdGlla0N1cnN1c05vdGFzLyAoRHV0Y2gpLgoKSW4gYWRkaXRpb24sIGtub3dsZWRnZSBvZiBwcm9ncmFtbWluZyBpbiBgUmAgaXMgcHJlZmVycmVkLiBBIHByaW1lciB0byBgUmAgYW5kIERhdGEgdmlzdWFsaXphdGlvbiBpbiBgUmAgY2FuIGJlIGZvdW5kIGF0OgoKIC0gYFJgIEJhc2ljczogaHR0cHM6Ly9kb2RvbmEudWdlbnQuYmUvbmwvY291cnNlcy8zMzUvCiAtIGBSYCBEYXRhIEV4cGxvcmF0aW9uOiBodHRwczovL2RvZG9uYS51Z2VudC5iZS9ubC9jb3Vyc2VzLzM0NS8KCgojIFNvZnR3YXJlIAoKLSBQYXJ0aWNpcGFudHMgYXJlIHJlcXVpcmVkIHRvIGJyaW5nIHRoZWlyIG93biBsYXB0b3Agd2l0aCBbUl0oaHR0cHM6Ly93d3cuci1wcm9qZWN0Lm9yZy8pIHZlcnNpb24gNC4xLjEgb3IgZ3JlYXRlci4gCgotIFdlIGFsc28gcmVjb21tZW5kIHRvIGFsc28gaW5zdGFsbCB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgW1JTdHVkaW9dKGh0dHBzOi8vd3d3LnJzdHVkaW8uY29tL3Byb2R1Y3RzL3JzdHVkaW8vZG93bmxvYWQvKS4KCi0gUGFydGljaXBhbnRzIHdobyBoYXZlIGlzc3VlcyB3aXRoIHRoZSBpbnN0YWxsYXRpb24gb2YgdGhlIFIvUnN0dWRpbyBjYW4gdXNlIGFuIFJzdHVkaW8gaW5zdGFuY2UgaW4gdGhlIGNsb3VkIHdpdGggYWxsIHBhY2thZ2VzIGluc3RhbGxlZCBmb3IgdGhlIGNvdXJzZSBpbiB0aGUgbWVhbiB0aW1lLiBOb3RlLCB0aGF0IHRoaXMgaXMgaW5zdGFuY2UgaXMgbm90IGZvciByb3V0aW5lIHVzZS4gCgpbIVtCaW5kZXJdKGh0dHA6Ly9teWJpbmRlci5vcmcvYmFkZ2Uuc3ZnKV0oaHR0cHM6Ly9teWJpbmRlci5vcmcvdjIvZ2gvc3RhdE9taWNzL1NHQTIxL2JpbmRlcj91cmxwYXRoPXJzdHVkaW8pCgojIERyb3BCb3ggbGluayAKCldlIGhhdmUgY3JlYXRlZCBhIFtEcm9wQm94IGZvbGRlcl0oaHR0cHM6Ly93d3cuZHJvcGJveC5jb20vc2gvM3ljOTA2NXJpNzZiMmU3L0FBQXIwejlaR3AzQVBaLXJlSDZJMERHUWE/ZGw9MCkgY29udGFpbmluZyBjb252ZW5pZW5jZSBmaWxlcywgZS5nLiwgYSBwcmVwcm9jZXNzZWQgYFNpbmdsZUNlbGxFeHBlcmltZW50YCB0aGF0IGlzIHRoZSBlbmQgcmVzdWx0IG9mIGxhYiBzZXNzaW9uIDEuCgojIERldGFpbGVkIFByb2dyYW0KCjAuIFBvc2l0aW9uaW5nIG9mIHRoZSBjb3Vyc2U6IFtzbGlkZXNdKGh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3ByZXNlbnRhdGlvbi9kLzFaWmU2ZzNlWkZrSno5UGg2Yk1UMy1yQVU4ZEJLUU91OU43U0R6U09CdGZJL2VkaXQ/dXNwPXNoYXJpbmcpLgoKIyMgVGhlb3J5IFNlc3Npb24gSSAoTm92LiAxNywgMjAyMSkKCjEuIExlY3R1cmU6IEEgYnJpZWYgaW50cm9kdWN0aW9uIHRvIHNlcXVlbmNpbmcgdGVjaG5vbG9neTogW0hUTUxdKC4vaW50cm9TZXF1ZW5jaW5nQnVsay5odG1sKSwgW1tQREZdKC4vaW50cm9TZXF1ZW5jaW5nQnVsay5wZGYpXS4KMi4gTGVjdHVyZTogVGhlIHR3byBtb3N0IHBvcHVsYXIgc2luZ2xlLWNlbGwgUk5BLXNlcSBwcm90b2NvbHM6IFtIVE1MXSguL3NpbmdsZUNlbGxQcm90b2NvbHMuaHRtbCksIFtbUERGXSguL3NpbmdsZUNlbGxQcm90b2NvbHMucGRmKV0uCjMuIExlY3R1cmU6IHNpbmdsZS1jZWxsIFJOQS1zZXEgYW5hbHlzaXM6IGdlbmVyYWwgY29uY2VwdHMgYW5kIHdvcmtmbG93OiBbc2xpZGVzXShodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9wcmVzZW50YXRpb24vZC8xc2ZidHc1MnFXZ0E3VGNESXJHQjNmV2tzTE0wTXU5TzdnQnFZZ0dydDlmTS9lZGl0P3VzcD1zaGFyaW5nKS4KCgojIEluc3RydWN0b3JzCgogLSBbS29lbiBWYW4gZGVuIEJlcmdlXShodHRwczovL2tvZW52YW5kZW5iZXJnZS5naXRodWIuaW8vKQogLSBbSmVyb2VuIEdpbGlzXShodHRwczovL3N0YXRvbWljcy5naXRodWIuaW8vcGFnZXMvamVyb2VuLmh0bWwpCgoKIyBMaWNlbnNlCgo8YSByZWw9ImxpY2Vuc2UiIGhyZWY9Imh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjAiPjxpbWcgYWx0PSJDcmVhdGl2ZSBDb21tb25zIExpY2Vuc2UiIHN0eWxlPSJib3JkZXItd2lkdGg6MCIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLXNhLzQuMC84OHgzMS5wbmciIC8+PC9hPgoKVGhpcyBwcm9qZWN0IGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBbQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLVNoYXJlQWxpa2UgNC4wIEludGVybmF0aW9uYWwgKENDIEJZLU5DLVNBIDQuMCldKGh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjApCgo=