Data
We first import the data from peptideRaws.txt file. This is the file
containing your peptideRaw-level intensities. For a MaxQuant search [6],
this peptideRaws.txt file can be found by default in the
“path_to_raw_files/combined/txt/” folder from the MaxQuant output, with
“path_to_raw_files” the folder where the raw files were saved. In this
vignette, we use a MaxQuant peptideRaws file which is a subset of the
cptac study. This data is available in the msdata
package.
To import the data we use the QFeatures
package.
We generate the object peptideRawFile with the path to the
peptideRaws.txt file. Using the grepEcols
function, we find
the columns that contain the expression data of the peptideRaws in the
peptideRaws.txt file.
library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA22GTPB/data/quantification/cptacAvsB_lab3/peptides.txt"
ecols <- grep(
"Intensity\\.",
names(read.delim(peptidesFile))
)
Next, we read the data and store it in QFeatures object
pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")
The QFeatures object pe currently contains a single assay, named
peptideRaw.
We extract the column names from the peptideRaw assay and see that
this contains information about the spike-in condition.
colnames(pe[["peptideRaw"]])
## [1] "Intensity.6A_7" "Intensity.6A_8" "Intensity.6A_9" "Intensity.6B_7"
## [5] "Intensity.6B_8" "Intensity.6B_9"
We rename the colnames by dropping the “Intensity.” from the
name.
(newNames <- sub(
pattern = "Intensity\\.",
replacement = "",
colnames(pe[["peptideRaw"]]))
)
## [1] "6A_7" "6A_8" "6A_9" "6B_7" "6B_8" "6B_9"
pe <- renameColname(pe,
i = "peptideRaw",
newNames)
pe <- renamePrimary(pe, newNames)
colnames(pe[["peptideRaw"]])
## [1] "6A_7" "6A_8" "6A_9" "6B_7" "6B_8" "6B_9"
In the following code chunk, we add the spikein condition that we can
read in the raw file name to the colData.
colData(pe)$condition <-
colnames(pe[["peptideRaw"]]) %>%
substr(start = 2, stop = 2) %>%
as.factor
colData(pe)$condition
## [1] A A A B B B
## Levels: A B
We calculate how many non zero intensities we have per peptide and
this will be useful for filtering.
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
Peptides with zero intensities are missing peptides and should be
represent with a NA
value rather than 0
.
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
Data exploration
45% of all peptide intensities are missing and for some peptides we
do not even measure a signal in any sample.
Preprocessing
This section preforms preprocessing for the peptide data. This
include
- log transformation,
- filtering and
- summarisation of the data.
Filtering
- Handling overlapping protein groups
In our approach a peptide can map to multiple proteins, as long as
there is none of these proteins present in a smaller subgroup.
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
- Remove reverse sequences (decoys) and contaminants
We now remove the contaminants and peptides that map to decoy
sequences.
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")
- Drop peptides that were only identified in one sample
We keep peptides that were observed at last twice.
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
## [1] 7011
We keep 7011 peptides upon filtering.
Explore normalized
data
Upon the normalisation the density curves are nicely registered
pe[["peptideNorm"]] %>%
assay %>%
as.data.frame() %>%
gather(sample, intensity) %>%
mutate(condition = colData(pe)[sample,"condition"]) %>%
ggplot(aes(x = intensity,group = sample,color = condition)) +
geom_density()
## Warning: Removed 8167 rows containing non-finite values (stat_density).

We can visualize our data using a Multi Dimensional Scaling plot, eg.
as provided by the limma
package.
pe[["peptideNorm"]] %>%
assay %>%
limma::plotMDS(col = as.numeric(colData(pe)$condition))

The first axis in the plot is showing the leading log fold changes
(differences on the log scale) between the samples.
We notice that the leading differences (log FC) in the peptide data
seems to be driven by technical variability. Indeed, the samples do not
seem to be clearly separated according to the spike-in condition.
Summarization to
protein level
- By default robust summarization is used:
fun = MsCoreUtils::robustSummary()
pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")
## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.
plotMDS(assay(pe[["protein"]]), col = as.numeric(colData(pe)$condition))

Note that the samples upon robust summarisation show a clear
separation according to the spike-in condition in the second dimension
of the MDS plot.
Data Analysis
Estimation
We model the protein level expression values using
msqrob
. By default msqrob2
estimates the model
parameters using robust regression.
We will model the data with a different group mean. The group is
incoded in the variable condition
of the colData. We can
specify this model by using a formula with the factor condition as its
predictor: formula = ~condition
.
Note, that a formula always starts with a symbol ‘~’.
pe <- msqrob(object = pe, i = "protein", formula = ~condition)
Inference
First, we extract the parameter names of the model by looking at the
first model. The models are stored in the row data of the assay under
the default name msqrobModels.
getCoef(rowData(pe[["protein"]])$msqrobModels[[1]])
## (Intercept) conditionB
## -2.672396 1.513682
We can also explore the design of the model that we specified using
the the package ExploreModelMatrix
library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~condition)$plotlist[[1]]

Spike-in condition A
is the reference class. So the mean
log2 expression for samples from condition A is ‘(Intercept). The mean
log2 expression for samples from condition B is’(Intercept)+conditionB’.
Hence, the average log2 fold change between condition b and condition a
is modelled using the parameter ‘conditionB’. Thus, we assess the
contrast ‘conditionB = 0’ with our statistical test.
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)
Plots
Volcano-plot
volcano <- ggplot(rowData(pe[["protein"]])$conditionB,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) + theme_minimal()
volcano

Note, that 20 proteins are found to be differentially abundant.
Heatmap
We first select the names of the proteins that were declared
signficant.
sigNames <- rowData(pe[["protein"]])$conditionB %>%
rownames_to_column("protein") %>%
filter(adjPval<0.05) %>%
pull(protein)
heatmap(assay(pe[["protein"]])[sigNames, ])

The majority of the proteins are indeed UPS proteins. 1 yeast protein
is returned. Note, that the yeast protein indeed shows evidence for
differential abundance.
Boxplots
We make boxplot of the log2 FC and stratify according to the whether
a protein is spiked or not.
rowData(pe[["protein"]])$conditionB %>%
rownames_to_column(var = "protein") %>%
ggplot(aes(x=grepl("UPS",protein),y=logFC)) +
geom_boxplot() +
xlab("UPS") +
geom_segment(
x = 1.5,
xend = 2.5,
y = log2(0.74/0.25),
yend = log2(0.74/0.25),
colour="red") +
geom_segment(
x = 0.5,
xend = 1.5,
y = 0,
yend = 0,
colour="red") +
annotate(
"text",
x = c(1,2),
y = c(0,log2(0.74/0.25))+.1,
label = c(
"log2 FC Ecoli = 0",
paste0("log2 FC UPS = ",round(log2(0.74/0.25),2))
),
colour = "red")
## Warning: Removed 167 rows containing non-finite values (stat_boxplot).

What do you observe?
Detail plots
We first extract the normalized peptideRaw expression values for a
particular protein.
for (protName in sigNames)
{
pePlot <- pe[protName, , c("peptideNorm","protein")]
pePlotDf <- data.frame(longFormat(pePlot))
pePlotDf$assay <- factor(pePlotDf$assay,
levels = c("peptideNorm", "protein"))
pePlotDf$condition <- as.factor(colData(pePlot)[pePlotDf$colname, "condition"])
# plotting
p1 <- ggplot(data = pePlotDf,
aes(x = colname, y = value, group = rowname)) +
geom_line() +
geom_point() +
theme(axis.text.x = element_text(angle = 70, hjust = 1, vjust = 0.5)) +
facet_grid(~assay) +
ggtitle(protName)
print(p1)
# plotting 2
p2 <- ggplot(pePlotDf, aes(x = colname, y = value, fill = condition)) +
geom_boxplot(outlier.shape = NA) +
geom_point(
position = position_jitter(width = .1),
aes(shape = rowname)) +
scale_shape_manual(values = 1:nrow(pePlotDf)) +
labs(title = protName, x = "sample", y = "peptide intensity (log2)") +
theme(axis.text.x = element_text(angle = 70, hjust = 1, vjust = 0.5)) +
facet_grid(~assay)
print(p2)
}








































Note, that the yeast protein is only covered by 3 peptides. Only one
peptide is picked up in condition A. This peptide is also only once
observed in spike-in condition B. This puts a considerable burden upon
the inference and could be avoided by more stringent filtering.
Session Info
With respect to reproducibility, it is highly recommended to include
a session info in your script so that readers of your output can see
your particular setup of R.
## R version 4.2.3 (2023-03-15)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
##
## locale:
## [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
## [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
## [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices datasets utils methods
## [8] base
##
## other attached packages:
## [1] ExploreModelMatrix_1.8.0 plotly_4.10.0
## [3] msqrob2_1.4.0 QFeatures_1.6.0
## [5] MultiAssayExperiment_1.22.0 SummarizedExperiment_1.26.1
## [7] Biobase_2.56.0 GenomicRanges_1.48.0
## [9] GenomeInfoDb_1.32.2 IRanges_2.30.0
## [11] S4Vectors_0.34.0 BiocGenerics_0.42.0
## [13] MatrixGenerics_1.8.0 matrixStats_0.62.0
## [15] limma_3.52.1 forcats_0.5.1
## [17] stringr_1.4.1 dplyr_1.0.9
## [19] purrr_0.3.4 readr_2.1.2
## [21] tidyr_1.2.0 tibble_3.1.7
## [23] ggplot2_3.3.6 tidyverse_1.3.2
##
## loaded via a namespace (and not attached):
## [1] googledrive_2.0.0 minqa_1.2.4 colorspace_2.0-3
## [4] ellipsis_0.3.2 XVector_0.36.0 fs_1.5.2
## [7] clue_0.3-61 farver_2.1.0 DT_0.23
## [10] fansi_1.0.3 lubridate_1.8.0 xml2_1.3.3
## [13] codetools_0.2-18 splines_4.2.3 knitr_1.40.1
## [16] jsonlite_1.8.0 nloptr_2.0.3 broom_0.8.0
## [19] cluster_2.1.3 dbplyr_2.1.1 shinydashboard_0.7.2
## [22] shiny_1.7.1 BiocManager_1.30.18 compiler_4.2.3
## [25] httr_1.4.3 backports_1.4.1 assertthat_0.2.1
## [28] Matrix_1.4-1 fastmap_1.1.0 lazyeval_0.2.2
## [31] gargle_1.2.0 cli_3.3.0 later_1.3.0
## [34] htmltools_0.5.2 tools_4.2.3 igraph_1.3.2
## [37] gtable_0.3.0 glue_1.6.2 GenomeInfoDbData_1.2.8
## [40] Rcpp_1.0.8.3 cellranger_1.1.0 jquerylib_0.1.4
## [43] vctrs_0.4.1 nlme_3.1-157 rintrojs_0.3.0
## [46] xfun_0.33 lme4_1.1-29 rvest_1.0.2
## [49] mime_0.12 lifecycle_1.0.1 renv_0.15.4
## [52] googlesheets4_1.0.0 zlibbioc_1.42.0 MASS_7.3-57
## [55] scales_1.2.0 promises_1.2.0.1 hms_1.1.1
## [58] ProtGenerics_1.28.0 parallel_4.2.3 AnnotationFilter_1.20.0
## [61] yaml_2.3.5 sass_0.4.1 stringi_1.7.8
## [64] highr_0.9 boot_1.3-28 BiocParallel_1.30.2
## [67] rlang_1.0.2 pkgconfig_2.0.3 bitops_1.0-7
## [70] evaluate_0.16 lattice_0.20-45 htmlwidgets_1.5.4
## [73] labeling_0.4.2 cowplot_1.1.1 tidyselect_1.1.2
## [76] magrittr_2.0.3 R6_2.5.1 generics_0.1.2
## [79] DelayedArray_0.22.0 DBI_1.1.2 pillar_1.7.0
## [82] haven_2.5.0 withr_2.5.0 MsCoreUtils_1.8.0
## [85] RCurl_1.98-1.6 modelr_0.1.8 crayon_1.5.1
## [88] utf8_1.2.2 tzdb_0.3.0 rmarkdown_2.14
## [91] grid_4.2.3 readxl_1.4.0 data.table_1.14.2
## [94] reprex_2.0.1 digest_0.6.29 xtable_1.8-4
## [97] httpuv_1.6.5 munsell_0.5.0 viridisLite_0.4.0
## [100] bslib_0.3.1 shinyjs_2.1.0
LS0tCnRpdGxlOiAiSW50cm9kdWN0aW9uIHRvIHByb3Rlb21pY3MgZGF0YSBhbmFseXNpczogcm9idXN0IHN1bW1hcml6YXRpb24iCmF1dGhvcjogIkxpZXZlbiBDbGVtZW50IgpkYXRlOiAic3RhdE9taWNzLCBHaGVudCBVbml2ZXJzaXR5IChodHRwczovL3N0YXRvbWljcy5naXRodWIuaW8pIgpvdXRwdXQ6CiAgICBodG1sX2RvY3VtZW50OgogICAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICAgIHRoZW1lOiBmbGF0bHkKICAgICAgdG9jOiB0cnVlCiAgICAgIHRvY19mbG9hdDogdHJ1ZQogICAgICBoaWdobGlnaHQ6IHRhbmdvCiAgICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgcGRmX2RvY3VtZW50OgogICAgICB0b2M6IHRydWUKICAgICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCmxpbmtjb2xvcjogYmx1ZQp1cmxjb2xvcjogYmx1ZQpjaXRlY29sb3I6IGJsdWUKCmJpYmxpb2dyYXBoeTogbXNxcm9iMi5iaWIKCi0tLQoKPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtc2EvNC4wIj48aW1nIGFsdD0iQ3JlYXRpdmUgQ29tbW9ucyBMaWNlbnNlIiBzdHlsZT0iYm9yZGVyLXdpZHRoOjAiIHNyYz0iaHR0cHM6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1zYS80LjAvODh4MzEucG5nIiAvPjwvYT4KClRoaXMgaXMgcGFydCBvZiB0aGUgb25saW5lIGNvdXJzZSBbUHJvdGVvbWljcyBEYXRhIEFuYWx5c2lzIChQREEpXShodHRwczovL3N0YXRvbWljcy5naXRodWIuaW8vUERBMjJHVFBCLykKCiMgQmFja2dyb3VuZApUaGlzIGNhc2Utc3R1ZHkgaXMgYSBzdWJzZXQgb2YgdGhlIGRhdGEgb2YgdGhlIDZ0aCBzdHVkeSBvZiB0aGUgQ2xpbmljYWwKUHJvdGVvbWljIFRlY2hub2xvZ3kgQXNzZXNzbWVudCBmb3IgQ2FuY2VyIChDUFRBQykuCkluIHRoaXMgZXhwZXJpbWVudCwgdGhlIGF1dGhvcnMgc3Bpa2VkIHRoZSBTaWdtYSBVbml2ZXJzYWwgUHJvdGVpbiBTdGFuZGFyZAptaXh0dXJlIDEgKFVQUzEpIGNvbnRhaW5pbmcgNDggZGlmZmVyZW50IGh1bWFuIHByb3RlaW5zIGluIGEgcHJvdGVpbiBiYWNrZ3JvdW5kCm9mIDYwIG5nLyRcbXUkTCBTYWNjaGFyb215Y2VzIGNlcmV2aXNpYWUgc3RyYWluIEJZNDc0MS4KVHdvIGRpZmZlcmVudCBzcGlrZS1pbiBjb25jZW50cmF0aW9ucyB3ZXJlIHVzZWQ6CjZBICgwLjI1IGZtb2wgVVBTMSBwcm90ZWlucy8kXG11JEwpIGFuZCA2QiAoMC43NCBmbW9sIFVQUzEgcHJvdGVpbnMvJFxtdSRMKSBbNV0uCldlIGxpbWl0ZWQgb3Vyc2VsdmVzIHRvIHRoZSBkYXRhIG9mIExUUS1PcmJpdHJhcCBXIGF0IHNpdGUgNTYuClRoZSBkYXRhIHdlcmUgc2VhcmNoZWQgd2l0aCBNYXhRdWFudCB2ZXJzaW9uIDEuNS4yLjgsIGFuZApkZXRhaWxlZCBzZWFyY2ggc2V0dGluZ3Mgd2VyZSBkZXNjcmliZWQgaW4gR29lbWlubmUgZXQgYWwuICgyMDE2KSBbMV0uClRocmVlIHJlcGxpY2F0ZXMgYXJlIGF2YWlsYWJsZSBmb3IgZWFjaCBjb25jZW50cmF0aW9uLgoKCiMgRGF0YQoKV2UgZmlyc3QgaW1wb3J0IHRoZSBkYXRhIGZyb20gcGVwdGlkZVJhd3MudHh0IGZpbGUuIFRoaXMgaXMgdGhlIGZpbGUgY29udGFpbmluZwp5b3VyIHBlcHRpZGVSYXctbGV2ZWwgaW50ZW5zaXRpZXMuIEZvciBhIE1heFF1YW50IHNlYXJjaCBbNl0sCnRoaXMgcGVwdGlkZVJhd3MudHh0IGZpbGUgY2FuIGJlIGZvdW5kIGJ5IGRlZmF1bHQgaW4gdGhlCiJwYXRoX3RvX3Jhd19maWxlcy9jb21iaW5lZC90eHQvIiBmb2xkZXIgZnJvbSB0aGUgTWF4UXVhbnQgb3V0cHV0LAp3aXRoICJwYXRoX3RvX3Jhd19maWxlcyIgdGhlIGZvbGRlciB3aGVyZSB0aGUgcmF3IGZpbGVzIHdlcmUgc2F2ZWQuCkluIHRoaXMgdmlnbmV0dGUsIHdlIHVzZSBhIE1heFF1YW50IHBlcHRpZGVSYXdzIGZpbGUgd2hpY2ggaXMgYSBzdWJzZXQKb2YgdGhlIGNwdGFjIHN0dWR5LiBUaGlzIGRhdGEgaXMgYXZhaWxhYmxlIGluIHRoZSBgbXNkYXRhYCBwYWNrYWdlLgpUbyBpbXBvcnQgdGhlIGRhdGEgd2UgdXNlIHRoZSBgUUZlYXR1cmVzYCBwYWNrYWdlLgoKV2UgZ2VuZXJhdGUgdGhlIG9iamVjdCBwZXB0aWRlUmF3RmlsZSB3aXRoIHRoZSBwYXRoIHRvIHRoZSBwZXB0aWRlUmF3cy50eHQgZmlsZS4KVXNpbmcgdGhlIGBncmVwRWNvbHNgIGZ1bmN0aW9uLCB3ZSBmaW5kIHRoZSBjb2x1bW5zIHRoYXQgY29udGFpbiB0aGUgZXhwcmVzc2lvbgpkYXRhIG9mIHRoZSBwZXB0aWRlUmF3cyBpbiB0aGUgcGVwdGlkZVJhd3MudHh0IGZpbGUuCgoKYGBge3IsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGxpbW1hKQpsaWJyYXJ5KFFGZWF0dXJlcykKbGlicmFyeShtc3Fyb2IyKQpsaWJyYXJ5KHBsb3RseSkKCnBlcHRpZGVzRmlsZSA8LSAiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL3N0YXRPbWljcy9QREEyMkdUUEIvZGF0YS9xdWFudGlmaWNhdGlvbi9jcHRhY0F2c0JfbGFiMy9wZXB0aWRlcy50eHQiCgplY29scyA8LSBncmVwKAogICJJbnRlbnNpdHlcXC4iLCAKICBuYW1lcyhyZWFkLmRlbGltKHBlcHRpZGVzRmlsZSkpCiAgKQpgYGAKCk5leHQsIHdlIHJlYWQgdGhlIGRhdGEgYW5kIHN0b3JlIGl0IGluIFFGZWF0dXJlcyBvYmplY3QKCmBgYHtyfQpwZSA8LSByZWFkUUZlYXR1cmVzKAogIHRhYmxlID0gcGVwdGlkZXNGaWxlLAogIGZuYW1lcyA9IDEsCiAgZWNvbCA9IGVjb2xzLAogIG5hbWUgPSAicGVwdGlkZVJhdyIsIHNlcD0iXHQiKQpgYGAKClRoZSBRRmVhdHVyZXMgb2JqZWN0IHBlIGN1cnJlbnRseSBjb250YWlucyBhIHNpbmdsZSBhc3NheSwgbmFtZWQgcGVwdGlkZVJhdy4KCldlIGV4dHJhY3QgdGhlIGNvbHVtbiBuYW1lcyBmcm9tIHRoZSBwZXB0aWRlUmF3IGFzc2F5IGFuZCBzZWUgdGhhdCB0aGlzIGNvbnRhaW5zIGluZm9ybWF0aW9uIGFib3V0IHRoZSBzcGlrZS1pbiBjb25kaXRpb24uCgpgYGB7cn0KY29sbmFtZXMocGVbWyJwZXB0aWRlUmF3Il1dKQpgYGAKCldlIHJlbmFtZSB0aGUgY29sbmFtZXMgYnkgZHJvcHBpbmcgdGhlICJJbnRlbnNpdHkuIiBmcm9tIHRoZSBuYW1lLgoKYGBge3J9CihuZXdOYW1lcyA8LSAgc3ViKAogIHBhdHRlcm4gPSAiSW50ZW5zaXR5XFwuIiwgCiAgcmVwbGFjZW1lbnQgPSAiIiwKICBjb2xuYW1lcyhwZVtbInBlcHRpZGVSYXciXV0pKQogKQpgYGAKCmBgYHtyfQpwZSA8LSByZW5hbWVDb2xuYW1lKHBlLCAKICAgICAgICAgICAgICAgICAgICBpID0gInBlcHRpZGVSYXciLAogICAgICAgICAgICAgICAgICAgIG5ld05hbWVzKQpwZSA8LSByZW5hbWVQcmltYXJ5KHBlLCBuZXdOYW1lcykKY29sbmFtZXMocGVbWyJwZXB0aWRlUmF3Il1dKQpgYGAKCkluIHRoZSBmb2xsb3dpbmcgY29kZSBjaHVuaywgd2UgYWRkIHRoZSBzcGlrZWluIGNvbmRpdGlvbiB0aGF0IHdlIGNhbiByZWFkIGluIHRoZSByYXcgZmlsZSBuYW1lIHRvIHRoZSBjb2xEYXRhLgoKYGBge3J9CmNvbERhdGEocGUpJGNvbmRpdGlvbiA8LSAgCiAgY29sbmFtZXMocGVbWyJwZXB0aWRlUmF3Il1dKSAlPiUKICBzdWJzdHIoc3RhcnQgPSAyLCBzdG9wID0gMikgJT4lCiAgYXMuZmFjdG9yCmNvbERhdGEocGUpJGNvbmRpdGlvbgpgYGAKCgpXZSBjYWxjdWxhdGUgaG93IG1hbnkgbm9uIHplcm8gaW50ZW5zaXRpZXMgd2UgaGF2ZSBwZXIgcGVwdGlkZSBhbmQgdGhpcwp3aWxsIGJlIHVzZWZ1bCBmb3IgZmlsdGVyaW5nLgoKYGBge3J9CnJvd0RhdGEocGVbWyJwZXB0aWRlUmF3Il1dKSRuTm9uWmVybyA8LSByb3dTdW1zKGFzc2F5KHBlW1sicGVwdGlkZVJhdyJdXSkgPiAwKQpgYGAKCgpQZXB0aWRlcyB3aXRoIHplcm8gaW50ZW5zaXRpZXMgYXJlIG1pc3NpbmcgcGVwdGlkZXMgYW5kIHNob3VsZCBiZSByZXByZXNlbnQKd2l0aCBhIGBOQWAgdmFsdWUgcmF0aGVyIHRoYW4gYDBgLgpgYGB7cn0KcGUgPC0gemVyb0lzTkEocGUsICJwZXB0aWRlUmF3IikgIyBjb252ZXJ0IDAgdG8gTkEKYGBgCgoKIyMgRGF0YSBleHBsb3JhdGlvbgoKYHIgZm9ybWF0KG1lYW4oaXMubmEoYXNzYXkocGVbWyJwZXB0aWRlUmF3Il1dKSkpKjEwMCxkaWdpdHM9MilgJSBvZiBhbGwgcGVwdGlkZQppbnRlbnNpdGllcyBhcmUgbWlzc2luZyBhbmQgZm9yIHNvbWUgcGVwdGlkZXMgd2UgZG8gbm90IGV2ZW4gbWVhc3VyZSBhIHNpZ25hbAppbiBhbnkgc2FtcGxlLgoKCiMgUHJlcHJvY2Vzc2luZwoKVGhpcyBzZWN0aW9uIHByZWZvcm1zIHByZXByb2Nlc3NpbmcgZm9yIHRoZSBwZXB0aWRlIGRhdGEuIApUaGlzIGluY2x1ZGUgCgotIGxvZyB0cmFuc2Zvcm1hdGlvbiwgCi0gZmlsdGVyaW5nIGFuZCAKLSBzdW1tYXJpc2F0aW9uIG9mIHRoZSBkYXRhLgoKIyMgTG9nIHRyYW5zZm9ybSB0aGUgZGF0YQoKYGBge3J9CnBlIDwtIGxvZ1RyYW5zZm9ybShwZSwgYmFzZSA9IDIsIGkgPSAicGVwdGlkZVJhdyIsIG5hbWUgPSAicGVwdGlkZUxvZyIpCmBgYAoKIyMgRmlsdGVyaW5nCgoxLiBIYW5kbGluZyBvdmVybGFwcGluZyBwcm90ZWluIGdyb3VwcwoKSW4gb3VyIGFwcHJvYWNoIGEgcGVwdGlkZSBjYW4gbWFwIHRvIG11bHRpcGxlIHByb3RlaW5zLCBhcyBsb25nIGFzIHRoZXJlIGlzCm5vbmUgb2YgdGhlc2UgcHJvdGVpbnMgcHJlc2VudCBpbiBhIHNtYWxsZXIgc3ViZ3JvdXAuCgpgYGB7cn0KcGUgPC0gZmlsdGVyRmVhdHVyZXMocGUsIH4gUHJvdGVpbnMgJWluJSBzbWFsbGVzdFVuaXF1ZUdyb3Vwcyhyb3dEYXRhKHBlW1sicGVwdGlkZUxvZyJdXSkkUHJvdGVpbnMpKQpgYGAKCjIuIFJlbW92ZSByZXZlcnNlIHNlcXVlbmNlcyAoZGVjb3lzKSBhbmQgY29udGFtaW5hbnRzCgpXZSBub3cgcmVtb3ZlIHRoZSBjb250YW1pbmFudHMgYW5kIHBlcHRpZGVzIHRoYXQgbWFwIHRvIGRlY295IHNlcXVlbmNlcy4KCmBgYHtyfQpwZSA8LSBmaWx0ZXJGZWF0dXJlcyhwZSx+UmV2ZXJzZSAhPSAiKyIpCnBlIDwtIGZpbHRlckZlYXR1cmVzKHBlLH4gUG90ZW50aWFsLmNvbnRhbWluYW50ICE9ICIrIikKYGBgCgozLiBEcm9wIHBlcHRpZGVzIHRoYXQgd2VyZSBvbmx5IGlkZW50aWZpZWQgaW4gb25lIHNhbXBsZQoKV2Uga2VlcCBwZXB0aWRlcyB0aGF0IHdlcmUgb2JzZXJ2ZWQgYXQgbGFzdCB0d2ljZS4KCmBgYHtyfQpwZSA8LSBmaWx0ZXJGZWF0dXJlcyhwZSx+IG5Ob25aZXJvID49MikKbnJvdyhwZVtbInBlcHRpZGVMb2ciXV0pCmBgYAoKV2Uga2VlcCBgciBucm93KHBlW1sicGVwdGlkZUxvZyJdXSlgIHBlcHRpZGVzIHVwb24gZmlsdGVyaW5nLgoKCiMjIE5vcm1hbGl6ZSB0aGUgZGF0YSB1c2luZyBtZWRpYW4gY2VudGVyaW5nIAoKV2Ugbm9ybWFsaXplIHRoZSBkYXRhIGJ5IHN1YnN0cmFjdGluZyB0aGUgc2FtcGxlIG1lZGlhbiBmcm9tIGV2ZXJ5IGludGVuc2l0eSBmb3IgcGVwdGlkZSAkcCQgIGluIGEgc2FtcGxlICRpJDogCgokJHlfe2lwfV5cdGV4dHtub3JtfSA9IHlfe2lwfSAtIFxoYXRcbXVfaSQkIAoKd2l0aCAkXGhhdFxtdV9pJCB0aGUgbWVkaWFuIGludGVuc2l0eSBvdmVyIGFsbCBvYnNlcnZlZCBwZXB0aWRlcyBpbiBzYW1wbGUgJGkkLgoKYGBge3J9CnBlIDwtIG5vcm1hbGl6ZShwZSwgCiAgICAgICAgICAgICAgICBpID0gInBlcHRpZGVMb2ciLCAKICAgICAgICAgICAgICAgIG5hbWUgPSAicGVwdGlkZU5vcm0iLCAKICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjZW50ZXIubWVkaWFuIikKYGBgCgoKIyMgRXhwbG9yZSAgbm9ybWFsaXplZCBkYXRhCgpVcG9uIHRoZSBub3JtYWxpc2F0aW9uIHRoZSBkZW5zaXR5IGN1cnZlcyBhcmUgbmljZWx5IHJlZ2lzdGVyZWQKCmBgYHtyfQpwZVtbInBlcHRpZGVOb3JtIl1dICU+JSAKICBhc3NheSAlPiUKICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgZ2F0aGVyKHNhbXBsZSwgaW50ZW5zaXR5KSAlPiUgCiAgbXV0YXRlKGNvbmRpdGlvbiA9IGNvbERhdGEocGUpW3NhbXBsZSwiY29uZGl0aW9uIl0pICU+JQogIGdncGxvdChhZXMoeCA9IGludGVuc2l0eSxncm91cCA9IHNhbXBsZSxjb2xvciA9IGNvbmRpdGlvbikpICsgCiAgICBnZW9tX2RlbnNpdHkoKQpgYGAKCldlIGNhbiB2aXN1YWxpemUgb3VyIGRhdGEgdXNpbmcgYSBNdWx0aSBEaW1lbnNpb25hbCBTY2FsaW5nIHBsb3QsCmVnLiBhcyBwcm92aWRlZCBieSB0aGUgYGxpbW1hYCBwYWNrYWdlLgoKYGBge3J9CnBlW1sicGVwdGlkZU5vcm0iXV0gJT4lIAogIGFzc2F5ICU+JQogIGxpbW1hOjpwbG90TURTKGNvbCA9IGFzLm51bWVyaWMoY29sRGF0YShwZSkkY29uZGl0aW9uKSkKYGBgCgpUaGUgZmlyc3QgYXhpcyBpbiB0aGUgcGxvdCBpcyBzaG93aW5nIHRoZSBsZWFkaW5nIGxvZyBmb2xkIGNoYW5nZXMKKGRpZmZlcmVuY2VzIG9uIHRoZSBsb2cgc2NhbGUpIGJldHdlZW4gdGhlIHNhbXBsZXMuCgpXZSBub3RpY2UgdGhhdCB0aGUgbGVhZGluZyBkaWZmZXJlbmNlcyAobG9nIEZDKQppbiB0aGUgcGVwdGlkZSBkYXRhIHNlZW1zIHRvIGJlIGRyaXZlbiBieSB0ZWNobmljYWwgdmFyaWFiaWxpdHkuCkluZGVlZCwgdGhlIHNhbXBsZXMgZG8gbm90IHNlZW0gdG8gYmUgY2xlYXJseSBzZXBhcmF0ZWQgYWNjb3JkaW5nCnRvIHRoZSBzcGlrZS1pbiBjb25kaXRpb24uCgoKIyMgU3VtbWFyaXphdGlvbiB0byBwcm90ZWluIGxldmVsCgotIEJ5IGRlZmF1bHQgcm9idXN0IHN1bW1hcml6YXRpb24gaXMgdXNlZDogIGBmdW4gPSBNc0NvcmVVdGlsczo6cm9idXN0U3VtbWFyeSgpYAoKYGBge3Isd2FybmluZz1GQUxTRX0KcGUgPC0gYWdncmVnYXRlRmVhdHVyZXMocGUsCiAgaSA9ICJwZXB0aWRlTm9ybSIsCiAgZmNvbCA9ICJQcm90ZWlucyIsCiAgbmEucm0gPSBUUlVFLAogIG5hbWUgPSAicHJvdGVpbiIpCmBgYAoKCgpgYGB7cn0KcGxvdE1EUyhhc3NheShwZVtbInByb3RlaW4iXV0pLCBjb2wgPSBhcy5udW1lcmljKGNvbERhdGEocGUpJGNvbmRpdGlvbikpCmBgYAoKTm90ZSB0aGF0IHRoZSBzYW1wbGVzIHVwb24gcm9idXN0IHN1bW1hcmlzYXRpb24gc2hvdyBhIGNsZWFyIHNlcGFyYXRpb24gYWNjb3JkaW5nIHRvIHRoZSBzcGlrZS1pbiBjb25kaXRpb24gaW4gdGhlIHNlY29uZCBkaW1lbnNpb24gb2YgdGhlIE1EUyBwbG90LgoKIyBEYXRhIEFuYWx5c2lzCgojIyBFc3RpbWF0aW9uCgpXZSBtb2RlbCB0aGUgcHJvdGVpbiBsZXZlbCBleHByZXNzaW9uIHZhbHVlcyB1c2luZyBgbXNxcm9iYC4KQnkgZGVmYXVsdCBgbXNxcm9iMmAgZXN0aW1hdGVzIHRoZSBtb2RlbCBwYXJhbWV0ZXJzIHVzaW5nIHJvYnVzdCByZWdyZXNzaW9uLgoKV2Ugd2lsbCBtb2RlbCB0aGUgZGF0YSB3aXRoIGEgZGlmZmVyZW50IGdyb3VwIG1lYW4uIApUaGUgZ3JvdXAgaXMgaW5jb2RlZCBpbiB0aGUgdmFyaWFibGUgYGNvbmRpdGlvbmAgb2YgdGhlIGNvbERhdGEuIApXZSBjYW4gc3BlY2lmeSB0aGlzIG1vZGVsIGJ5IHVzaW5nIGEgZm9ybXVsYSB3aXRoIHRoZSBmYWN0b3IgY29uZGl0aW9uIGFzIGl0cyBwcmVkaWN0b3I6IApgZm9ybXVsYSA9IH5jb25kaXRpb25gLgoKTm90ZSwgdGhhdCBhIGZvcm11bGEgYWx3YXlzIHN0YXJ0cyB3aXRoIGEgc3ltYm9sICd+Jy4KCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQpwZSA8LSBtc3Fyb2Iob2JqZWN0ID0gcGUsIGkgPSAicHJvdGVpbiIsIGZvcm11bGEgPSB+Y29uZGl0aW9uKQpgYGAKCiMjIEluZmVyZW5jZQoKRmlyc3QsIHdlIGV4dHJhY3QgdGhlIHBhcmFtZXRlciBuYW1lcyBvZiB0aGUgbW9kZWwgYnkgbG9va2luZyBhdCB0aGUgZmlyc3QgbW9kZWwuIApUaGUgbW9kZWxzIGFyZSBzdG9yZWQgaW4gdGhlIHJvdyBkYXRhIG9mIHRoZSBhc3NheSB1bmRlciB0aGUgZGVmYXVsdCBuYW1lIG1zcXJvYk1vZGVscy4gCgpgYGB7cn0KZ2V0Q29lZihyb3dEYXRhKHBlW1sicHJvdGVpbiJdXSkkbXNxcm9iTW9kZWxzW1sxXV0pCmBgYAoKV2UgY2FuIGFsc28gZXhwbG9yZSB0aGUgZGVzaWduIG9mIHRoZSBtb2RlbCB0aGF0IHdlIHNwZWNpZmllZCB1c2luZyB0aGUgdGhlIHBhY2thZ2UgYEV4cGxvcmVNb2RlbE1hdHJpeGAgCgpgYGB7cn0KbGlicmFyeShFeHBsb3JlTW9kZWxNYXRyaXgpClZpc3VhbGl6ZURlc2lnbihjb2xEYXRhKHBlKSx+Y29uZGl0aW9uKSRwbG90bGlzdFtbMV1dCmBgYAoKU3Bpa2UtaW4gY29uZGl0aW9uIGBBYCBpcyB0aGUgcmVmZXJlbmNlIGNsYXNzLiBTbyB0aGUgbWVhbiBsb2cyIGV4cHJlc3Npb24KZm9yIHNhbXBsZXMgZnJvbSBjb25kaXRpb24gQSBpcyAnKEludGVyY2VwdCkuClRoZSBtZWFuIGxvZzIgZXhwcmVzc2lvbiBmb3Igc2FtcGxlcyBmcm9tIGNvbmRpdGlvbiBCIGlzICcoSW50ZXJjZXB0KStjb25kaXRpb25CJy4KSGVuY2UsIHRoZSBhdmVyYWdlIGxvZzIgZm9sZCBjaGFuZ2UgYmV0d2VlbiBjb25kaXRpb24gYiBhbmQKY29uZGl0aW9uIGEgaXMgbW9kZWxsZWQgdXNpbmcgdGhlIHBhcmFtZXRlciAnY29uZGl0aW9uQicuClRodXMsIHdlIGFzc2VzcyB0aGUgY29udHJhc3QgJ2NvbmRpdGlvbkIgPSAwJyB3aXRoIG91ciBzdGF0aXN0aWNhbCB0ZXN0LgoKYGBge3J9CkwgPC0gbWFrZUNvbnRyYXN0KCJjb25kaXRpb25CPTAiLCBwYXJhbWV0ZXJOYW1lcyA9IGMoImNvbmRpdGlvbkIiKSkKcGUgPC0gaHlwb3RoZXNpc1Rlc3Qob2JqZWN0ID0gcGUsIGkgPSAicHJvdGVpbiIsIGNvbnRyYXN0ID0gTCkKYGBgCgoKIyMgUGxvdHMKCiMjIyBWb2xjYW5vLXBsb3QKCgpgYGB7cix3YXJuaW5nPUZBTFNFfQp2b2xjYW5vIDwtIGdncGxvdChyb3dEYXRhKHBlW1sicHJvdGVpbiJdXSkkY29uZGl0aW9uQiwKICAgICAgICAgICAgICAgICAgYWVzKHggPSBsb2dGQywgeSA9IC1sb2cxMChwdmFsKSwgY29sb3IgPSBhZGpQdmFsIDwgMC4wNSkpICsKICBnZW9tX3BvaW50KGNleCA9IDIuNSkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBhbHBoYShjKCJibGFjayIsICJyZWQiKSwgMC41KSkgKyB0aGVtZV9taW5pbWFsKCkKdm9sY2FubwpgYGAKCk5vdGUsIHRoYXQgYHIgc3VtKHJvd0RhdGEocGVbWyJwcm90ZWluIl1dKSRjb25kaXRpb25CJGFkalB2YWwgPCAwLjA1LCBuYS5ybSA9IFRSVUUpYCBwcm90ZWlucyBhcmUgZm91bmQgdG8gYmUgZGlmZmVyZW50aWFsbHkgYWJ1bmRhbnQuCgojIyMgSGVhdG1hcAoKV2UgZmlyc3Qgc2VsZWN0IHRoZSBuYW1lcyBvZiB0aGUgcHJvdGVpbnMgdGhhdCB3ZXJlIGRlY2xhcmVkIHNpZ25maWNhbnQuCgpgYGB7cn0Kc2lnTmFtZXMgPC0gcm93RGF0YShwZVtbInByb3RlaW4iXV0pJGNvbmRpdGlvbkIgJT4lCiAgcm93bmFtZXNfdG9fY29sdW1uKCJwcm90ZWluIikgJT4lCiAgZmlsdGVyKGFkalB2YWw8MC4wNSkgJT4lCiAgcHVsbChwcm90ZWluKQpoZWF0bWFwKGFzc2F5KHBlW1sicHJvdGVpbiJdXSlbc2lnTmFtZXMsIF0pCmBgYAoKVGhlIG1ham9yaXR5IG9mIHRoZSBwcm90ZWlucyBhcmUgaW5kZWVkIFVQUyBwcm90ZWlucy4gCjEgeWVhc3QgcHJvdGVpbiBpcyByZXR1cm5lZC4gCk5vdGUsIHRoYXQgdGhlIHllYXN0IHByb3RlaW4gaW5kZWVkIHNob3dzIGV2aWRlbmNlIGZvciBkaWZmZXJlbnRpYWwgYWJ1bmRhbmNlLiAKCiMjIyBCb3hwbG90cwoKV2UgbWFrZSBib3hwbG90IG9mIHRoZSBsb2cyIEZDIGFuZCBzdHJhdGlmeSBhY2NvcmRpbmcgdG8gdGhlIHdoZXRoZXIgYSBwcm90ZWluIGlzIHNwaWtlZCBvciBub3QuCgpgYGB7cn0Kcm93RGF0YShwZVtbInByb3RlaW4iXV0pJGNvbmRpdGlvbkIgJT4lCiAgcm93bmFtZXNfdG9fY29sdW1uKHZhciA9ICJwcm90ZWluIikgJT4lCiAgZ2dwbG90KGFlcyh4PWdyZXBsKCJVUFMiLHByb3RlaW4pLHk9bG9nRkMpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwogIHhsYWIoIlVQUyIpICsKICBnZW9tX3NlZ21lbnQoCiAgICB4ID0gMS41LAogICAgeGVuZCA9IDIuNSwKICAgIHkgPSBsb2cyKDAuNzQvMC4yNSksCiAgICB5ZW5kID0gbG9nMigwLjc0LzAuMjUpLAogICAgY29sb3VyPSJyZWQiKSArCiAgZ2VvbV9zZWdtZW50KAogICAgeCA9IDAuNSwKICAgIHhlbmQgPSAxLjUsCiAgICB5ID0gMCwKICAgIHllbmQgPSAwLAogICAgY29sb3VyPSJyZWQiKSArCiAgYW5ub3RhdGUoCiAgICAidGV4dCIsCiAgICB4ID0gYygxLDIpLAogICAgeSA9IGMoMCxsb2cyKDAuNzQvMC4yNSkpKy4xLAogICAgbGFiZWwgPSBjKAogICAgICAibG9nMiBGQyBFY29saSA9IDAiLAogICAgICBwYXN0ZTAoImxvZzIgRkMgVVBTID0gIixyb3VuZChsb2cyKDAuNzQvMC4yNSksMikpCiAgICAgICksCiAgICBjb2xvdXIgPSAicmVkIikKYGBgCgpXaGF0IGRvIHlvdSBvYnNlcnZlPwoKIyMjIERldGFpbCBwbG90cwoKV2UgZmlyc3QgZXh0cmFjdCB0aGUgbm9ybWFsaXplZCBwZXB0aWRlUmF3IGV4cHJlc3Npb24gdmFsdWVzIGZvciBhIHBhcnRpY3VsYXIgcHJvdGVpbi4gIAoKCmBgYHtyLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQpmb3IgKHByb3ROYW1lIGluIHNpZ05hbWVzKQp7CnBlUGxvdCA8LSBwZVtwcm90TmFtZSwgLCBjKCJwZXB0aWRlTm9ybSIsInByb3RlaW4iKV0KcGVQbG90RGYgPC0gZGF0YS5mcmFtZShsb25nRm9ybWF0KHBlUGxvdCkpCnBlUGxvdERmJGFzc2F5IDwtIGZhY3RvcihwZVBsb3REZiRhc3NheSwKICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygicGVwdGlkZU5vcm0iLCAicHJvdGVpbiIpKQpwZVBsb3REZiRjb25kaXRpb24gPC0gYXMuZmFjdG9yKGNvbERhdGEocGVQbG90KVtwZVBsb3REZiRjb2xuYW1lLCAiY29uZGl0aW9uIl0pCgojIHBsb3R0aW5nCnAxIDwtIGdncGxvdChkYXRhID0gcGVQbG90RGYsCiAgICAgICBhZXMoeCA9IGNvbG5hbWUsIHkgPSB2YWx1ZSwgZ3JvdXAgPSByb3duYW1lKSkgKwogICAgZ2VvbV9saW5lKCkgKyAKICAgIGdlb21fcG9pbnQoKSArICAKICAgIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNzAsIGhqdXN0ID0gMSwgdmp1c3QgPSAwLjUpKSArCiAgICBmYWNldF9ncmlkKH5hc3NheSkgKyAKICAgIGdndGl0bGUocHJvdE5hbWUpCnByaW50KHAxKQoKIyBwbG90dGluZyAyCnAyIDwtIGdncGxvdChwZVBsb3REZiwgYWVzKHggPSBjb2xuYW1lLCB5ID0gdmFsdWUsIGZpbGwgPSBjb25kaXRpb24pKSArCiAgZ2VvbV9ib3hwbG90KG91dGxpZXIuc2hhcGUgPSBOQSkgKyAKICBnZW9tX3BvaW50KAogICAgcG9zaXRpb24gPSBwb3NpdGlvbl9qaXR0ZXIod2lkdGggPSAuMSksCiAgICBhZXMoc2hhcGUgPSByb3duYW1lKSkgKwogIHNjYWxlX3NoYXBlX21hbnVhbCh2YWx1ZXMgPSAxOm5yb3cocGVQbG90RGYpKSArCiAgbGFicyh0aXRsZSA9IHByb3ROYW1lLCB4ID0gInNhbXBsZSIsIHkgPSAicGVwdGlkZSBpbnRlbnNpdHkgKGxvZzIpIikgKyAKICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDcwLCBoanVzdCA9IDEsIHZqdXN0ID0gMC41KSkgKwogIGZhY2V0X2dyaWQofmFzc2F5KQpwcmludChwMikKfQpgYGAKCk5vdGUsIHRoYXQgdGhlIHllYXN0IHByb3RlaW4gaXMgb25seSBjb3ZlcmVkIGJ5IDMgcGVwdGlkZXMuIApPbmx5IG9uZSBwZXB0aWRlIGlzIHBpY2tlZCB1cCBpbiBjb25kaXRpb24gQS4gClRoaXMgcGVwdGlkZSBpcyBhbHNvIG9ubHkgb25jZSBvYnNlcnZlZCBpbiBzcGlrZS1pbiBjb25kaXRpb24gQi4gClRoaXMgcHV0cyBhIGNvbnNpZGVyYWJsZSBidXJkZW4gdXBvbiB0aGUgaW5mZXJlbmNlIGFuZCBjb3VsZCBiZSBhdm9pZGVkIGJ5IG1vcmUgc3RyaW5nZW50IGZpbHRlcmluZy4gCgojIFNlc3Npb24gSW5mbwoKV2l0aCByZXNwZWN0IHRvIHJlcHJvZHVjaWJpbGl0eSwgaXQgaXMgaGlnaGx5IHJlY29tbWVuZGVkIHRvIGluY2x1ZGUgYSBzZXNzaW9uIGluZm8gaW4geW91ciBzY3JpcHQgc28gdGhhdCByZWFkZXJzIG9mIHlvdXIgb3V0cHV0IGNhbiBzZWUgeW91ciBwYXJ0aWN1bGFyIHNldHVwIG9mIFIuIAoKYGBge3J9CnNlc3Npb25JbmZvKCkKYGBgCg==