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Amino acids, peptides, and proteins




Amino acids vary considerably
in their physico-chemical properties
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Protein backbones are formed through
amide (or peptide) bonds between residues
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Mass spectrometry basics

A generalized mass spectrometer consists 4
of three main parts, along with a digitizer

sample ion source mass analyzer(s) detector digitizer

Generalized mass spectrometer

All mass analyzers use electromagnetic fields to manipulate gas-phase ions. Results
are plotted as a spectrum, with mass-over-charge (m/z) on the X-axis and ion
intensity on the Y-axis. The latter can be absolute (counts) or relative. The ion source
ensures that (a part of) the sample molecules are ionized and brought into the gas
phase. The detector is responsible for actually recording the presence of ions.
Digitizers (analog to digital converters; ADC) transform the continuous, analog
detector signal into a digital, discretized spectrum.




lon sources: MALDI

laser irradiation ~ /7/g/ vacuum
h-v
njgooooo r :
-0l o I +
qumOg ! e%o L Ry :
e’%e ——+— (D)o Sie !
peSo%ece desorption | o2+ proton transfer <. !
"o |
oo RO L o o o o el mmmmmoo !
o matrix Gas phase
\ analyte molecule
target
surface vy Assisted Laser Desorption and Ionization (MALDI)

MALDI sources for proteomics typically rely on a pulsed nitrogen UV laser
(v =337 nm) and produce singly charged peptide ions. Competitive ionisation occurs.

The term ‘MALDI’ was coined by Karas and Hillenkamp (Anal. Chem., 1985) and Koichi Tanaka received the 2002 Nobel
Prize in Chemistry for demonstrating MALDI ionization of biological macromolecules (Rapid Commun. Mass Spectrom., 1988)
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lon sources: ESI
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Electospray ionization (ESI) barrier

ESI sources typically heat the needle to 40° to 100° to facilitate nebulisation
and evaporation, and typically produce multiply charged peptide ions (2%, 3%, 4*)

John B. Fenn received the 2002 Nobel Prize in Chemistry for demonstrating ESI ionization of biological macromolecules
(Science, 1989) — ESl is also used in fine control thrusters on satellites and interstellar probes...
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Mass resolution is an important characteristic‘
for identification and quantification

Resolution in mass spectrometry is usually defined as the width of a peak at a
given height (there is an alternative definition based on percent valley height).
This width can be recorded at different heights, but is most often recorded at

50% peak height (FWHM).
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I From: Eidhammer, Flikka, Martens, Mikalsen — Wiley 2007

Detectors: electron multiplier amplification 4

single ion in

Different variations of electron multiplier (EM) detectors are used, and these are
the most common type of detector. An EM relies on several Faraday cup dynodes
with increasing charges to produce an electron cascade from a few incident ions.




The primary principle in quantification ‘
is that detector signal relates to quantity

Make each sample distinguishable

introduce mass differences between the samples
perform distinct experimental runs for each sample

Measure the intensity of the signal for each analyte in each sample

Statistically process the accumulated information

1/2 1/1 2/1

Not all peptides ionise equally, so we cannot 4
compare signal strength across peptides
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As intensities become more extreme, 4
the detector response starts to level off

error bar = 1 standard deviation
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log, (expected ratio)

log, (measured ratio)
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I Gevaert, Proteomics, 2007

At the same time, the measurement error 4
increases as the ratio deviates from 1/1
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And these effects remain quite visible, 4
even on modern instruments (Orbitrap)
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Raw data processing is somewhat imprecise, 4
with expected errors on the order of 10%

Mass spectrometer specific processing required
Sets the dynamic range lower limit (S/N)

5-10% error in the final ratios due to peak-picker are often seen

Black: 0,02 Da Non-adapted shape -> +10% error
Blue: 0,04 Da
Red: 0,08 Da

Vaudel, Proteomics, 2010




Different model options are available
in tools or libraries for MS peak detection
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There’s actually more to a peak than just m/z
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Serum proteins are degraded over time,

even with the best sampling tubes
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Our open modification search engine ionbot 4

shows that modifications are also an issue

Protein name

Protein accession Number of modifications

Glyceraldehyde-3-phosphate dehydrogenase P04406
Pyruvate kinase PKM P14618
Fructose-bisphosphate aldolase A P04075
Alpha-enolase P06733
Triosephosphate isomerase P60174
Phosphoglycerate kinase P00558

166
139
122
121
117
111

Mods found across all six proteins, between 50 and 278 distinct peptides

carbamyl, carbamidomethyl, formyl, acetyl, oxidation, methyl,

thiazolidine, amidine, dehydrated, dicarbamidomethyl, dioxidation,
succinyl, ammonia-loss, ethyl, carboxymethyl, guanidinyl, gg, cation:fel[iii]

https://ionbot.cloud
Source data presented to ionbot from Kim et al., Nature, 2014
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MS/MS spectra and identification

Identification relies on fragmentation 4

) &a@mcs | O

source l l detector
ion selector fragment
mass analyzer
fragmentation

Tandem-MS is accomplished by using two mass analyzers in series (tandem). A single ion trap
can also perform tandem-MS. The first mass analyser performs the function of ion selector,
by selectively allowing only ions of a given m/z to pass through. The second mass analyzer is
situated after fragmentation is triggered (see next slides) and is used in its normal capacity as
a mass analyzer for the fragments.
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Peptides subjected to fragmentation analysis 4
can yield several types of fragment ions

NH,—C—CO —=N—+C —-CO =N = C —CO —— N -+ C —COOH
H H | H H | H H | H

K am  bf ¢ ay by ¢ Ay by o j

There are several other ion types that can be annotated, as well as
‘internal fragments’. The latter are fragments that no longer contain an intact
terminus. These are harder to use for ‘ladder sequencing’, but can still be interpreted.

This nomenclature was coined by Roepstorff and Fohlmann (Biomed. Mass Spec., 1984) and Klaus Biemann (Biomed.
Environ. Mass Spec., 1988) and is commonly referred to as ‘Biemann nomenclature’. Note the link with the Roman alphabet.

In an ideal world, the peptide sequence will 4
produce directly interpretable ion ladders
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Real spectra usually look quite a bit worse, 4

which introduces ambiguity in interpretation
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Database search algorithms in three phases
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Database search engines match experimental 4
spectra to known peptide sequences

peptide seq. theoretical spectra peptide scores
e L, 1) YSFVATAER 34 1
S insilico METSNGK i sjlico LML, scoring 2) YSFVSAIR 12

. igest MILQEESTVYYR MS/MS i [ .. function 3) FFLIGGGGK 12

SEFASTPINK S [
i

protein inference

experimental spectra

Three popular algorithms illustrate 4

the three types of scoring systems
SEQUEST (UWashington, Thermo Fisher Scientific)
Intensity-based scoring system

MASCOT (Matrix Science) / Andromeda (Jirgen Cox)
Peak counting-based scoring system

XITandem (The Global Proteome Machine Organization)
Hybrid scoring system

15



SEQUEST is the original search engine,
and is based on ion intensity matching

Can be used for MS/MS (PFF) identifications
Based on a cross-correlation score (includes peak height)
Published core algorithm (patented, licensed to Thermo), Eng, JASMS 1994
Provides preliminary (Sp) score, rank, cross-correlation score (XCorr),

and score difference between the top tow ranks (deltaCn, ACn)
Thresholding is up to the user, and is commonly done per charge state

Many extensions exist to perform a more automatic validation of results

The correlation score (R)) is calculated
as the matched ion intensity
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Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017
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The cross-correlation score (Xcorr) is R, 4
calibrated by the average random correlation

1 +75
XCorr= Ry - ﬁ( Z Ri)

Frequency

[Rys, Rysl/R,

correlation
score

Eng, JASMS 1994
Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017

The best theoretical match is then compared 4
to the second-best theoretical match
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Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017
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But the advent of high-throughput proteomics
showed issues with user-defined thresholding
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Peng et al., J. Prot. Res.. 2002

Mascot is an equally recognized search 4
engine, but is based on peak counting

Very well established search engine, Perkins, Electrophoresis 1999

Can do MS (PMF) and MS/MS (PFF) identifications

Based on the MOWSE score,

Unpublished core algorithm (trade secret)

Predicts an a priori threshold score that identifications need to pass
From version 2.2, Mascot allows integrated decoy searches

Provides rank, score, threshold and expectation value per identification

Customizable confidence level for the threshold score

18



Through Andromeda,
we understand MASCOT

7 7N . i
s=-10xlog,, Y. j () (1-p)""

J=k

n = number of theoretical peaks
k = number of matched peaks (within a given fragment tolerance)
p = probability of finding a single, matched peak by chance
p is calculated by dividing the number of highest intensity peaks (q)
by a mass-window size (100 Da)
q is limited by a maximum value, and is optimized for maximum s

based on peak counting instead of intensity sums

Cox, J Prot Res, 2011
Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017

X!Tandem introduces a hybrid score, based 4

on both peak counting and ion intensity

A successful open source search engine, Craig and Beavis, RCMS 2003

Can be used for MS/MS (PFF) identifications

Based on a hyperscore (Pi is either 0 or 1): HyperSCOre=(20L*Pij*Nb!*Ny!
Relies on a hypergeometric distribution (hence hyperscore) }

Published core algorithm, and is freely available

Provides hyperscore and expectancy score (the discriminating one)

XlTandem is fast and can handle modifications in an iterative fashion

Has rapidly gained popularity as (auxiliary) search engine

19
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XITandem'’s significance calculation for 4
scores can be seen as a general template
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The influence of various parameter changes 4
on database size is clearly visible
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And the effect on identification rate 4

is correspondingly obvious
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Verheggen, Mass Spec Reviews, 2017

The main search engines in use are Mascot, 4
Andromeda, SEQUEST and X!Tandem
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Among the up-and-coming engines, Comet,
MS-GF+ and MS-Amanda are most notable
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SearchGUI makes it very easy for you
to run multiple free search engines
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I Vaudel, Proteomics, 2011
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PeptideShaker is your gateway to the results
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Sequencial search algorithms
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Sequence tags are as old as SEQUEST,
and still have a role to play today
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The concept of sequence tags was introduced by Mann and Wilm

Mann, Analytical Chemistry, 1994

<

GutenTag, Direclag, TagRecon

Tabb, Anal. Chem. 2003, Tabb, JPR 2008, Dasari, JPR 2010

Recent implementations of the sequence tag approach

Refine hits by peak mapping in a second stage to resolve ambiguities

Rely on a empirical fragmentation model

Published core algorithms, DirecTag and TagRecon freely available

GutenTag/DirecTag extracts tags, TagRecon matches tags to database

Very useful to retrieve unexpected peptides (modifications, variations)

Entire workflows exist (e.g., combination with IDPicker)

24



GutenTag: two stage, hybrid tag searching 4

2. Search DB for matches

DDG —> -DDGNSDRS
YVD —» -YVDVNKFKD
VDD —$ KLLSYVDDEAFIR

1. Generate sequence tags DDE 4 EGDEANSDDEEEDL
=
T DDV — -DDVDIDEN
T T 1 VVD — SSCTAVVD-
T 11 DVY —> AFQYLKDVY-

3. Score DB Sequences

KLLSYVDDEAFIR 19.36
-DDVDIDEN 8.56
-DDGNSDRS 6.94
-YVDVNKFKD 6.25
SSCTAVVD- 5.74
EGDEANSDDEEEDL 5.64
AFQYLKDVY- 5.61
) ) (@Nokel
Tabb, Analytical Chemistry, 2003 AL

De novo sequencing tries to read the entire 4
peptide sequence from the spectrum

B Spectrum for Label: H10, Spot_Id: 521419, Peak_List_Id: 656036, MSMS Job_Run_Id: 23581, Comment:
Int 186.07 (4) 11307 (1) 114,05 (NASNIBSE) (E/Q<DaBBN5 (EIQ-TiabR) 11307 (L) 11307 (1) 11500 (DIN=DERE-D4 (E/0-<DIE2 (ON=<D$IB] (L) 9698 (F)
[ t f f f f t f t f f f i

33333 irsires . J 1 3
[ ’ [

| L i b L i i i i
127,39 29273 458.07 623,40 788.74 95408 111941 128475 145009 161542

PrecursorMiZ. 1858.9033 (1+) Resolution 1.5¢  Filename: Spectrum

Example of a manual de novo of an MS/MS spectrum
No more database necessary to extract a sequence!

Algorithms References

Lutefisk Dancik 1999, Taylor 2000
Sherenga Fernandez-de-Cossio 2000
PEAKS Ma 2003, Zhang 2004
PepNovo Frank 2005, Grossmann 2005
RapidNovor Ma 2015

CCBY-SA 4.0
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Decoys and false discovery rate calculation

All hits, good and bad together,
form a distribution of scores

100%

80%

60%

40%
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0%

Nesvizhskii, J Proteomics, 2010
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If we know how scores for bad hits distribute, 4

we can distinguish good from bad by score
100% 7K
7 || v = = negative distribution
ol O hits
80% fHHp
] \
1 1
4 |
60% HH HH
1 A
I \
] \
40% HHEHHHH
\
1 \
20% OHHHHH 1
N - = positive distribution
/ dl -~
0% ‘ﬂﬂﬂ Al={r]] ﬂﬂﬂﬂﬂqﬂh-ﬁ
score

The separation is not perfect, which leads to 4
the calculation of a local false discovery rate

100% v
7 || v = *.negative distribution
allg O hits
80% AH
\ i
‘f i L local false discovery rate
§ i (posterior error probability; PEP)
60% BE B E :
A
¥ \
; \
40% I
\
! \
20% S EEEEE ;
ﬂ \ﬂ — — positive distribution
( T
0% P | ALr g [T LAl T e

score




Decoy databases are false positive factories, 4
assumed to deliver representative bad hits

Three main types of decoy DB’s are used:
- Reversed databases (easy)

LENNARTMARTENS = SNETRAMTRANNEL

- Shuffled databases (slightly more difficult)
LENNARTMARTENS > NMERLANATERTTN (for instance)

- Randomized databases (as difficult as you want it to be)

LENNARTMARTENS > (for instance)

The concept is that each peptide identified from the decoy database is an incorrect
identification. By counting the number of decoy hits, we can estimate the number of

false positives in the original database,

With the help of the scores of decoy hits,
we can assess the score distribution of bad hits

100%
mllm ™ [Jtarget hits
80% HIH .
) —decoy hits
60% THIHIHIH
............. local false discovery rate
(posterior error probability; PEP)
40% lilinlin
20% HIHIHIH
0% mmm -‘H]’-LIEL‘HHHHHH

score

Kall, Journal of Proteome Research, 2008
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Setting a threshold classifies all hits as either 4
bad or good, which inevitably leads to errors

100%

80%

True Negative

60% -

40% -

False Positive

20% -

— True Positive

0% -

score

Protein inference: bad, ugly, and not so good
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Protein inference is a question of conviction 4

peptides a b ¢ d
proteins
| prot X X X |
Minimal set { FY7YAY %
Occam | protZ X X X |
peptides a b ¢ d
proteins
prot X X X
Maximal set { prot v X
anti-Occam protZ X X
peptides a b ¢ d
proteins
prot X () == ——
Minimal set with { protY (+) x
maximal annotation protZ (0) X X X
true Occam?

Martens, Molecular Biosystems, 2007

The complexity of protein inference is 4

[FAR00.0K) " Information ratio
M Database Content M 6.563,106
6566050 # Database Information
W 5594062
| EREERTE
5,000,000
W 4808668 W 4.807,034
4,000,000
Tryptic cleavage, 1 allowed missed cleavage,
Mass limits from 600 to 4000 Da.
3,000,000
2,000,000 T ¥
1,863,756
1,594,860 1,675,074 1,689,148 1,730,849
1,475,203 1,442,080 %
1,000,000
0+ . - - - [
UniProtKB/Swiss-Prot 1P human (20110927) UniProt Proteomes. ‘Ensembl 66 human UniProtkB/TrEMBL NCBI nr human
human (20120227} human (20120227) human {20120227) (20120227)

Barsnes, Amino Acids, 2013
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In real life, protein inference issues will be
mainly bad, often ugly, and occasionally good

Protein inference can create issues in
guantification due to degenerate peptides

| [ N I P |
—_—— x w T ]
Protein info: o R
otme acceson: P3s5a0 [
[ r————— o A
Pogte groapeS Bcten s ot 4L 50392 | | 1o fll
ral | 5 |
1400 “'
130 |
0 |
" |
e I |
0 Meilmlni-nrm Fraon
Pepds geousrage mean (AL 0874 o0 | \
0874 969 00048556 L acore: 2441 9ok 0957 ') o | |
3 RNTDQASMPENTVAGK.L 2 = |
Pepttearsp o LK 035 0 | |
035 PEP: RIZTSEJ0 Zacore: 0014 Pualuel 0487 @0 /
20
Puptts o st moan 41X 0471 20
0478 PEP: 03738 Z.scare: 1560 Pvaive: 0383 ) *®o
-. ! —17 285 2 0 1 [ R
Peptss grosp o ML 1014 Dtnbusion foe HL
1004 PES: 10 Zacore: 32 Paahue: 0999 _65\:_\} 1 Show “roa dsstibation ] Shonw Hubsr estmated dsstrbution <[>

A nice example of the mess of degenerate peptides in quantification

Colaert, Proteomics, 2010
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