Puromycin dataset
Data on the velocity of an enzymatic reaction were obtained by Treloar (1974).
The number of counts per minute of radioactive product from the reaction was measured as a function of substrate concentration in parts per million (ppm) and from these counts the initial rate (or velocity) of the reaction was calculated (counts/min/min). The experiment was conducted once with the enzyme treated with Puromycin, and once with the enzyme untreated.
Goal
Assess if there is an association between the substrate concentration and rate for the treated enzyme.
Import libraries
Import data
In contrast to the other datasets we have worked with so far, this dataset is not available through a URL link. In stead, the data is directly available from an R package that was pre-installed in your R working environment. As such, we can simply do
and an object called Puromycin
is immediately available in your working environment.
Data wrangling
For this exercise, we only want to assess if there is an association between the substrate concentration and rate for the treated enzyme. As such, we should filter the data so that we are left with only the treated enzymes.
Data exploration
Make a visualization that allows for exploring if there is a linear relationship between the substrate concentration and enzyme’s rate.
Puromycin %>%
ggplot(...) + # select which elements of the dataset we need to visualize
... # use a relevant plotting geometry
stat_smooth(...) + # draw a smooth line through the data cloud
stat_smooth(...) # draw a straight (linear regression) line through the data cloud
... # you can add some extra elements like axis labels, title, ...
Does the relationship look linear? Can you think of any other steps that we might take to assess this relationship?
Now may we assume a linear relationship between the substrate concentration and the enzyme’s rate?
Linear regression
Formulate the research question
Check the assumptions
Interpret the model parameters of the linear model
Interpret the results, both for the intercept as well as for the slope
Write a conclusion that answers the research hypothesis.
LS0tCnRpdGxlOiAiRXhlcmNpc2UgNi4xOiBMaW5lYXIgcmVncmVzc2lvbiBvbiBwdXJvbXljaW4gZGF0YSIKYXV0aG9yOiAiTGlldmVuIENsZW1lbnQgJiBBbGV4YW5kcmUgU2VnZXJzIgpkYXRlOiAic3RhdE9taWNzLCBHaGVudCBVbml2ZXJzaXR5IChodHRwczovL3N0YXRvbWljcy5naXRodWIuaW8pIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgdGhlbWU6IGNvc21vCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKICAgIGhpZ2hsaWdodDogdGFuZ28KICAgIG51bWJlcl9zZWN0aW9uczogeWVzCi0tLQoKPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtc2EvNC4wIj48aW1nIGFsdD0iQ3JlYXRpdmUgQ29tbW9ucyBMaWNlbnNlIiBzdHlsZT0iYm9yZGVyLXdpZHRoOjAiIHNyYz0iaHR0cHM6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1zYS80LjAvODh4MzEucG5nIiAvPjwvYT4KCiMgUHVyb215Y2luIGRhdGFzZXQKCkRhdGEgb24gdGhlIHZlbG9jaXR5IG9mIGFuIGVuenltYXRpYyByZWFjdGlvbiB3ZXJlIG9idGFpbmVkIGJ5IFRyZWxvYXIgKDE5NzQpLiAgClRoZSBudW1iZXIgb2YgY291bnRzIHBlciBtaW51dGUgb2YgcmFkaW9hY3RpdmUgcHJvZHVjdCBmcm9tIHRoZSByZWFjdGlvbiB3YXMgCm1lYXN1cmVkIGFzIGEgZnVuY3Rpb24gb2Ygc3Vic3RyYXRlIGNvbmNlbnRyYXRpb24gaW4gcGFydHMgcGVyIG1pbGxpb24gKHBwbSkgYW5kCmZyb20gdGhlc2UgY291bnRzIHRoZSBpbml0aWFsIHJhdGUgKG9yIHZlbG9jaXR5KSBvZiB0aGUgcmVhY3Rpb24gd2FzIGNhbGN1bGF0ZWQgKGNvdW50cy9taW4vbWluKS4gVGhlIGV4cGVyaW1lbnQgd2FzIGNvbmR1Y3RlZCBvbmNlIHdpdGggdGhlIGVuenltZSB0cmVhdGVkIAp3aXRoIFB1cm9teWNpbiwgYW5kIG9uY2Ugd2l0aCB0aGUgZW56eW1lIHVudHJlYXRlZC4KCiMgR29hbAoKQXNzZXNzIGlmIHRoZXJlIGlzIGFuIGFzc29jaWF0aW9uIGJldHdlZW4gdGhlIHN1YnN0cmF0ZSBjb25jZW50cmF0aW9uIGFuZCByYXRlIApmb3IgdGhlICoqdHJlYXRlZCoqIGVuenltZS4gCgpJbXBvcnQgbGlicmFyaWVzCgpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KCmBgYAoKIyBJbXBvcnQgZGF0YQoKSW4gY29udHJhc3QgdG8gdGhlIG90aGVyIGRhdGFzZXRzIHdlIGhhdmUgd29ya2VkIHdpdGggc28gZmFyLCB0aGlzIGRhdGFzZXQgaXMKbm90IGF2YWlsYWJsZSB0aHJvdWdoIGEgVVJMIGxpbmsuIEluIHN0ZWFkLCB0aGUgZGF0YSBpcyBkaXJlY3RseSBhdmFpbGFibGUgZnJvbQphbiBSIHBhY2thZ2UgdGhhdCB3YXMgcHJlLWluc3RhbGxlZCBpbiB5b3VyIFIgd29ya2luZyBlbnZpcm9ubWVudC4gQXMgc3VjaCwgd2UKY2FuIHNpbXBseSBkbwoKYGBge3J9CmRhdGEoUHVyb215Y2luKQpgYGAKCmFuZCBhbiBvYmplY3QgY2FsbGVkIGBQdXJvbXljaW5gIGlzIGltbWVkaWF0ZWx5IGF2YWlsYWJsZSBpbiB5b3VyIHdvcmtpbmcgCmVudmlyb25tZW50LgoKIyBEYXRhIHdyYW5nbGluZwoKRm9yIHRoaXMgZXhlcmNpc2UsIHdlIG9ubHkgd2FudCB0byBhc3Nlc3MgaWYgdGhlcmUgaXMgYW4gYXNzb2NpYXRpb24gYmV0d2VlbiAKdGhlIHN1YnN0cmF0ZSBjb25jZW50cmF0aW9uIGFuZCByYXRlIGZvciB0aGUgKip0cmVhdGVkKiogZW56eW1lLiBBcyBzdWNoLCB3ZSAKc2hvdWxkIGZpbHRlciB0aGUgZGF0YSBzbyB0aGF0IHdlIGFyZSBsZWZ0IHdpdGggb25seSB0aGUgdHJlYXRlZCBlbnp5bWVzLgoKYGBge3J9CgpgYGAKCiMgRGF0YSBleHBsb3JhdGlvbgoKTWFrZSBhIHZpc3VhbGl6YXRpb24gdGhhdCBhbGxvd3MgZm9yIGV4cGxvcmluZyBpZiB0aGVyZSBpcyBhIGxpbmVhciByZWxhdGlvbnNoaXAKYmV0d2VlbiB0aGUgc3Vic3RyYXRlIGNvbmNlbnRyYXRpb24gYW5kIGVuenltZSdzIHJhdGUuCgpgYGB7ciwgZXZhbD1GQUxTRX0KUHVyb215Y2luICU+JQogIGdncGxvdCguLi4pICsgIyBzZWxlY3Qgd2hpY2ggZWxlbWVudHMgb2YgdGhlIGRhdGFzZXQgd2UgbmVlZCB0byB2aXN1YWxpemUKICAuLi4gIyB1c2UgYSByZWxldmFudCBwbG90dGluZyBnZW9tZXRyeQogIHN0YXRfc21vb3RoKC4uLikgKyAjIGRyYXcgYSBzbW9vdGggbGluZSB0aHJvdWdoIHRoZSBkYXRhIGNsb3VkCiAgc3RhdF9zbW9vdGgoLi4uKSAjIGRyYXcgYSBzdHJhaWdodCAobGluZWFyIHJlZ3Jlc3Npb24pIGxpbmUgdGhyb3VnaCB0aGUgZGF0YSBjbG91ZAogIC4uLiAjIHlvdSBjYW4gYWRkIHNvbWUgZXh0cmEgZWxlbWVudHMgbGlrZSBheGlzIGxhYmVscywgdGl0bGUsIC4uLgpgYGAKCkRvZXMgdGhlIHJlbGF0aW9uc2hpcCBsb29rIGxpbmVhcj8gQ2FuIHlvdSB0aGluayBvZiBhbnkgb3RoZXIgc3RlcHMgdGhhdCB3ZSAKbWlnaHQgdGFrZSB0byBhc3Nlc3MgdGhpcyByZWxhdGlvbnNoaXA/CgpgYGB7cn0KCgoKCmBgYAoKTm93IG1heSB3ZSBhc3N1bWUgYSBsaW5lYXIgcmVsYXRpb25zaGlwIGJldHdlZW4gdGhlIHN1YnN0cmF0ZSBjb25jZW50cmF0aW9uIGFuZCAKdGhlIGVuenltZSdzIHJhdGU/CgojIExpbmVhciByZWdyZXNzaW9uCgojIyBGb3JtdWxhdGUgdGhlIHJlc2VhcmNoIHF1ZXN0aW9uCgojIyBDaGVjayB0aGUgYXNzdW1wdGlvbnMKCiMjIEludGVycHJldCB0aGUgbW9kZWwgcGFyYW1ldGVycyBvZiB0aGUgbGluZWFyIG1vZGVsCgojIyBJbnRlcnByZXQgdGhlIHJlc3VsdHMsIGJvdGggZm9yIHRoZSBpbnRlcmNlcHQgYXMgd2VsbCBhcyBmb3IgdGhlIHNsb3BlCgojIyBXcml0ZSBhIGNvbmNsdXNpb24gdGhhdCBhbnN3ZXJzIHRoZSByZXNlYXJjaCBoeXBvdGhlc2lzLgoKCgoKCgoKCgoKCgoKCg==