The `StatModel` class contains a statistical model generated by the DTU analysis.

Models are created by the dedicated user-level function `fitDTU()` or manually, using the `StatModel()` constructor. In the former case, each quantitative feature is assigned its s tatistical model and the models are stored as a variable in a `DataFrame` object, that in turn will be stored in the `RowData` slot of a `SummarizedExperiment object`.

Slots

type

`character(1)` defining type of the used model. Default is `"fitError"`, i.e. an error model. If not an error, class type will be `"glm"`.

params

A `list()` containing the parameters of the fitted model.

varPosterior

`numeric()` of posterior variance.

dfPosterior

`numeric()` of posterior degrees of freedom.

Author

Jeroen Gilis

Examples

## A fully specified dummy model
myModel <- StatModel(
    type = "glm",
    params = list(x = 3, y = 7, b = 4),
    varPosterior = c(0.1, 0.2, 0.3),
    dfPosterior = c(6, 7, 8)
)
myModel
#> An object of class "StatModel"
#> Slot "type":
#> [1] "glm"
#> 
#> Slot "params":
#> $x
#> [1] 3
#> 
#> $y
#> [1] 7
#> 
#> $b
#> [1] 4
#> 
#> 
#> Slot "varPosterior":
#> [1] 0.1 0.2 0.3
#> 
#> Slot "dfPosterior":
#> [1] 6 7 8
#>