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Statistical Inference

@ Francisella tularensis Example
@ Hypothesis testing

© Multiple testing

© Moderated statistics

© Experimental design
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Francisella tularensis experiment

Pathogen: causes tularemia

Metabolic adaptation key for intracellular life
cycle of pathogenic microorganisms.

Upon entry into host cells quick phasomal
escape and active multiplication in cytosolic
compartment.

Francisella is auxotroph for several amino
acids, including arginine.

Inactivation of arginine transporter delayed
bacterial phagosomal escape and
intracellular multiplication.

Experiment to assess difference in proteome
using 3 WT vs 3 ArgP KO mutants
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Summarized data structure

o WT vs KO
@ 3 vs 3 repeats

@ 882 proteins

Protein WT, WT, WTj KO, KO, KO3
gi|118496616 29.83 29.77 29.91 29.70 29.86 29.80
gi|118496617 31.28 31.23 31.51 31.30 31.51 31.76
gi|118496635 32.39 32.27 3224 3225 3214 3222
gi|118496636 30.74 30.54 30.64 30.65 30.49 30.60
gi|118496637 29.56 29.35 29.56 29.30 29.24 29.14
gi|118498323 31.38 30.52 30.62 31.04 27.38 NA
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Data T-test

Hypothesis testing: a single protein
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Data T-test

Hypothesis testing: a single protein

Francisella (gi|118497015)
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein

o On average the protein abundance in WT is different from that
in KO
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein
o On average the protein abundance in WT is different from that
in KO
o But, we will assess it by falsifying the opposite: null
hypothesis Hy
o On average the protein abundance in WT is equal to that in
KO
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Two Sample t-test

data: z by treat
t = -11.449, df = 4, p-value = 0.0003322
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-1.031371 -1.691774
sample estimates:
mean in group D8 mean in group WT
29.26094 30.62251

@ How likely is it to observe an equal or more extreme effect than the
one observed in the sample when the null hypothesis is true?

@ When we make assumptions about the distribution of our test
statistic we can quantify this probability: p-value. The p-value will
only be calculated correctly if the underlying assumptions hold!

@ When we repeat the experiment, the probability to observe a fold
change more extreme than a 2.6 fold (log, FC = —1.36) down or up
regulation by random change (if Hp is true) is 3 out of 10.000.

@ If the p-value is below a significance threshold o we reject the null
hypothesis. We control the probability on a false positive result
at the a-level (type | error)
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Hypothesis testing: a single protein
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Multiple hypothesis testing

Multiple hypothesis testing
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Multiple hypothesis testing

Problem of multiple hypothesis testing

o Consider testing DA for all m = 882 proteins simultaneously
o What if we assess each individual test at level o?

— Probability to have a false positive among all m simultatenous
test >>> a =0.05

Suppose that 600 proteins are non-DA, then we could expect

to discover on average 600 x 0.05 = 30 false positive proteins.
Hence, we are bound to call false positive proteins each time

we run the experiment.
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Multiple hypothesis testing

FDR: False discovery rate

o FDR: Expected proportion of false positives on the total
number of positives you return.

@ An FDR of 1% means that on average we expect 1% false
positive proteins in the list of proteins that are called
significant.

@ Defined by Benjamini and Hochberg in 1995

FP Pr(|T| > tihres| Hi
FDR(ltthresD = E|: :| — 70 r(| ‘— th es‘ 0)

FP 4+ TP Pr(|T| > tthres)
]' X ptthres
FDRBH(| tehres|) = ot

o FDR adjusted p-values can be calculated (e.g. Perseus, R, ...)
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Multiple hypothesis test

Ordinary t-test

-log10(p-value)




Moderated statistics

Moderated Statistics
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Moderated statistics

Problems with ordinary t-test

—log10(p-value)
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Moderated statistics

Problems with ordinary t-test

Original t—test

log2 FC
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Moderated statistics

A moderated t-test

A general class of moderated test statistics is given by

Tmod _ Ygl — Yg2
g - ~ 9

c 5

where S, is a moderated standard deviation estimate.
o C is a constant depending on the design e.g. \/1/n; +1/n, for a
t-test.

o S, =S, + So: add small positive constant to denominator of
t-statistic.

@ This can be adopted in Perseus.
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Moderated statistics

t-statistic Perseus moderated t-statistic
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@ The choice of Sy in Perseus is ad hoc and the t-statistic is
no-longer t-distributed.

— Permutation test, but is difficult for more complex designs.

— Allows for Data Dredging because user can choose Sy
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Moderated statistics

A moderated t-test

A general class of moderated test statistics is given by

Y1 — Yeo

Tmod — _
& c S

)

where S, is a moderated standard deviation estimate.

@ empirical Bayes theory provides formal framework for borrowing
strength across proteins,

@ Implemented in popular bioconductor package limma

o _ [+ s
€ dg + do ’

@ S2: common variance (over all proteins)

@ Moderated t-statistic is t-distributed with dy + dg degrees of
freedom.

— Note that the degrees of freedom increase by borrowing strength
across proteins!
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Moderated statistics

Shrinkage of the variance and moderated t-statistics

Shrinkage of Standard
Deviations
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Moderated statistics

Shrinkage of the variance with limma
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Ordinary t-test Moderated t-test
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Original t-test Moderated t-test
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Moderated statistics
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Experimental Design

Experimental Design
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Experimental Design

Power?
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.

o Assess difference in power between 3vs3, 6vs6 and 9vs9
patients.
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Experimental Design Blocking

Experimental Design:
Blocking
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Experimental Design Blocking

Sources of variability

2 _ 2 2 2 2
0 = Opjo + Olab + O extraction + Orun +...

o Biological: fluctuations in protein level between mice,
fluctations in protein level between cells, ...

@ Technical: cage effect, lab effect, week effect, plasma
extraction, MS-run, ...
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Blocking Example: mouse T-cells

Dereg mice

7 biological replicates

Cell sorting by FACS
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Fic. 1. Label-free itative analysis of ional and reg-
ulatory T cell proteomes. General analytical workflow based on cell
sorting by flow cytometry using the DEREG mouse model and parallel
proteomic analysis of Tconv and Treg cell populations by nanoLC-
MS/MS and label-free relative quantification.
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Experimental Design Blocking

Blocking Example: mouse T-cells
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Experimental Design Blocking

a No blocking b BIc::cL:IIT:S?eon Sampling schemes
Completely Complete

" 405 f . Incomplete block
_'é -6 ? - randomized randomized block
+ 405 6 | +05 6 replicates 6 replicates 4 replicates
a$= _045$=. w05 (Oll6l[e][6/l6/6 666666 (666666
+0.5 +0.5 ) 666)/66 6 6666606 606066060
a$= & 9 10 11 @ 9 1011 g [6//6l[6]/6//6 066668 4w Technical
-0.5 Response Response 1 2 3 repeats

Figure 2 | Blocking improves sensitivity by isolating variation in samples
that is independent from treatment effects. (a) Measurements from
treatment aliquots derived from different cell cultures are differentially
offset (e.g., 1, 0.5, -0.5) because of differences in cultures. (b) When
aliquots are derived from the same culture, measurements are uniformly
offset (e.g., 0.5). (c) Incorporating blocking in data collection schemes.
Repeats within blocks are considered technical replicates. In an incomplete
block design, a block cannot accommodate all treatments.

Nature Methods 2014, 11(7) 699-700.
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Experimental Design

Blocking
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Blocking

0% = o2 + 02

within mouse between mouse

2 ﬂ mi,«

05

Leading logFC dim 2

0.0

— All treatments of interest are present within block!
— We can estimate the effect of the treatment within block!
— We can isolate the between block variability from the analysis
— linear model:
y ~ type + mouse

— Not possible with Perseus!
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Experimental Design Blocking

Power gain of blocking

e Completely randomized design (CRD): 8 mice, 4 conventional
T-cells, 4 regulatory T-cells.

e Randomized complete block desigh (RBC): 4 mice, for each
mouse conventional and regulatory T-cells.
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Expe

Power gain of blocking

Leading logFC dim 2
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Experimental Design Bloc

Anova table: P24452, Capg, Macrophage-capping protein

Leading logFC dim 2

00

mareg

e

mreg

0.0
Leading logFC dim 1

### RCB design ###

Df Sum Sq Mean Sq F value Pr(>F)
type 1 15.2282 15.2282 3720.035 9.71e-06
mouse 3 0.2179 0.0726 17.747 0.02058
Residuals 3 0.0123 0.0041

### RCB design: no mouse effect ###

Df Sum Sq Mean Sq F value Pr (>F)
type 1 15.2282 15.2282 396.87 1.038e-06
Residuals 6 0.2302 0.0384

### CRD design ###

Df Sum Sq Mean Sq F value Pr(>F)
type 1 11.6350 11.6350 122.86 3.211e-05
Residuals 6 0.5682 0.0947

*
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(3]

ental Design

Blocking

Anova table: P24452, Capg, Macrophage-capping protein

Leading logFC dim 2

00

### RCB design ###

Estimate Std. Error t value Pr(>ltl)
(Intercept) 22.21485 0.05058 439.190 2.60e-08
typereg 2.75937 0.04524 60.992 9.71e-06
mouse2 0.30560 0.06398 4.776 0.0174
mouse3 -0.15193 0.06398 -2.375 0.0981 .
mouse4 0.07331 0.06398 1.146  0.3350

mareg

e

Residual standard error: 0.06398 on 3 degrees of

### RCB design: no mouse effect ###

Estimate Std. Error t value Pr(>Itl)
(Intercept) 22.27160 0.09794 227.40 4.88e-13
typereg 2.75937 0.13851  19.92 1.04e-06

mreg

0.0
Leading logFC dim 1

### CRD design ###

Estimate Std. Error t value Pr(>Itl)
23.3012 0.1557 149.65 6.00e-12
2.4956 0.2251 11.08 3.21e-05

(Intercept)
typereg

freedom

Residual standard error: 0.1959 on 6 degrees of freedom

sokok
sokok

Residual standard error: 0.3077 on 6 degrees of freedom
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Experimental Design Blocking

Comparison residual variance

RCB vs CRD RCB vs RCB without mouse effect RCB without mouse effect vs CRD
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