
Experimental design concepts for label-free proteomics experiments

Lieven Clement

statOmics, Ghent University

Contents

1 Overview 1

2 Sample size 2

2.1 Statistical models . 2

2.2 Effect size? . 5

2.3 Statistical Inference . 5

2.4 Experiment with 3 vs 3 comparison . 6

2.5 Experiment with a 6 vs 6 comparison . 7

2.6 Experiment with a 9 vs 9 comparison . 11

3 Randomized complete block designs 15

3.1 Nature methods: Points of significance - Blocking . 15

3.2 Mouse example . 16

3.3 Modeling and inference . 26

This is part of the online course Experimental Design and Data-Analysis in Label-Free Quantitative LC/MS
Proteomics - A Tutorial with msqrob2 (hupo21)

Click to see libraries that are loaded

library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
library(gridExtra)

1 Overview

• Sample size
• Randomized Complete Block Designs

1

https://statomics.github.io
https://statomics.github.io/hupo21/
https://statomics.github.io/hupo21/

2 Sample size

2.1 Statistical models

• Upon preprocessing and summarization we model the log2 transformed protein expression (yi) values
using a linear model

yi = β0 + β1xi,1 + βxi,2 + ... + ϵi

with

• β0 the intercept
• βj the slope for predictor xi,j

• xi,j a continuous predictor (such as age) or a dummy variable that can take values of 0 and 1 and that
will used for factors (e.g treatment: cancer, normal).

Example:

• Estrogen Receptor Positive Breast cancer tissues from from patients treated with tamoxifen upon
recurrence have been assessed in a proteomics study.

• Half of the patients had a good outcome (or) and the other half had a poor outcome (pd).
• The proteomes have been assessed using an LTQ-Orbitrap and the thermo output .RAW files were

searched with MaxQuant (version 1.4.1.2) against the human proteome database (FASTA version
2012-09, human canonical proteome).

We model the data for a single protein using a model:

yi = β0 + βP Dxi,P D + ϵi

with xi,P D =
{

0 good outcome
1 poor outcome

.

2.1.1 Read data

Click to see background and code

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities
summarized at the peptide level.

peptidesFile <- "https://raw.githubusercontent.com/statOmics/pda21/data/quantification/cancer/peptides3vs3.txt"

2. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We
can retreive the column names with the intensity data with the code below:

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))

3. Read the data and store it in QFeatures object

2

pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")

2.1.2 Design

Click to see background and code

pe %>% colnames

CharacterList of length 1
[["peptideRaw"]] Intensity.OR.01 Intensity.OR.04 ... Intensity.PD.04

• Note, that the sample names the outcome.
• We update the colData with information on the design

colData(pe)$prognosis <- pe[["peptideRaw"]] %>%
colnames %>%
substr(11,12) %>%
as.factor

• We explore the colData

colData(pe)

DataFrame with 6 rows and 1 column
prognosis
<factor>
Intensity.OR.01 OR
Intensity.OR.04 OR
Intensity.OR.07 OR
Intensity.PD.02 PD
Intensity.PD.03 PD
Intensity.PD.04 PD

2.1.3 Preprocessing

Click to see code for preprocessing

1. Log-transform

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)

• Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

3

pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA

• Logtransform data with base 2

pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")

2. Filtering

Click to see code to filter the data

• Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in
a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))

• Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only
identified by peptides with modifications.

pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Contaminant != "+")

• Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])

[1] 22413

We keep 22413 peptides upon filtering.

3. Normalization

pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

4. Summarization

4

pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

2.2 Effect size?

library(ExploreModelMatrix)
VisualizeDesign(colData(pe),designFormula = ~prognosis)$plotlist

[[1]]

(Intercept)

(Intercept) +
prognosisPD

OR

PD

pr
og

no
si

s

E[Y |OR] = β0
E[Y |PD] = β0 + βP D

log2 FCP D−OR = β0 + βP D − β0 = βP D

2.3 Statistical Inference

2.3.1 Hypotheses

We want to find proteins that are differential abundant

5

→ use a statistical test

We typically start from the alternative hypothesis

• H1: log2 FCP D−OR ̸= 0 or βP D ̸= 0

But we can not use data to prove a hypothesis, we therefore falsify the opposite:

• H0: log2 FCP D−OR = 0 or βP D = 0

2.3.2 Test statistic:

• T-test on the model parameter βP D

T = β̂P D − 0
seβ̂P D

which follows a t-distribution under H0 if the errors are

ϵi i.i.d. N(0, σ2)

• p-value: probability to observe a t-statistic that is as extreme or more extreme that the one we observed
for this protein in our sample if we would repeat the experiment and if the protein is not differentially
abundant.

2.3.3 Multiple testing

• We do this test for all proteins (typically thousands of them)

• Adjust p-values for multiple testing using the false discovery rate

FDR = E

[
FP

FP + TP

]
• Empirical Bayes variance estimation: Note, that the massive parallel data structure also allows you to

stabilize the variance estimation by borrowing information across proteins!

Note, if you want to refresh some fundamental concepts of hypothesis testing:

• Statistical hypothesis testing
• Multiple hypothesis testing
• Empirical Bayes Variance Estimation

2.4 Experiment with 3 vs 3 comparison

Click to see code to inference

pe <- msqrob(object = pe, i = "protein", formula = ~prognosis)
L <- makeContrast("prognosisPD=0", parameterNames = c("prognosisPD"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)

6

https://statomics.github.io/PDA21/pda_quantification_inference.html#133_Hypothesis_testing:_a_single_protein
https://statomics.github.io/PDA21/pda_quantification_inference.html#14_Multiple_hypothesis_testing
https://statomics.github.io/PDA21/pda_quantification_inference.html#15_Moderated_Statistics

volcano3x3 <- ggplot(rowData(pe[["protein"]])$prognosisPD %>% na.exclude,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +

geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0(sum(rowData(pe[["protein"]])$prognosisPD$adjPval<0.05,na.rm=TRUE)," proteins are found to be DA"))

volcano3x3

0

1

2

3

4

−2 0 2 4
logFC

−
lo

g1
0(

pv
al

)

adjPval < 0.05

FALSE

0 proteins are found to be DA

Upon correction for multiple testing with using the false discovery rate (FDR) method no proteins are found
to be differentially expressed.

Note, that you can refresh the concept of multiple testing and FDR [here] (https://statomics.github.io/
PDA21/pda_quantification_inference.html#14_Multiple_hypothesis_testing).

2.5 Experiment with a 6 vs 6 comparison

2.5.1 Read data

Click to see background and code

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities
summarized at the peptide level.

7

https://statomics.github.io/PDA21/pda_quantification_inference.html#14_Multiple_hypothesis_testing
https://statomics.github.io/PDA21/pda_quantification_inference.html#14_Multiple_hypothesis_testing

peptidesFile <- "https://raw.githubusercontent.com/statOmics/pda21/data/quantification/cancer/peptides6vs6.txt"

2. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We
can retreive the column names with the intensity data with the code below:

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))

3. Read the data and store it in QFeatures object

pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")

2.5.2 Design

Click to see background and code

pe %>% colnames

CharacterList of length 1
[["peptideRaw"]] Intensity.OR.01 Intensity.OR.04 ... Intensity.PD.08

• Note, that the sample names the outcome.
• We update the colData with information on the design

colData(pe)$prognosis <- pe[["peptideRaw"]] %>%
colnames %>%
substr(11,12) %>%
as.factor

• We explore the colData

colData(pe)

DataFrame with 12 rows and 1 column
prognosis
<factor>
Intensity.OR.01 OR
Intensity.OR.04 OR
Intensity.OR.07 OR
Intensity.OR.09 OR
Intensity.OR.10 OR
... ...
Intensity.PD.03 PD
Intensity.PD.04 PD
Intensity.PD.06 PD
Intensity.PD.07 PD
Intensity.PD.08 PD

8

2.5.3 Preprocessing

Click to see code for preprocessing

1. Log-transform

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)

• Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA

• Logtransform data with base 2

pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")

2. Filtering

Click to see code to filter the data

• Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in
a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))

• Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only
identified by peptides with modifications.

pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Contaminant != "+")

• Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])

[1] 25452

We keep 25452 peptides upon filtering.

3. Normalization

9

pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

4. Summarization

pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

2.5.4 Statistical Inference

Click to see code to inference

pe <- msqrob(object = pe, i = "protein", formula = ~prognosis)
L <- makeContrast("prognosisPD=0", parameterNames = c("prognosisPD"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)

volcano6x6 <- ggplot(rowData(pe[["protein"]])$prognosisPD %>% na.exclude,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +

geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0(sum(rowData(pe[["protein"]])$prognosisPD$adjPval<0.05,na.rm=TRUE)," proteins are found to be DA"))

volcano6x6

10

0

1

2

3

4

5

−2 0 2 4
logFC

−
lo

g1
0(

pv
al

)

adjPval < 0.05

FALSE

TRUE

36 proteins are found to be DA

2.6 Experiment with a 9 vs 9 comparison

2.6.1 Read data

Click to see background and code

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities
summarized at the peptide level.

peptidesFile <- "https://raw.githubusercontent.com/statOmics/pda21/data/quantification/cancer/peptides9vs9.txt"

2. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We
can retreive the column names with the intensity data with the code below:

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))

3. Read the data and store it in QFeatures object

pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")

11

2.6.2 Design

Click to see background and code

pe %>% colnames

CharacterList of length 1
[["peptideRaw"]] Intensity.OR.01 Intensity.OR.04 ... Intensity.PD.11

• Note, that the sample names the outcome.
• We update the colData with information on the design

colData(pe)$prognosis <- pe[["peptideRaw"]] %>%
colnames %>%
substr(11,12) %>%
as.factor

• We explore the colData

colData(pe)

DataFrame with 18 rows and 1 column
prognosis
<factor>
Intensity.OR.01 OR
Intensity.OR.04 OR
Intensity.OR.07 OR
Intensity.OR.09 OR
Intensity.OR.10 OR
... ...
Intensity.PD.07 PD
Intensity.PD.08 PD
Intensity.PD.09 PD
Intensity.PD.10 PD
Intensity.PD.11 PD

2.6.3 Preprocessing

Click to see code for preprocessing

1. Log-transform

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)

• Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

12

pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA

• Logtransform data with base 2

pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")

2. Filtering

Click to see code to filter the data

• Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in
a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))

• Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only
identified by peptides with modifications.

pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Contaminant != "+")

• Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])

[1] 26696

We keep 26696 peptides upon filtering.

3. Normalization

pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

4. Summarization

13

pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

2.6.4 Statistical Inference

Click to see code to inference

pe <- msqrob(object = pe, i = "protein", formula = ~prognosis)
L <- makeContrast("prognosisPD=0", parameterNames = c("prognosisPD"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)

volcano9x9 <- ggplot(rowData(pe[["protein"]])$prognosisPD %>% na.exclude,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +

geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0(sum(rowData(pe[["protein"]])$prognosisPD$adjPval<0.05,na.rm=TRUE)," proteins are found to be DA"))

volcano9x9

0

2

4

6

−2 0 2 4
logFC

−
lo

g1
0(

pv
al

)

adjPval < 0.05

FALSE

TRUE

108 proteins are found to be DA

• We have seen that the sample size is key to recover DA proteins

14

• Indeed, if a protein is differentially expressed, the value of T-test depends on the effect size, the
variability of the protein expression values and the sample size.

Tg = log2 FC
selog2 FC

Tg = ŝignal
N̂oise

For a two group comparison the standard error on the fold change equals

selog2 FC = SD
√

1
n1

+ 1
n2

→ if number of bio-repeats increases we have a higher power!

3 Randomized complete block designs

σ2 = σ2
bio + σ2

lab + σ2
extraction + σ2

run + . . .

• Biological: fluctuations in protein level between mice, fluctations in protein level between cells, . . .
• Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, . . .

3.1 Nature methods: Points of significance - Blocking

https://www.nature.com/articles/nmeth.3005.pdf

15

https://www.nature.com/articles/nmeth.3005.pdf

3.2 Mouse example

Duguet et al. (2017) MCP 16(8):1416-1432. doi: 10.1074/mcp.m116.062745

• All treatments of interest are present within block!
• We can estimate the effect of the treatment within block!

To illustrate the power of blocking we have subsetted the data of Duguet et al. in a

• completely randomized design with

– four mice for which we only have measurements on the ordinary T-cells
– four mice for which we only have measurements on the regulatory T-cells

• randomized complete block design with four mice for which we both have

– measurements on ordinary T-cells as well as
– measurements on regulatory T-cells

3.2.1 Data

Click to see code

16

library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
library(gridExtra)

peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/peptidesRCB.txt"
peptidesFile2 <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/peptidesCRD.txt"
peptidesFile3 <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/peptides.txt"

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))
pe <- readQFeatures(

table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")

ecols2 <- grep("Intensity\\.", names(read.delim(peptidesFile2)))
pe2 <- readQFeatures(

table = peptidesFile2,
fnames = 1,
ecol = ecols2,
name = "peptideRaw", sep="\t")

ecols3 <- grep("Intensity\\.", names(read.delim(peptidesFile3)))
pe3 <- readQFeatures(

table = peptidesFile3,
fnames = 1,
ecol = ecols3,
name = "peptideRaw", sep="\t")

Design
colData(pe)$celltype <- substr(

colnames(pe[["peptideRaw"]]),
11,
14) %>%
unlist %>%
as.factor

colData(pe)$mouse <- pe[[1]] %>%
colnames %>%
strsplit(split="[.]") %>%
sapply(function(x) x[3]) %>%
as.factor

colData(pe2)$celltype <- substr(
colnames(pe2[["peptideRaw"]]),
11,
14) %>%
unlist %>%
as.factor

17

colData(pe2)$mouse <- pe2[[1]] %>%
colnames %>%
strsplit(split="[.]") %>%
sapply(function(x) x[3]) %>%
as.factor

colData(pe3)$celltype <- substr(
colnames(pe3[["peptideRaw"]]),
11,
14) %>%
unlist %>%
as.factor

colData(pe3)$mouse <- pe3[[1]] %>%
colnames %>%
strsplit(split="[.]") %>%
sapply(function(x) x[3]) %>%
as.factor

3.2.2 Preprocessing

3.2.2.1 Log-transform Click to see code to log-transfrom the data

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)

rowData(pe2[["peptideRaw"]])$nNonZero <- rowSums(assay(pe2[["peptideRaw"]]) > 0)

rowData(pe3[["peptideRaw"]])$nNonZero <- rowSums(assay(pe3[["peptideRaw"]]) > 0)

• Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA

pe2 <- zeroIsNA(pe2, "peptideRaw") # convert 0 to NA

pe3 <- zeroIsNA(pe3, "peptideRaw") # convert 0 to NA

• Logtransform data with base 2

pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")

pe2 <- logTransform(pe2, base = 2, i = "peptideRaw", name = "peptideLog")

pe3 <- logTransform(pe3, base = 2, i = "peptideRaw", name = "peptideLog")

18

3.2.2.2 Filtering Click to see details on filtering

1. Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in
a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))

pe2 <- filterFeatures(pe2, ~ Proteins %in% smallestUniqueGroups(rowData(pe2[["peptideLog"]])$Proteins))

pe3 <- filterFeatures(pe3, ~ Proteins %in% smallestUniqueGroups(rowData(pe3[["peptideLog"]])$Proteins))

2. Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only
identified by peptides with modifications.

pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")

pe2 <- filterFeatures(pe2,~Reverse != "+")
pe2 <- filterFeatures(pe2,~ Potential.contaminant != "+")

pe3 <- filterFeatures(pe3,~Reverse != "+")
pe3 <- filterFeatures(pe3,~ Potential.contaminant != "+")

3. Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])

[1] 44449

pe2 <- filterFeatures(pe2,~ nNonZero >=2)
nrow(pe2[["peptideLog"]])

[1] 43401

pe3 <- filterFeatures(pe3,~ nNonZero >=2)
nrow(pe3[["peptideLog"]])

[1] 47431

3.2.2.3 Normalization Click to see code to normalize the data

19

pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

pe2 <- normalize(pe2,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

pe3 <- normalize(pe3,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")

3.2.2.4 Summarization Click to see code to summarize the data

pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

Your quantitative and row data contain missing values. Please read the
relevant section(s) in the aggregateFeatures manual page regarding the
effects of missing values on data aggregation.

pe2 <- aggregateFeatures(pe2,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

Your quantitative and row data contain missing values. Please read the
relevant section(s) in the aggregateFeatures manual page regarding the
effects of missing values on data aggregation.

pe3 <- aggregateFeatures(pe3,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "protein")

Your quantitative and row data contain missing values. Please read the
relevant section(s) in the aggregateFeatures manual page regarding the
effects of missing values on data aggregation.

3.2.3 Data Exploration: what is impact of blocking?

Click to see code

20

levels(colData(pe3)$mouse) <- paste0("m",1:7)
mdsObj3 <- plotMDS(assay(pe3[["protein"]]), plot = FALSE)
mdsOrig <- colData(pe3) %>%

as.data.frame %>%
mutate(mds1 = mdsObj3$x,

mds2 = mdsObj3$y,
lab = paste(mouse,celltype,sep="_")) %>%

ggplot(aes(x = mds1, y = mds2, label = lab, color = celltype, group = mouse)) +
geom_text(show.legend = FALSE) +
geom_point(shape = 21) +
geom_line(color = "black", linetype = "dashed") +
xlab(

paste0(
mdsObj3$axislabel,
" ",
1,
" (",
paste0(

round(mdsObj3$var.explained[1] *100,0),
"%"
),

")"
)

) +
ylab(

paste0(
mdsObj3$axislabel,
" ",
2,
" (",
paste0(

round(mdsObj3$var.explained[2] *100,0),
"%"
),

")"
)

) +
ggtitle("Original (RCB)")

levels(colData(pe)$mouse) <- paste0("m",1:4)
mdsObj <- plotMDS(assay(pe[["protein"]]), plot = FALSE)
mdsRCB <- colData(pe) %>%

as.data.frame %>%
mutate(mds1 = mdsObj$x,

mds2 = mdsObj$y,
lab = paste(mouse,celltype,sep="_")) %>%

ggplot(aes(x = mds1, y = mds2, label = lab, color = celltype, group = mouse)) +
geom_text(show.legend = FALSE) +
geom_point(shape = 21) +
geom_line(color = "black", linetype = "dashed") +
xlab(

paste0(
mdsObj$axislabel,

21

" ",
1,
" (",
paste0(

round(mdsObj$var.explained[1] *100,0),
"%"
),

")"
)

) +
ylab(

paste0(
mdsObj$axislabel,
" ",
2,
" (",
paste0(

round(mdsObj$var.explained[2] *100,0),
"%"
),

")"
)

) +
ggtitle("Randomized Complete Block (RCB)")

levels(colData(pe2)$mouse) <- paste0("m",1:8)
mdsObj2 <- plotMDS(assay(pe2[["protein"]]), plot = FALSE)
mdsCRD <- colData(pe2) %>%

as.data.frame %>%
mutate(mds1 = mdsObj2$x,

mds2 = mdsObj2$y,
lab = paste(mouse,celltype,sep="_")) %>%

ggplot(aes(x = mds1, y = mds2, label = lab, color = celltype, group = mouse)) +
geom_text(show.legend = FALSE) +
geom_point(shape = 21) +
xlab(

paste0(
mdsObj$axislabel,
" ",
1,
" (",
paste0(

round(mdsObj2$var.explained[1] *100,0),
"%"
),

")"
)

) +
ylab(

paste0(
mdsObj$axislabel,
" ",

22

2,
" (",
paste0(

round(mdsObj2$var.explained[2] *100,0),
"%"
),

")"
)

) +
ggtitle("Completely Randomized Design (CRD)")

mdsOrig

m1_Tcon
m2_Tcon

m3_Tconm4_Tcon
m5_Tcon

m6_Tcon

m7_Tcon

m1_Treg

m2_Treg

m3_Treg
m4_Tregm5_Treg

m6_Treg
m7_Treg

−0.4

0.0

0.4

0.8

−1.0 −0.5 0.0 0.5
Leading logFC dim 1 (27%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
17

%
)

celltype

Tcon

Treg

Original (RCB)

mdsRCB

23

m1_Tcon
m2_Tcon

m3_Tcon

m4_Tcon

m1_Treg

m2_Treg

m3_Treg

m4_Treg

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0
Leading logFC dim 1 (37%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
21

%
)

celltype

Tcon

Treg

Randomized Complete Block (RCB)

mdsCRD

24

m2_Tcon

m3_Tcon

m4_Tcon

m8_Tcon

m1_Treg

m5_Treg

m6_Tregm7_Treg
−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0
Leading logFC dim 1 (34%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
25

%
)

celltype

Tcon

Treg

Completely Randomized Design (CRD)

• We observe that the leading fold change is according to mouse

• In the second dimension we see a separation according to cell-type

• With the Randomized Complete Block design (RCB) we can remove the mouse effect from the analysis!

• We can isolate the between block variability from the analysis using linear model:

– Formula in R
y ∼ celltype + mouse

– Formula

yi = β0 + βTregxi,Treg + βm2xi,m2 + βm3xi,m3 + βm4xi,m4 + ϵi

with

• xi,T reg =
{

1 Treg
0 Tcon

• xi,m2 =
{

1 m2
0 otherwise

• xi,m3 =
{

1 m3
0 otherwise

25

• xi,m4 =
{

1 m4
0 otherwise

• Possible in msqrob2 and MSstats but not possible with Perseus!

3.3 Modeling and inference

3.3.1 RCB analysis

pe <- msqrob(
object = pe,
i = "protein",
formula = ~ celltype + mouse)

3.3.2 CRD analysis

pe2 <- msqrob(
object = pe2,
i = "protein",
formula = ~ celltype)

3.3.3 Estimation, effect size and inference

Effect size in RCB

library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~ celltype + mouse)$plotlist

[[1]]

26

(Intercept) (Intercept) +
mousem2

(Intercept) +
mousem3

(Intercept) +
mousem4

(Intercept) +
celltypeTreg

(Intercept) +
celltypeTreg +

mousem2

(Intercept) +
celltypeTreg +

mousem3

(Intercept) +
celltypeTreg +

mousem4

Tcon

Treg

m1 m2 m3 m4
mouse

ce
llt

yp
e

Effect size in CRD

VisualizeDesign(colData(pe2),~ celltype)$plotlist

[[1]]

27

(Intercept)

(Intercept) +
celltypeTreg

Tcon

Treg

ce
llt

yp
e

Click to see code for statistical inference

L <- makeContrast("celltypeTreg = 0", parameterNames = c("celltypeTreg"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)
pe2 <- hypothesisTest(object = pe2, i = "protein", contrast = L)

3.3.4 Comparison of results

Click to see code

28

0

2

4

6

−6 −3 0 3 6
logFC

−
lo

g1
0(

pv
al

) adjPval < 0.05

FALSE

TRUE

NA

RCB:
128 significant

29

0

2

4

6

−6 −3 0 3 6
logFC

−
lo

g1
0(

pv
al

) adjPval < 0.05

FALSE

TRUE

NA

CRD:
21 significant

3.3.5 Comparison of standard deviation

Click to see code

accessions <- rownames(pe[["protein"]])[rownames(pe[["protein"]])%in%rownames(pe2[["protein"]])]
dat <- data.frame(
sigmaRBC = sapply(rowData(pe[["protein"]])$msqrobModels[accessions], getSigmaPosterior),
sigmaCRD <- sapply(rowData(pe2[["protein"]])$msqrobModels[accessions], getSigmaPosterior)
)

plotRBCvsCRD <- ggplot(data = dat, aes(sigmaRBC, sigmaCRD)) +
geom_point(alpha = 0.1, shape = 20) +
scale_x_log10() +
scale_y_log10() +
geom_abline(intercept=0,slope=1)

plotRBCvsCRD

Warning: Removed 743 rows containing missing values (geom_point).

30

0.3

1.0

3.0

0.3 1.0 3.0
sigmaRBC

si
gm

aC
R

D

• We clearly observe that the standard deviation of the protein expression in the RCB is smaller for the
majority of the proteins than that obtained with the CRD

• Why are some of the standard deviations for the RCB with the correct analysis larger than than of
the RCB with the incorrect analysis that ignored the mouse blocking factor?

• Can you think of a reason why it would not be useful to block on a particular factor?

31

	Overview
	Sample size
	Statistical models
	Effect size?
	Statistical Inference
	Experiment with 3 vs 3 comparison
	Experiment with a 6 vs 6 comparison
	Experiment with a 9 vs 9 comparison

	Randomized complete block designs
	Nature methods: Points of significance - Blocking
	Mouse example
	Modeling and inference

