Sequencing: Selected technical topics

Lieven Clement & Koen Van den Berge

Last edited on 16 September, 2024

Contents

1 Parameter Estimation and Inference in Generalized linear models

1.1 Simulate Poisson Data
1.2 Exponential Family
1.3 Components of Generalized Linear Model . .
1.4 Likelihood
1.5 Parameter Estimation: Maximum Likelihood
1.6 Poisson Example
1.7 Comparison with GLM Function

1.8 Hypothesis testing: Large sample theory . . .
2 EdgeR
3 EdgeR - Quasi-Likelihood
4 Limma - Voom

5 Independent Filtering
5.1 A Dependent Test Statistic
5.2 An Independent Test Statistic

6 Normalization
6.1 TMM method (default of edgeR)
6.2 Median-of-Ratios Method (default of DESeq2)

7 Aliasing

21

24

24

26
30
33

35
41
45

47

1 Parameter Estimation and Inference in Generalized linear mod-
els

1.1 Simulate Poisson Data

¢ We simulate data for 100 observations.
¢ Covariates x are simulated from normal distribution
o The 8 are chosen at 5, =2, 3, =0.8, 3, =1.2

set.seed(300)
xhlp<-cbind(1,rnorm(100) ,rnorm(100))
betasTrue<-c(2,0.8,1.2)
etaTrue<-xhlpJ*/betasTrue
y<-rpois(100,exp(etaTrue))
data.frame(coef =0:2,betasTrue=betasTrue) %>%

ggplot (aes (x=coef ,y=betasTrue)) +

geom_point () +

geom_line() +

ylab("parameter value") +

xlab("beta") +

ylim(0,4) +

theme_bw() +

scale_x_continuous (breaks=c(0,1,2))

4-
3-
()
=)
<
>
D 5
5 2
=
©
a
o
1-
0-
0 1 2
beta

1.2 Exponential Family

F(i16:.6) = exp {Wzb(@)

0|

with

e 0;: canonical parameters
e ¢: dispersion parameter
e a(.), b(.), ¢(.): specific functions that depend on the distribution,

e.g. for normal distribution

. p=0o?,

o 0=y,

e a(¢) =¢ =0,

° b(9i>:9i2 2,

o oy, @) = —5[y*/d +log(2m9)]

1.2.1 Poisson Distribution

Yi

—u,
3 € ‘

y;!

In format of exponential family:
y; ~ exp{y; log(p;) — p; —log(y;!)}

1.3 Components of Generalized Linear Model

yileg ~ fy;l0;,)
Elylx;] = Hi
om) = k)
n(x;) = x!
with ¢(.) the link function, e.g.

g(.) = . : identity link for Normal distribution
o g(.) =1log(.) : canonical link for Poisson distribution
o g(.) = logit(.) = log [%] : canonical link for Bernouilli distribution.

1.3.1 Poisson GLM

Y; ~ Poisson(u;)
Ely;] = Hi
log(p;) = T
Yo = X[

1.4 Likelihood

We start from a sample, and consider it as fixed and known.

e In particular we do NOT consider the sample observations as random variables.
o Therefore we write the observed sample as y,, ..., y,,

e The theory is based on the likelihood function, which can be interpreted as a measure for the probability

that the given sample is observed as a realisation of a sequence of random variables Y;,... Y,

o The random variables Y, are characterized by a distribution or density function which has typically
unknown parameters, e.g. a Poisson distribution f(Y;) ~ Poisson(d,).

o When the subjects are mutually independent the joint likelihood to observe y,, ..., ¥y, equals
n
H f(ym 01’7 (ZS)
i=1

o The densities are actually also a function of the parameters 6,, ¢. To stress this, we indicated that in
the density formulation.

e The likelihood function is a function of all parameters

n

0,6ly) =[] f(vi 0:,0)

i=1

e The log-likelihood function is often used, which is defined as

10, ¢ly) = log L(6, ¢ly) = Zlogfyw 0, 0)

1.4.1 Poisson Example

The log-likelihood for our simulated dataset given the real model parameters is:

For one observation:
Uply;) = y; log p; — p; — log ;!

e Verify in R.

muTrue <- exp(etaTrue)

loglikPois <- dpois(y,muTrue,log = TRUE)

logLikSelf <- y*log(muTrue) - muTrue - 1lfactorial(y)
gplot(loglikPois,loglLikSelf) + theme_bw() + geom_abline(intercept = 0, slope=1)

0.0

_25 -
o=
(D)
)
x
= -5.0-
o

~7.5-

-75 -5.0 25
loglikPois

The log-likelihood can also be written in terms of the canonical model parameters 6
Upily:) = y;0; — €% —logy;!
o Note that 6, = n,. The canonical parameter for the poisson equals the linear predictor!
0, =m, = x§6

Log-likelihood for all observations, given that they are independent:

n
Wply) = Z {y:0; — e —logy!}
i=1
¢ Calculate in R:

dpois(y,lambda = muTrue, log = TRUE) %>%
sum ()

[1] -260.485

1.4.2 Properties of the Log-Likelihood

R)

0.0

o Ely] =p; =0(0;)
o varfy;] = b"(0;)a(o)

Note that,

o Variance var[y,| depends on mean!
o Often there is no dispersion parameter e.g. Bernouilli: var[y;] = p;(1 — u;),

1.4.3 Poisson Example

o Canonical model parameter 0; = log ;.
* b(0;) = exp(0;)
o cly;; @) = —log(y;!)

.« 9=1

Tl s

¢ M= 39; =)aqgiei) = exp(0;)

o Varly] = a(¢) Tp % = SSHL — exp(0),).

e Mean is equal to variance for Poisson!

1.5 Parameter Estimation: Maximum Likelihood

Choose the parameters [so that the likelihood to observe the sample under the statistical model is maxi-
mized.

It is easier and equivalent to maximize the log-likihood

argmax;l(u|y)

oUply) _
op
%ﬁ‘y) is also referred to as the score function.
1.5.1 Score function
S;(0;) = ——%,——
00,

al(9i>¢|yi) Y — Ky

SO =00 T e

when canonical link function is used:

¢ My = b/(ez’)

Regression (chain rule and ¢ = 1, ..., n i.i.d observations)

az{“l A0+ ey, 0) }

SB) = 5
RN 8{%6&—(_(;))(9@) + c(y;, ¢)} 90 Op dn
e 90 o on 08
_ Z": R R
Zx"a(g) b'(0) o0
= XTA(y—p)

. . . o, \ 1
o A is a diagonal matrix: a;; = (Var[yi] 52) s Y= [Yrs ey Unl Ty = [y ey i) F

1.5.1.1 Poisson Example For poisson data: a(¢)b”’(0) = p and ‘Z—ﬁ; =p. So A=Tand
S(B) =XT{Y —p}

1.5.2 Solve Score Equations

Find parameter estimator B so that

Problem! Non linear in 8 due to

e link function: p = h L(n)

_ Bn
L4 aii = (Var yl 6”1)

— Find roots of score equation by using Newton-Raphson method.

1.5.3 Newton-Raphson

Newton Raphson algorithm to find the root of the score function.

Choose initial parameter estimate ﬁk = 50

Calculate score S(3)] gt

Calculate derivative of the function for which you want to calculate the roots
Walk along first derivative until line (plane) of the derivative crosses zero
Update the betas BkH

Iterate from step 2 - 5 until convergence.

AN o

600 -

400 -

s(p)

200+

Bk+1 Bk+2 Bk+3
T

-20 -10 0 10

B

Figure 1: Newton-Raphson algorithm: The algorithm starts at an initial guess bk for the root of the score
function S. It walks along the tangent line of the score function in S(bk) to move into the direction where
the score function becomes zero (and where the log-likelihood function is maximal). The new estimate of
the root is taken at bk+1 where the tangent line becomes zero. It then calculates the score for the updated
parameter estimator and the whole process is repeated until the root is found.

1.5.3.1 Derivative of Score We have to implement an interative algorithm for optimisation. To make
things tractable we will act as if A is known and fix it using the current values of Bk. Note, that for Poisson
regression A = L.

9S(8) XTALY —u)
op - ap
Opy
8—‘;1 80 0
0 2K 0 on
= _XTA Ony —
: : a8
ou
0 0 o
= —XTwWX

1.5.3.2 Define equation of Tangent Line (Plane)

o We know two points of the tangent plane (ﬁk, S(ﬁk)) and (ﬁk+1, 0)

o We know the direction of the plane S’(5) = 327%3)

e Equation of Plane:

S(8) = ag+ 8’| 48

o Get .,
0 = o +S/|ﬂkﬂk+1
5k+1 _ _(S/Lgk)*lao
o Get q
S(BY) = ag+S|pB"
ay = =B +5(8%)
o Get §,.,
-1
B = B (9]) S8
B = B (XTWX) ' s(8%)

With J(B) = I(3) = XTWX the Fisher information matrix.

1.5.4 Fisher Scoring

Because we use the canonical model parameters the observed Fisher information matrix equals the expected
Fisher information matrix J(8) = I(8). Indeed, the observed Fisher information matrix is not depending
on the observations, but only on the design and the variance of the data (via the weights).

Hence, Newton-Raphson is equivalent to Fisher scoring when the canonical link function is used.

Note, that the Fisher matrix, minus second derivative (or hessian) of the likelihood to the model parameters,
is also the inverse of the variance covariance matrix of the model parameters. It is thus related to the
precision.

1.5.5 Iteratively Reweighted Least Squares (IRLS).

We can rewrite Newton Raphson or Fisher scoring as IRLS.

g gy (XTWX)*l S(8%)

B = (XTWX) XA (Y -)

g1 = (XTWX) T XTWXS" + (XTWX)A XTW g—z (Y —p)
g+l = (XTWX)*l XTW {ng + 272 (Y — u)]

gL (XTVVX)*1 XTWg

.)

with z = [Xﬁ + £ (Y — ,u)]

So we can fit the model by performing iterative regressions of the pseudo data z on X. In each iteration we
will update z, the weights W and the model parameters.

For Poisson data

On _ Ologp __ 1 _ _
ou — op *H*eXp(n)

« W= Ag—’; is a diagonal matrix with [g’”

lii = [ilis = lexp(n;)];; on its diagonal elements.

1.5.6 Variance-Covariance Matrix of Mean Model Parameters?
In the IRWLS algorithm, the data is weighted according to the variance of Y. We correct for the fact that
the data are heteroscedastic.

Count data have a mean variance relation (e.g. in Poisson case E[Y] = var[Y] = u). The IRWLS also
corrects for the scale parameter ¢ in W. (Note that the scale parameter for Poisson is ¢ = 1).

So IRWLS the variance-covariance matrix for the model parameter equals
-1

5= (XTWX)

Note, that the Fisher Information Matrix equals the inverse of the variance-covariance matrix of the ex-
periment. The larger the Fisher Information Matrix the more information we have on the experiment to
estimate the model parameters. FIM 7, precision 1, SE |

1.6 Poisson Example

1.6.1 Initial Estimate

This is a very poor initial estimate used to illustrate the algorithm. Otherwise convergence for this simple
example is way too quick

iteration=0

betas<-c(log(mean(y)),0,0)

plot(betasTrue,
ylab=expression(beta),

10

ylim=c(0,4),
pch=19,
type="b",
main=paste0("likelihood real beta=",
round (sum(dpois(y,exp(etaTrue) ,log=TRUE)),1),"\nlikelihood fit=", round(sum(dpois(y,ex
)
lines(betas,type="b",1ty=2)

likelihood real beta=-260.5
likelihood fit=—2891.5

<t —
m_
(e AN —
H_
o_

| | | | |

1.0 15 2.0 25 3.0

Index

1.6.2 Iteratively Reweighted Least Squares

1.6.2.1 Pseudo Data

1.6.2.2 Weight Matrix?

11

1.6.2.3 Run Update Step Multiple Times First 3 times (colors are black 0, red iteration 1, green
iteration 2, blue iteration 3)

plot(betasTrue,ylab=expression(beta),ylim=c(0,4),pch=19,type="b")
lines(betas,type="b",1lty=2)

cat("\nlikelihood TRUE=", round(sum(dpois(y,exp(xhlp’%*%betasTrue),log=TRUE)),1))

##
likelihood TRUE= -260.5

cat("\nlikelihood initial fit=", round(sum(dpois(y,exp(xhlp’*Jbetas),log=TRUE)),1))

##
likelihood initial fit= -2891.5

#Calculate current eta
eta<-xhlp/*/betas

iteration=0

for (i in 1:3)

{

#start IRLS UPDATE STEP

iteration=iteration+1

#calculate pseudo data based on current betas
z=eta+exp(-eta)*(y-exp(eta))

#calculate new wetghts: diagonal elements
w<-c(exp(eta))

#update betas

ImUpdate<-1m(z~-1+xhlp,weight=w)

#eta<-zhlpl*/betas

eta<-lmUpdate$fitted

betas<-1mUpdate$coef

lines(betas,type="b",col=iteration+1,pch=iteration,lty=2)

cat("\nlikelihood current fit=", round(sum(dpois(y,exp(xhlp’%*Jbetas),log=TRUE)),1))
}

12

<t —
m p—
[« AN —
H p—
O —

| | | | |
1.0 15 2.0 25 3.0
Index

#it

likelihood current fit= -1883.9
likelihood current fit= -431.8
likelihood current fit= -261.7

1.7 Comparison with GLM Function

1.7.1 Smarter Initialisation

z<-log(y+.5)

betas<-1m(z~-1+xhlp) $coef
plot(betasTrue,ylab=expression(beta),ylim=c(0,4),pch=19,type="b")
lines(betas,col=2,type="b",1ty=2)

13

<t —
m p—
[« AN —
H p—
o —
| | | | |
1.0 15 2.0 25 3.0
Index

#calculate current eta
eta<-xhlp’*/betas

cat("\nlikelihood TRUE=", round(sum(dpois(y,exp(xhlp/%*/betasTrue),log=TRUE)),1))

##
likelihood TRUE= -260.5

cat("\nlikelihood initial fit=", round(sum(dpois(y,exp(xhlp/*%betas),log=TRUE)),1))

##
likelihood initial fit= -263.8

1.7.2 Evaluation Stopping Criterion

e Residual deviance: Is 2 log of LR between best possible fit and current fit

L
LR = best
L

current
D =2(log Ly, — log L
D= 2(lbest —1

current)

current)

e Best fit: p=y

14

e Optimal poisson:

lest = O [yi log(y,) — y; — log (,1)]
e Current fit

leurrent = Z ly;n; — e —log (y;!)]
o Deviance D:

D=2 [ylog(y;) — it — (y; — €")]
o Problem to calculate it if y=0 but by apply I’'Hopital’s rule we know

lim y; log(y;) =0
y;—0

ylogy<-function(y)

{
return(ifelse(y==0,rep(0,length(y)),y*log(y)))
}

deviance<-2*sum(ylogy(y)-y*eta-(y-exp(eta)))

deviance01d<-1e30
1.7.3 Run Update Step until Convergence

plot(betasTrue,ylab=expression(beta),ylim=c(0,4),pch=19,type="b")
lines(betas,type="b",1lty=2)

tol<-1le-6

iteration=0
while(((devianceOld-deviance)/deviance0ld)>tol)
{

#start IRLS UPDATE STEP

iteration=iteration+1

#calculate pseudo data based on current betas
z=eta+exp(-eta)*(y-exp(eta))

#calculate new weights: diagonal elements
w<-c(exp(eta))

#update betas

1mUpdate<-1lm(z~-1+xhlp,weight=w)

#eta<-zhlpl*/betas

eta<-1lmUpdate$fitted

betas<-1lmUpdate$coef
lines(betas,type="b",col=iteration+1,pch=iteration,lty=2)

#critertion for convergence

devianceOld<-deviance

deviance<-2*sum(ylogy(y)-y*eta-(y-exp(eta)))
cat("iteration",iteration,"Deviance 01d",deviance(0ld,"Deviance", deviance,"\n")

}

15

<t —
m p—
[« AN —
H p—
O —
| | | | |
1.0 15 2.0 25 3.0
Index

iteration 1 Deviance 01d 129.1127 Deviance 114.3748
iteration 2 Deviance 01d 114.3748 Deviance 114.3374
iteration 3 Deviance 01d 114.3374 Deviance 114.3374

1.7.4 Variance 7

-1

2, = (XTWX)

varBeta=solve (t (xhlp)%*/diag(w)%*%xhlp)

1.7.5 Comparison with GLM fit
Use -1 because intercept is already in xhlp

glmfit=glm(y~-1+xhlp,family=poisson)
comp=data.frame(glmfit=c(glmfit$deviance,glmfit$coef,summary(glmfit)$coef[,2]) ,ourFit=c(deviance,betas,
row.names (comp)=c("deviance" ,paste("beta",1:3,sep="") ,paste("se",1:3,sep=""))

comp

glmfit ourFit
deviance 114.3373950 114.3373950
betal 1.9680569 1.9680569

16

glmfit ourFit

beta2 0.7613664 0.7613664
beta3 1.2333003 1.2333003
sel 0.0381438 0.0381438
se2 0.0189121 0.0189120
se3 0.0255667 0.0255666

1.8 Hypothesis testing: Large sample theory
1.8.1 Wald test
o Follows immediately from the information matrix for generalized linear models
I(8) = XTWX
so large sample distribution of the maximum likelihood estimator ,B’ is multivariate normal

B~MVN [5, (XTWX)_l}

We can perform a Wald Test for a single model parameter

W= P N0, 1),

se;
B

to test for

Hy:B8,=0« Hy:8,#0

Again, we can also assess contrasts! Indeed, linear combinations of model parameter estimators also follow
a normal distribution.

LT3~ N [L73, LTS, L]

With L a vector for a single contrast.

L7
AN N(0,1)|H,

W =—
beLT3

testing for
Hy:LT3=0« H,: LT3 +#0

We can also test for multiple contrasts simultaneously, e.g. by assuming that multiple model parameters are
zero. Suppose that L is the contrast matrix that corresponds testing for ¢ model parameters, simultaneously.
Then

LT3~ MVN [L73, LT3, L]

and
~ ~ -1 ~
W =L"3(LTS;L) BL~ x2|H,

17

to test for

Hy:LT=0« H,:LT3=0+#0

In general, when we test for ¢ > 1 contrasts, then the test statistic W ~ x2|H,, with r the rank of the
contrast matrix.

1.8.2 Likelihood ratio test

The likelihood ratio test (LRT) measures the discrepancy in log-likelihood between our current model (some-
times also referred to as full model) and a reduced model (sometimes also referred to as null or alternative
model).

The reduced model must be nested in (and therefore of lower dimension as compared to) the full model.

While adding more covariates will always explain more variability in our response variable, the LRT tests
whether this is actually significant.

For example, in the example of gene differential expression between healthy versus tumoral tissue, the full
model could be a GLM where the mean is modeled according to an intercept and a tissue indicator variable
(healthy / tumor), while the alternative model could be a GLM with just an intercept. Indeed, if the gene
is similarly expressed between healthy and tumor tissue, the log-likelihood of the alternative model will
decrease only a little as compared to the full model.

As the name suggests, the likelihood ratio test assesses whether the ratio of the log-likelihoods provides
sufficient evidence for a worse fit of the alternative versus full model

A=2 [Z(Bfull> - 2Z(Bo)]

Asymptotically, under the null hypothesis it can be shown that

L~ X3|H07
with ¢ the number of parameters dropped in the alternative model versus the full model.

Let C denote the ¢ X p contrast matrix denoting the contrast for the parameters being dropped, the null
and alternative hypothesis are as in the Wald test setting:

H,:C5=0
H,:CH£0

e It is important to keep in mind that standard statistical inference theory in GLMs works asymptoti-
cally in terms of the sample size.

Thus we need many data points in order for the theory to hold in practice. In order for the p-values to
be correct, our parametric (distributional) assumptions as well as the independence assumption, must also
hold.

e In bulk RNA-seq, we are often working with a limited number of samples and so we typically do not
expect asymptotic theory to hold yet. In single-cell RNA-seq, we often perform several preprocessing
steps before calculating p-values for each gene and so we may be ‘using the data multiple times’ Rather
than attaching strong probabilistic interpretations to the p-values, we therefore advice to view the p-
values simply as useful numerical summaries for ranking the genes for further inspection in genomics
applications.

18

19

log-likelihood function

log-likelihood profile
® Parameter estimates

unconstrai
estimat:

constrained
estimate

Parameter spac

20

2 EdgeR

McCarthy and Smyth, 2012

21

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378882/

4290 Nucleic Acids Research, 2012, Vol. 40, No. 10

MATERIALS AND METHODS
Biological coefficient of variation

RNA-Seq profiles are formed from » RNA samples. Let
mg; be the fraction of all cDNA fragments in the i-th
sample that originate from gene g. Let G denote
the total number of genes, so > 7, =1 for each
sample. Let /¢, denote the coefficient of variation (CV)
(standard deviation divided by mean) of m,; between the
replicates i. We denote the total number of mapped reads
in library i by N; and the number that map to the g-th gene
by y,i. Then

E(ygi) = Wgi = Nin'gi~

Assuming that the count y,; follows a Poisson distribution
for repeated sequencing runs of the same RNA sample, a
well known formula for the variance of a mixture distri-
bution implies:

var(yy) = Eq[var(y|m)] + varg[E(y|m)] = pgi + ¢gl‘52n'~
Dividing both sides by u2; gives

Cvz(ygi) = I/Mgi + ¢g~

The first term 1/p,, is the squared CV for the Poisson
distribution and the second is the squared CV of the un-
observed expression values. The total CV? therefore is the
technical CV? with which m, is measured plus the bio-
logical CV? of the true m;. In this article, we call ¢, the
dispersion and /¢, the biological CV although, strictly
speaking, it captures all sources of the inter-library vari-
ation between replicates, including perhaps contributions
from technical causes such as library preparation as well
as true biological variation between samples.

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42,43). GLMs
specify probability distributions according to their
mean—variance relationship, for example the quadratic
mean—variance relationship specified above for read
counts. Assuming that an estimate is available for ¢,, so
the variance can be evaluated for any value of u,;, GLM
theory can be used to fit a log-linear model

log i = X[B + log N;

for each gene (32,41). Here x; is a vector of covariates
that specifies the treatment conditions applied to RNA
sample i, and B, is a vector of regression coefficients by
which the covariate effects are mediated for gene g. The
quadratic variance function specifies the negative binomial
GLM distributional family. The use of the negative
binomial distribution is equivalent to treating the m,; as
gamma distributed.

Fitting the GLMs

The derivative of the log-likelihood with respect to the
coefficients B, is X7z,, where X is the design matrix with
columns X; and zg = (Vi — Hei)/(1 + dgllg;). The Fisher

22

information matrix for the coefficients can be written as
I,= XTWgX, where W, is the diagonal matrix of working
weights from standard GLM theory (43). The Fisher
scoring iteration to find the maximum likelihood
estimate of B, is therefore B = ﬂgld +38 with
d=(X TWgX)‘1 X ng. This iteration usually produces an
increase in the likelihood function, but the likelihood can
also decrease representing divergence from the required
solution. On the other hand, there always exists a
stepsize modifier o with O<a<1 such that

oW = Z,’ld + a8 produces an increase in the likelihood.
Cghoosing o so that this is so at each iteration is known
as a line search strategy (44,45).

Fisher’s scoring iteration can be viewed as an approxi-
mate Newton-Raphson algorithm, with the Fisher infor-
mation matrix approximating the second derivative
matrix. The line search strategy may be used with any
approximation to the second derivative matrix that is
positive definite. Our implemention uses a computationally
convenient approximation. Without loss of generality, the
linear model can be parametrized so that X" X = I. If this is
done, and if the pi,; also happen to be constant over i for a
given gene g, then the information matrix simpifies consid-
erably to pig/(1+ dgp,) times the identity matrix /. Taking
this as the approximation to the information matrix, the
Fisher scoring step with line search modification becomes
simply 6 = aX’ ng, where the multiplier pig/(1 + ¢gtg) has
been absorbed into the stepsize factor . In this formula-
tion, o is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize o that is
increased or decreased as the iteration proceeds.

Cox—Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for ¢, is the
penalized log-likelihood

~ 1
APLy(g) = g3 Yg Be) — Elog detZ,.

where y, is the vector of counts for gene g, ﬁg is the
estimated coefficient vector, £() is the log-likelihood
function and Z, is the Fisher information matrix. The
Cholesky decomposition (46) provides a numerically
stable and efficient algorithm for computing the determin-
ant of the information matrix. Specifically, logdet 7 is the
sum of the logarithms of the diagonal elements of the
Cholesky factor R, where Z, = RT R and R is upper tri-
angular. The matrix R can be obtained as a by product of
the QR-decomposition used in standard linear model
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel.

Simulations

Artificial data sets were generated with negative binomial
distributed counts for a fixed total number of 10000 genes.
The expected count size varied between genes according to
a gamma distribution with shape parameter 0.5, an ad hoc
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
(BCV = 0.4). In one simulation, all genes had the same

Z10T ‘6T 19QUIDAON UO ANSIDATU() JUYD) I8 /310" s[ewinolp1oyxo- reuy/:dyy woiy papeoumoq

4292 Nucleic Acids Research, 2012, Vol. 40, No. 10

Although the pseudo-Newton algorithm requires slightly
more iterations on average than true Newton-Raphson or
the customary Fisher scoring algorithm for GLMs, the
pseudo-Newton algorithm remains competitive in con-
junction with our line-search strategy, and the computa-
tional gains that arise from the simplification are
enormous. The algorithm is implemented in R in such a
way that the iteration is progressed for all genes in parallel
rather than for one gene at a time. Our pure R implemen-
tation fits GLMs to most RNA-Seq data sets in a few
seconds, whereas genewise calls to the glm() function in
R typically require minutes at least, and indeed may fail
entirely due to iterative divergence for one or more genes.

Hypothesis tests

Our software allows users to test the significance of any
coefficient in the linear model, or of any contrast or linear
combination of the coefficients in the linear model.
Genewise tests are conducted by computing likelihood-
ratio statistics to compare the null hypothesis that the
coefficient or contrast is equal to zero against the
two-sided alternative that it is different from zero.
The log-likelihood-ratio statistics are asymptotically chi
square distributed under the null hypothesis that the co-
efficient or contrast is zero. Simulations show that the
likelihood ratio tests hold their size relatively well and
generally give a good approximation to the exact test
(23) when the latter is available (data not shown). Any
multiple testing adjustment method provided by the
p-adjust function in R can be used. By default, P-values
are adjusted to control the false discovery rate by the
method of Benjamini and Hochberg (47).

Estimation of biological CV

The remaining issue is to obtain a reliable estimate of the
BCV for each gene. An estimator that is approximately
unbiased and performs well in small samples is required.
Maximum likelihood estimation of the BCV would under-
estimate the BCV, because of the need to estimate the
coefficients in the log-linear model from the same data.
Our earlier work used exact conditional likelihood to
estimate the BCV (22,23). This approach has excellent
performance, but does not easily generalize to GLMs.
Instead we use an approximate conditional likelihood
approach known as APL (48). APL is a form of penalized
likelihood. Again, we have implemented the APL compu-
tation in a vectorized and computationally efficient
manner, rather than computing quantities gene by gene.

Estimating common dispersion

Estimating the BCV for each gene individually should not
be considered unless a large number of biological repli-
cates are available. When less replication is available,
sharing information between genes is essential for
reliable inference. Regardless of the amount of replication,
appropriate information sharing methods should result in
some benefits.

Let ¢, denote the squared BCV for gene g, which
we call the dispersion of that gene. The dispersion is the
coefficient of the quadratic term in the variance function.

23

The simplest method of sharing information between
genes is to assume that all genes share the same dispersion,
so that ¢, = ¢ (23). The common dispersion may be
estimated by maximizing the shared likelihood function

1 G
APLs($) = =) APLy(®).
g=1

where APL, is the adjusted profile likelihood for gene g
(‘Materials and Methods’ section). This maximization can
be accomplished numerically in a number of ways, for
example by a derivative-free approximate Newton algo-
rithm (49).

Estimating trended dispersion

A generalization of the common dispersion is to model the
dispersion ¢, as a smooth function of the average read
count of each gene (25). Our software offers a number
of methods to do this. A simple non-parametric method
is to divide the genes into bins by average read count,
estimate the common dispersion in each bin, then to fit
a loess or spline curve through these bin-wise dispersions.
A more sophisticated method is locally weighted APL. In
this approach, each ¢, is estimated by making a local
shared log-likelihood, which is a weighted average of the
APLs for gene g and its neighbouring genes by average
read count.

Estimating genewise dispersions

In real scientific applications, it is more likely that indi-
vidual genes have individual BCVs depending on their
genomic sequence, genomic length, expression level or bio-
logical function. We seek a compromise between entirely
individual genewise dispersions ¢, and entirely shared
values by extending the weighted likelihood empirical
Bayes approach proposed by Robinson and Smyth (22).
In this approach, ¢, is estimated by maximizing

APLg(¢g) + Go APLsg(¢),

where Gy is the weight given to the shared likelihood and
APLg,(¢g) is the local shared log-likelihood. This
weighted likelihood approach can be interpreted in empir-
ical Bayes terms, with the shared likelihood as the prior
distribution for ¢, and the weighted likelihood as the pos-
terior. The prior distribution can be thought of as arising
from prior observations on a set of G, genes. The number
of prior genes G therefore represents the weight assigned
to the prior relative to the actual observed data for gene g.
The optimal choice for G, depends on the variability of
BCV between genes. Large values are best when the BCV
is constant between genes. Smaller values are optimal
when the BCVs vary considerably between genes. We
have found that Gy = 20/df gives good results over a
wide range of real data sets, where df is the residual
degrees of freedom for estimating the BCV. For
multigroup experiments, df is the number of libraries
minus the number of distinct treatment groups. The
default setting implies that the prior has the weight of 20
degrees of freedom for estimating the BCV, regardless of

Z10T ‘6T 19QUIDAON UO ANSIDATU() JUYD) I8 /310" s[ewinolp1oyxo- reuy/:dyy woiy papeoumoq

3 EdgeR - Quasi-Likelihood

Lund et al. 2012

For quasi-likelihood we do not specify the full distribution, only the first two moments: the mean and
variance.

E[yig‘xig] = :u‘ig

log(:uig) = 771711

Nig = x; B+ logN;
Var[yig‘xig} = Ug (/’(‘zg + ¢/’ng)

We will look-up the details in the paper.

4 Limma - Voom
Law et al. (2013). Genome Biology

e Count models vs transformation: Poisson counts, \/(y) stabilises the variance, insufficient for negative
binomial. Log transformation: the transformed data are still heteroscedastic.— limma-voom
e Use normalized log-cpm Limma pipeline for sequencing

Problem: counts have a mean variance relationship: heteroscedastic
How do we deal with heteroscedasticity in traditional linear models?

Two stage approach:
1. Stage I

« OLS
o Estimate variances at each data point
o Use variances as weights: W = diag[1/57]

2. Stage II WLS argmin {(y — XB)TW(y —XB)}

Port this idea to RNA-seq pipeline

24

https://publications.wehi.edu.au/documentaspdf/256.pdf
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29

Log-counts per million

We assume that an experiment has been conducted to generate a set of n RNA samples.
Each RNA sample has been sequenced, and the sequence reads have been summarized
by recording the number mapping to each gene. The RNA-seq data consist therefore of a
matrix of read counts rg,, for RNA samples i = 1 to n, and genes g = 1 to G. Write R; for
the total number of mapped reads for sample 7, R; = 25:1 r4i- We define the log-counts
per million (log-cpm) value for each count as

Tai + 0.5
Yga = log, (Rg+10 X 106)

The counts are offset away from zero by 0.5 to avoid taking the log of zero, and to reduce
the variability of log-cpm for low expression genes. The library size is offset by 1 to ensure
that (rg; +0.5)/(R; + 1) is strictly less than 1 has well as strictly greater than zero.

Voom variance modelling

The above linear model is fitted, by ordinary least squares, to the log-cpm values Ygi for
each gene. This yields regression coefficient estimates ﬁgj, fitted values fig; = x; ﬁg and
residual standard deviations s,.

Also computed is the average log-cpm g, for each gene. The average log-cpm is con-

verted to an average log-count value by
P = 7y + logy(R) — log,(10%)

where R is the geometric mean of the library sizes plus one.

To obtain a smooth mean-variance trend, a loess curve is fitted to square-root standard
deviations 51/ 2 as a function of mean log-counts 7 (Figure 2ab). Square-root standard
deviations are used because they are roughly symmetrically distributed. The lowess curve
[44] is statistically robust [45] and provides a trend line through the majority of the
standard deviations. The lowess curve is used to define a piecewise linear function lo() by
interpolating the curve between ordered values of 7.

Next the fitted log-cpm values /i, are converted to fitted counts by

~

Ngi = figi +1ogy(R; + 1) — log,(10°).

The function value 10(5\9(1) is then the predicted square-root standard deviation of yg;.
Finally, the voom precision weights are the inverse variances wy; = lo(Ay)™* (Fig-

ure 2c). The log-cpm values y,; and associated weights w,; are then input into the stan-

dard limma linear modeling and empirical Bayes differential expression analysis pipeline.

25

5}

voom: Mean-variance trend

gene-wise gene-wise
mean-variance trend mean-variance trend

sqrt standard
deviation for | .
observation 2, Js

g

Sqrt(standard deviation)

sgrt standard dgviation
observation 1, Js
lowess fit
log2 count for log2 count for
observation 2, observation 1,
A A
= Kg2 Kqt
T T T T T T T T T T T T T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14
Average log2(count size + 0.5) Average log2(count size + 0.5) Fitted log2(count size + 0.5)

Figure 2: Voom mean-variance modelling. Panel (a), gene-wise square-root residual standard
deviations are plotted against average log-count. Panel (b), a functional relationship between
gene-wise means and variances is given by a robust lowess fit to the points. Panel (c), the
mean-variance trend enables each observation to map to a square-root standard deviation value
using its fitted value for log-count.

Independent Filtering

Independent filtering is a strategy to remove features (in this case, genes) prior to the analysis. Removal
of these features may lower the multiple testing correction for other genes that pass the filter. We try to
remove genes that have a low power to be found statistically significant, and/or that are biologically less
relevant. A common filtering strategy is to remove genes with a generally low expression, as low counts have
lower relative uncertainty (hence lower statistical power), and may be considered biologically less relevant.

Implementation in edgeR.

?filterByExpr

Filter Genes By Expression Level

##

Description:

##

Determine which genes have sufficiently large counts to be

retained in a statistical analysis.

#i#

Usage:

##

#it ## S3 method for class 'DGEList'

#Hit filterByExpr(y, design = NULL, group = NULL, lib.size = NULL, ...)
#i# ## S3 method for class 'SummarizedExperiment'

#i# filterByExpr(y, design = NULL, group = NULL, lib.size = NULL, ...)
Default S3 method:

filterByExpr(y, design = NULL, group = NULL, lib.size = NULL,

min.count = 10, min.total.count = 15, large.n = 10, min.prop = 0.7,
##

Arguments:

##

26

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

y: matrix of counts, or a 'DGEList' object, or a
'SummarizedExperiment' object.

design: design matrix. Ignored if 'group' is not 'NULL'.

group: vector or factor giving group membership for a oneway layout,

if appropriate.

lib.size: library size, defaults to 'colSums(y)'.
min.count: numeric. Minimum count required for at least some samples.
min.total.count: numeric. Minimum total count required.

large.n: integer. Number of samples per group that is considered to be

"large".

min.prop: numeric. Minimum proportion of samples in the smallest group

that express the gene.

: any other arguments. For the 'DGEList' and
'SummarizedExperiment' methods, other arguments will be
passed to the default method. For the default method, other
arguments are not currently used.

Details:

This function implements the filtering strategy that was
intuitively described by Chen et al (2016). Roughly speaking, the
strategy keeps genes that have at least 'min.count' reads in a
worthwhile number samples. More precisely, the filtering keeps
genes that have count-per-million (CPM) above _k_ in _n_ samples,
where _k_ is determined by 'min.count' and by the sample library
sizes and _n_ is determined by the design matrix.

n is essentially the smallest group sample size or, more
generally, the minimum inverse leverage of any fitted value. If
all the group sizes are larger than 'large.n', then this is
relaxed slightly, but with _n_ always greater than 'min.prop' of
the smallest group size (70% by default).

In addition, each kept gene is required to have at least
'min.total.count' reads across all the samples.

Value:

Logical vector of length 'nrow(y)' indicating which rows of 'y' to
keep in the analysis.

Author(s):

Gordon Smyth

References:

27

##
#t Chen Y, Lun ATL, and Smyth, GK (2016

using Rsubread and the edgeR quasi-likelihood pipeline.
F1000Research 5, 1438.

#it <http://£1000research.com/articles/5-1438>
##

Examples:

##

#i# ## Not run:

##

#it keep <- filterByExpr(y, design)

#it y <- ylkeep,]

#it ## End(Not run)

suppressPackageStartupMessages ({
library(limma)
library(edgeR)
library (DESeq2)

b

dds <- makeExampleDESeqDataSet ()
simCounts <-counts(dds)

group <- dds$condition

dge <- edgeR::DGEList(simCounts)
design <- model.matrix(~group)
keep <- filterByExpr(dge, design)
table (keep)

). From reads to genes to
pathways: differential expression analysis of RNA-Seq experiments

FALSE

TRUE

373

627

lib.size <- dge$samples$lib.size * dge$samples$norm.factors

cpmMinCount <- 10/median(lib.size)*1e6
summary (group)

minSampSize <- min(summary(group))
minSampSize

[1] 6

keep <- rowSums(cpm(dge) > cpmMinCount) >= minSampSize

table (keep)

28

FALSE TRUE
373 627

leverage <- design’*), solve(t(design)’*/.design)’%*%t(design) %>%diag()

1/leverage

1 2 3 4 5 6 7 8 9 10 11 12
6 6 6 6 6 6 6 6 6 6 6 6
min(1/leverage)

[1] 6

Independent filtering has been formalized by Bourgon et al. (2010).

Filtering on overall variance Filtering on overall mean

>
w

o o
g g4
2 - ¢ - — 0=50%
o o ? o 0=40%
2 o+ Q2 o4 | —06=30%
£ © S © — 6=20%
3 ° S o — 6=10% z
> S 4 > &4 | —6=0% —~
f © f © Random 50%
=} =}
c 8— c 8_
o ¥ o ¥
e e
9] (5]
D &7 o &7
o) [0)
an o
o - o -

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Adjusted p-value cutoff Adjusted p-value cutoff

Rejections, for adjusted p < 0.10

@)

D Overall variance
o

Q —_
Sy - Filtered
3 ¥ © Insig.
% © Sig.
Q © i
£ 8
=
o ®
£ ©- -
= JE—
= o - =
S5 o
< < q------- - Llms
°
e g
s & - i
) — Overall variance
o Overall mean
e o - -

Overall mean

max min
Rank of filter statistic

T T T
0.2 0.4 0.6
Fraction filtered out ()

0.0 0.8

Fig. 1. Power assessment of filtering applied to the
ALL data (12,625 genes). R, the number of genes called
differentially expressed between the two cytogenetic
groups, was computed for different stage-one filters,
filtering stringencies, and FDR-adjusted p-value cutoffs.
In all cases, a standard t-statistic (T) was used in stage
two, and adjustment for multiple testing was by the
method of ref. 24. Similar results were obtained with
other adjustment procedures. Filter cutoffs were se-
lected so that a fraction @ of genes were removed. A
random filter, which arbitrarily selected and removed
one half of the genes, was also considered. (A) Filtering
on overall variance (S?). At all FDR cutoffs, increasingly
stringent filtering increased total discoveries, even
though fewer genes were tested. This effect was not,
however, due to the reduction in the number of hypoth-
eses alone: filtering half of the genes at random re-
duced total discoveries by approximately one half, as
expected. (B) Filtering on overall mean (Y), on the other
hand, produced a small increase in rejections at low
stringency, but then substantially reduced rejections,
and thus power, at higher stringencies. (C) Effect of in-
creasing filtering stringency for fixed adjusted p-value
cutoff a = 0.1. At higher stringencies, both filters even-
tually reduced rejections. For the ALL data, this effect oc-
curred much more quickly for the overall mean filter.
With the overall variance filter, the number of rejections
increased by up to 50%. (D) Filtering on overall
mean (¢ = 0.5 is shown) removed many significant |T;|
(e.g., |T;|>4), while filtering on overall variance
retained them.

Figure 2: Figure 1 from Bourgon *et al.* (2010).

The concept of independent filtering can be summarized as follows:

o For each feature we calculate two statistics, Sp and Sy, respectively used for two stages: filtering and

testing (e.g., differential expression).

29

https://www.pnas.org/content/107/21/9546

e In order for a feature to be deemed significant, both of its statistics must be greater than some cut-off.
o We want to control the type I error rate of the second stage (testing). But note that the second
stage is conditional on the first stage, as we only test features passing the filter, and basically
ignore the fact that filtering was performed. Indeed, one criticism is that computing and correcting
the p-values as if filtering had not been performed may lead to overoptimistic adjusted p-values.
Bourgon et al. (2010) show that filtering is only appropriate (i.e., does not inflate type I error rate) if
the conditional null distribution of test statistics for features passing the filter is the same as the un-
conditional null distribution. Therefore, filtering is appropriate if the statistic used for filtering
is independent of the statistic used for testing under the null hypothesis.

A Null distributions for U" B Gene-level error SD estimates (filtered) C True null limma p-values

' — limma fit
M - -- Unconditional 1l

— GivenU'> u*
---+ Unconditional

10 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. (A) The null distribution of the test statistic is affected by filtering on the maximum of within-class averages. In this example, all genes have a known
common variance, the filter statistic is the maximum of within-class means, and the test statistic is a z-score. The unconditional distribution of the test statistic
for nondifferentially expressed genes is a standard normal. Its conditional null distribution, given that the filter statistic (U') exceeds a certain threshold (u*),
however, has much heavier tails. Using the unconditional null distribution to compute p-values after filtering would therefore be inappropriate. See S/ Text for
full details. (B and C) Overall variance filtering and the imma moderated t-statistic. Data for 5,000 nondifferentially expressed genes were generated according
to the limma Bayesian model (n; = n, = 2, dy = 3, s3 = 1). (B) Filtering on overall variance (¢ = 0.5) preferentially eliminated genes with small s;, causing gene-
level standard deviation estimates for genes passing the filter (histogram) to be shifted relative to the unconditional distribution used to generate the data
(dashed curve). The limma inverse y? model was unable to provide a good fit (solid curve) to the s; passing the filter. (C) The fitting problems lead to a posterior
degrees-of-freedom estimate of co. As a consequence, p-values were computed using an inappropriate null distribution, producing too many true-null p-values
close to zero, i.e., loss of type | error rate control. An analogous analysis comparing biological replicates from the ALL study—so that real array data were used

but no gene was expected to exhibit significant differential expression—yielded qualitatively similar results.

Figure 3: Figure 2 from Bourgon *et al.* (2010).

Let’s try a couple of examples to get some intuition using simulated data.

suppressPackageStartupMessages (library(DESeq2))

set.seed(24)
dds <- DESeq2::makeExampleDESeqgDataSet ()

simCounts <- counts(dds)
group <- dds$condition

5.1 A Dependent Test Statistic

filterStatEffectSize <- abs(rowMeans(simCounts[,group == "A"]) - rowMeans(simCounts[,group == "B"]))
testStat <- genefilter::rowttests(simCounts, group)

30

https://www.pnas.org/content/107/21/9546

unconditional distribution
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
main = "Unconditional distribution")
Unconditional distribution
@ _]
o
2 o
8 o
[
()]
|
o
o 1
e I I I I
-4 -2 0 2

Test statistic

conditional distribution: very different!
mean(filterStatEffectSize > 1)

[1] 0.792

hist(filterStatEffectSize, breaks=40)
abline(v=1, col="red")

31

Histogram of filterStatEffectSize

Frequency
400 600 800
I I |
]

200
I

I

0 100 200 300 400

filterStatEffectSize

keepEffectSize <- filterStatEffectSize > 1

plot(density(testStat$statistic[keepEffectSize], na.rm=TRUE),
xlab = "Test statistic",

"Conditional distribution")

main

32

Conditional distribution

o
(Y)__
o
o
2z 94
) o
[
(] |
a)
o
\—!_
o
o
C)__i
© | | | |

Test statistic

5.2 An Independent Test Statistic

filterStatGlobalMean <- rowMeans(simCounts)
mean(filterStatGlobalMean > 5) # we remove a similar fraction

[1] 0.771

keepGlobalMean <- filterStatGlobalMean > 5
unconditional distribution
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
main = "Unconditional distribution")

33

Unconditional distribution

™ |
o
2 o |
wn
b o
(]
)]
— |
o
o | _
o

Test statistic

conditional distribution: the same.
plot(density(testStat$statistic[keepGlobalMean], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution")

34

Conditional distribution

™ _]
o
>
2 o |
2 o
o
()]
|
o
o 1 _ _
o

Test statistic

6 Normalization
Normalization is necessary to correct for several sources of technical variation:

e Differences in sequencing depth between samples. Some samples get sequenced deeper in the
sense that they consist of more (mapped) reads and therefore can be considered to contain a higher
amount of information, which we should be taking into account. In addition, if a sample is sequenced
deeper, it is natural that the counts for each gene will be higher, jeopardizing a direct comparison of
the expression counts.

e Differences in RN A population composition between samples. As an extreme example, suppose
that two samples have been sequenced to the exact same depth. One sample is contaminated and has
a very high concentration of the contaminant cDNA being sequenced, but otherwise the two samples
are identical. Since the contaminant will be taking up a significant proportion of the reads being
sequenced, the counts will not be directly comparable between the samples. Hence, we may also want
to correct for differences in the composition of the RNA population of the samples.

e Other technical variation such as sample-specific GC-content or transcript length effects may also
be accounted for.

data("parathyroidGenesSE", package="parathyroidSE")
sel <- parathyroidGenesSE

rm(parathyroidGenesSE)

colData(sel) %>%

35

as.data.frame() %>%

filter(duplicated(experiment))

run experiment patient treatment time submission study sample

SRR479061 SRX140511 2 DPN 24h SRA051611 SRP012167 SRS308873
SRR479064 SRX140513 2 OHT 24h SRA051611 SRP012167 SRS308875
SRR479075 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885
SRR479078 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887

There are technical repeats in the data.

We mentioned previous lectures that we can sum over technical repeats, because techical repeats are Poisson
and the sum of two Poisson variables is again Poisson.

dupExps <- colData(sel) %>%
as.data.frame() %>/
filter(duplicated(experiment))
pull (experiment)

w>%

counts <- assays(sel)$counts

newCounts <- counts

cd <- colData(sel)

for(ss in 1:length(dupExps)){
check which samples are duplicates
relevantId <- which(colData(sel)$experiment == dupExpsl[ss])
sum counts
newCounts[,relevantId[1]] <- rowSums(counts[,relevantId])
keep which columns / rows to Temove.

if(ss == 1){

toRemove <- relevantId[2]
} else {

toRemove <- c(toRemove, relevantId[2])
}

}

remove after summing counts (otherwise IDs get mized up)
newCounts <- newCounts[,-toRemove]
newCD <- cd[-toRemove,]

Create new SummarizedExzperiment

se <- SummarizedExperiment(assays = list("counts" = newCounts),
colData = newCD,
metadata = metadata(sel))

treatment <- colData(se)$treatment
table (treatment)

DPN OHT
7 8 8

Control

36

gplot(colSums (assays(se)$counts)/1e6, geom="histogram", bins=10,col="black") +
theme (legend.position = "none") +
xlab("libsize (million reads)")

8-

0-

5 10 15 20
libsize (million reads)

gplot(
colData(se)$treatment:colData(se)$time,
colSums (assays(se)$counts) /1e6,geom="boxplot"
)+
xlab("treatment")+
ylab("libsize (million reads)")

37

25-

20~
m
e)
@©
o
g °
= 15-
E
[}
N
%
=
- °
10~
I
I
1
5 -
Control:24h Control:48h DPN:24h DPN:48h OHT:24h OHT:48h
treatment
gplot(
colData(se)$patient,
colSums (assays(se)$counts)/1e6,geom="boxplot"
)+

xlab("Patient")+
ylab("libsize (million reads)")

38

25-

20 -
»
o
©
o
[
o
= 15-
£
()
N
(7]
Q

10- |

I |
5 -
1 2 3 4
Patient

ma2Samp <- function(countMx) {
stopifnot (" countMx™~ is not a matrix with two columns" = ncol(countMx) == 2)
A <- countMx %>’ log2 %>, rowMeans
M <- countMx %>% log2 %>% apply(.,1,diff)
w <- countMx[,1]==min(countMx[,1]) | countMx[,2]==min(countMx[,2])
if (any(w)) {
Alw] <- runif(sum(w), min = -1, max = .1)
M[w] <- log2(countMx[w,2] + 1) - log2(countMx[w,1] + 1)
}
MAplot <- gplot(A, M, col=w) +
theme (legend.position = "none") +
scale_color_manual(values = c("black","orange")) +
xlab("A: log2 Average") +
ylab("M: log2 Fold Change")

MAplot +
geom_abline(intercept=0,slope=0,col="red")

}

Let’s take a look at how comparable different replicates are in the Control condition at 48h in our dataset.
We will investigate this using MD-plots (mean-difference plots as introduced by Dudoit et al. (2002)), also
sometimes referred to as MA-plots.

ids <- which(colData(se)$treatment =="Control" & colData(se)$time == "48h")
ids

39

[1] 2 8 14 19

colSums (assays(se)$counts[,ids]) / 1e6

[1] 10.827109 6.844144 8.064268 7.701432

pairComb <- combn(

ids,

m=2)
plots <- apply(pairComb,2,function(x) ma2Samp(assay(se)[,x]) + ggtitle(paste("samples",x[2],"vs", x[1])
do.call("grid.arrange",c(plots,ncol=3))

samples 8 vs 2 samples 14 vs 2 samples 19 vs 2
Q Q Q
(o)) (o)) (o))
C C C
S| S| S|
= = =
@) @) @)
L) L) L)
(@) (@) (@)
e e e
N N N
(@] (@] (@]
o o o
= = =
0 5 10 15 0 5 10 15 0 5 10 15
A: log2 Average A: log2 Average A: log2 Average
samples 14 vs 8 samples 19 vs 8 samples 19 vs 14
S S 10- . S
C C C
S| S| S|
= = =
@) @) @)
L) L) L)
(@) (@) (@)
e e e
N N N
(@] (@] (@]
o o o
= = =
0 5 10 15 0 5 10 15 0 5 10 15
A: log2 Average A: log2 Average A: log2 Average

We see clear bias for some pairwise comparisons. For example, in the first plot comparing sample 8 versus
sample 2, the log fold-changes are biased downwards. This means that, on average, a gene is lower expressed
in sample 8 versus sample 2. Looking at the library sizes, we can indeed see that the library size for sample
2 is about 11 x 10° while it is only about 7 x 105 for sample 8! This is a clear library size effect that we

should take into account.

We can solve these issues by introducing offsets in our model.

log Mgi = ngi

{ Ygi ~ POZ(Ngz)
T}gi = XzTﬁg + log<ng)

40

6.1 TMM method (default of edgeR)
Robinson and Oshlack (2010). Genome Biology

knitr::include_graphics("./figs/edgeRNormIntro.png")

41

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25

—_—
O
S’

M = log,(Liver/N,) - log,(Kidney/Ng)

® Houseke
@ Unique t:

|
-10

A =log(yLiver/N, -Kidney /Ny

42

e On the plot we see a clear effect on all genes
e Correcting for library size tends to over correct.
e Some DE genes are highly abundant and determine the library size to a large extend

The trimmed mean of M-values (TMM) method introduced by Robinson & Oshlack (2010) is a normalization
procedure that calculates a single normalization factor for each sample. As the name suggests, it is based
on a trimmed mean of fold-changes (M-values) as the scaling factor. A trimmed mean is an average after

removing a set of “extreme’’ values. Specifically, TMM calculates a normalization factor Fzm across genes
g for each sample i as compared to a reference sample r,

)y dec* Wi Mg,
10g2<Fi)= S r
geG* Wi

where Mg, represents the log,-fold-change of the gene expression fraction as compared to a reference sample

r, ie.,
Yg’l"/NT

Mgri = log2 (

and wy, represents a precision weight calculated as

. N,-Y,, N,—Y,
Yo T TNy, NY,

and G* represents the set of genes after trimming those with the most extreme average expression. The
weights serve to account for the fact that fold-changes for genes with lower read counts are more variable.

The procedure only takes genes into account where both Y ; > 0 and Y, > 0. By default, TMM trims
genes with the 30% most extreme M-values and 5% most extreme average gene expression, and chooses
as reference r the sample whose upper-quartile is closest to the across-sample average upper-quartile. The
normalized counts are then given by ?gi =Y,,/N;, where

N, F™

27;:1 NZF1T /n

K2

TMM normalization may be performed from the calcNormFactors function implemented in edgeR:

dge <- edgeR::calcNormFactors(se)
dge$samples #normalization factors added to colData

group lib.size norm.factorsun experimenpatient treatmenttime submissiomstudy sample

Samplel 1 9102683 0.9782830 SRR47905RX140503 Control 24h SRA05161$RP01216RS308865
Sample2 1 108271090.9728700 SRR47905%RX140504 Control 48h SRA05161$RP01216RS308866
Sample3 1 5217761 0.9898593 SRR4790HRX140505% DPN 24h SRA05161$RP01216GRS308867
Sampled 1 9706035 0.9930169 SRR47908RX140506 DPN 48h SRA05161$RP0121(FRS308868
Sampled 1 5700022 0.9850867 SRR47905RX14050T OHT 24h SRA05161$RP01216RS308869
Sample6 1 7854568 0.9897270 SRR47908RX140508 OHT 48h SRA05161$RP0121RS308870
Sample7 1 8610014 0.9266581 SRR47905%RX140509 Control 24h SRA051613RP01218RS308871
Sample8 1 6844144 0.9544240 SRRA7908RX140510 Control 48h SRAO05161$RP012163RS308872
Sample9 1 245842800.9188545 SRR4790ERX140512 DPN 24h SRA05161$RP01216RS308873
Sampleld 8267977 0.9398000 SRR4790GRX140512 DPN 48h SRA05161$RP0121(85RS308874
Samplelll 235904110.9096695 SRR47906GRX140513 OHT 24h SRA05161$RP01216RS308875
Samplel2 8247122 0.9369050 SRR47906GRX140512 OHT 48h SRA05161$RP01216RS308876

43

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25

group lib.size norm.factorsun

experimenpatient treatmenttime submissiorstudy

sample

Sampleldl
Samplel4l
Samplell
Samplel@l
Samplel7
Samplel8
Samplel9l
Sample20l
Sample21l
Sample22
Sample23l

7341000 1.0668032
8064268 1.0552688
124819581.0461698
163100901.0260056
236973291.0268459
7642648 1.0409451
7701432 1.0559132
7135899 1.0675040
138183931.0327004
6099942 1.0890994
158252111.0286470

SRR4790(R X140513
SRRA790R X 140518
SRRA790GR X 140513
SRR4790ERX140518
SRR47908BRX140519
SRR4790BR X140528
SRRA790BRX 140524
SRRA790BR X 140522
SRRA790BRX140523
SRR4790BRX140524
SRR4790BRX140523

Control 24h
Control 48h
DPN 24h
DPN 48h
OHT 24h
OHT 48h
Control 48h
DPN 24h
DPN 48h
OHT 24h
OHT 48h

SRA05161$RP01218RS308877
SRA05161$RP01216RS308878
SRA05161$RP01216RS308879
SRA05161$RP0121(RS308880
SRA05161$RP0121(RS308881
SRA05161$RP0121ERS308882
SRA05161$RP01216RS308883
SRA05161$RP0121(FRS308884
SRA05161$RP0121RS308885
SRA05161$RP0121RS308886
SRA05161$RP0121¥RS308887

Let’s check how our MD-plots look like after normalization. Note that, we can rewrite the GLM as

Hgi

and so NS

log (ug‘) =X B,

N?

can be considered as an ‘offset-corrected count’.

We see that all MD-plots are now nicely centered around a log-fold-change of zero!

normalize

effLibSize <- dge$samples$lib.size * dge$samples$norm.factors
normCountTMM <- sweep(assays(se)$counts, 2, FUN="/", effLibSize)

plotsNorm <- apply(pairComb,2,function(x) ma2Samp(normCountTMM[,x]) + ggtitle(paste("samples"',x[2],"vs"

do.call("grid.arrange",c(plots,ncol=3))

44

samples 8 vs 2 samples 14 vs 2 samples 19 vs 2

Q Q Q
(@] (@] (@]
C C C
@© @© @©
e e e
O O O
k) k) k)
(@) (@) (@)
LL LL LL
N N N
(@) (@) (@)
o o o
> > >
0 5 10 15 0 5 10 15 0 5 10 15
A: log2 Average A: log2 Average A: log2 Average
samples 14 vs 8 samples 19 vs 8 samples 19 vs 14
S S 10- . S
C C C
@© @© @©
e e e
O O O
k) k) k)
(@) (@) (@)
LL LL LL
N N N
(@) (@) (@)
o o o
= = =
0 5 10 15 0 5 10 15
A: log2 Average A: log2 Average A: log2 Average

6.2 Median-of-Ratios Method (default of DESeq?2)

The median-of-ratios method is used in DESeq2 as described in Love et al. (2014). It assumes that the
expected value p1,;, = E(Ygi) is proportional to the true expression of the gene, g ;, scaled by a normalization

factor s, for each sample,
Hgi = Sidgi-

The normalization factor s; is then estimated using the median-of-ratios method compared to a synthetic

reference sample r defined based on geometric means of counts across samples

Y,

s = median gt
i {9Y;,#0} e 2
gar

" 1/n
Yo = (HY@) :

We can then use the size factors s; as offsets to the GLM.

with

Median-of-ratios normalization is implemented in the DESeq2 package:
dds <- DESeq2::DESeqDataSetFromMatrix(countData = assays(se)$counts,

colData = colData(se),
design = ~ 1) #just add intercept to showcase

45

normalization

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8

converting counts to integer mode

dds <- DESeq2::estimateSizeFactors(dds)
sizeFactors(dds)

[1] 0.9187624 1.0644717 0.5232069 0.9826698 0.5676212 0.7807662 0.8284089
[8] 0.6600848 2.3955069 0.7906917 2.2784591 0.7860386 0.7807842 0.8445577
[15] 1.3345483 1.7011973 2.5001652 0.7889061 0.8138720 0.7632306 1.4518320
[22] 0.6553677 1.6696064

You may also want to check out the StatQuest video on DESeq2 normalization.

6.2.1 Comparing TMM with DESeq2 Normalization

We can compare the size factors for both normalizations to verify if they agree on the normalization factors.
Note we need to scale the effective library sizes from edgeR to enforce a similar scale as the size factors from
DESeq2. While below we are using an arithmetic mean, a geometric mean may be used as well, which will
be more robust to outlying effective library sizes.

plot(effLibSize / mean(effLibSize), sizeFactors(dds),
xlab = "edgeR size factor",
ylab = "DESeq2 size factor")

o
N o °
(@)
— o
o - —]
45 AN
$§ (@]
ﬁ (@]
'» o |
(@)

N —
(o2 (@)
[¢b)
0

o (@]
@) - o (0]

&®°
©
0 _| o©°
© I I I I
0.5 1.0 1.5 2.0

edgeR size factor

46

https://www.youtube.com/watch?v=UFB993xufUU

7 Aliasing

Suppose we are working with the following experimental design on colon cancer. Studying the effect of a
drug on gene expression, researchers gather RNA-seq data from four colon cancer patients and four healthy
individuals. For each individual, they obtain RNA-seq data from a blood sample before as well as two
weeks after taking a daily dose of the drug. The research question relates to differential expression after
vs. before taking the drug, in particular whether this is different for the diseased versus healthy group (i.e.,
the interaction between time (before/after taking the drug) and disease status (healthy/colon cancer)).

In terms of the model matrix, we could imagine a design such as ~ patient + disease*time, where

e disease is a binary indicator referring to colon cancer versus control sample.
e time defines if the sample is taken before or after taking the drug.
o patient defines the individual donor the sample comes from.

The research question could then amount to testing the disease * time interaction.

Let’s try this, by simulating random data for one gene.

set.seed(2)

2 samples per patient for 8 patients

patient <- factor(rep(letters[1:8], each=2))

first four are healthy, next four are diseased

disease <- factor(c(rep("healthy",8), rep("cancer",8)), levels=c("healthy", "cancer"))
one before and one after sample for each

time <- factor(rep(c("before", "after"), 8), levels=c("before", "after"))

table(patient, disease, time)

patient disease time Freq
a cancer after 0
before 0

healthy after 1

before 1

b cancer after 0
before 0

healthy after 1

before 1

C cancer after 0
before 0

healthy after 1

before 1

d cancer after 0
before 0

healthy after 1

before 1

e cancer after 1
before 1

healthy after 0

before 0

f cancer after 1
before 1

47

patient disease time Freq
healthy after 0
before 0
g cancer after 1
before 1
healthy after 0
before 0
h cancer after 1
before 1
healthy after 0
before 0
simulate data for one gene
n <- 16
y <- rpois(n = n, lambda = 50)
fit a Poisson model
m <- glm(y ~ patient + disease*time,
family = "poisson")
summary (m)
##
Call:
glm(formula = y ~ patient + disease * time, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients: (1 not defined because of singularities)
#it Estimate Std. Error z value Pr(>|z])
(Intercept) 3.76900 0.11916 31.631 <2e-16 **x
patientb 0.06744 0.14999 0.450 0.6530
patientc 0.06744 0.14999 0.450 0.6530
patientd 0.27304 0.14310 1.908 0.0564 .
patiente 0.16449 0.16224 1.014 0.3107
patientf 0.02565 0.16644 0.154 0.8775
patientg -0.01784 0.16785 -0.106 0.9154
patienth 0.05706 0.16544 0.345 0.7302
diseasecancer NA NA NA NA
timeafter -0.01567 0.10220 -0.153 0.8782
diseasecancer:timeafter 0.12374 0.14407 0.859 0.3904
##H -
Signif. codes: 0O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 16.1200 on 15 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom

##
##
##

AIC: 120.16

Number of Fisher Scoring iterations: 4

48

We find that one of the coefficients is NA! This is obviously not because we’re dealing with NA values in the
data as we’ve just simulated the response variable ourselves. What’s going on?

One of the parameters, in this case the parameter distinguishing cancer from healthy patients cannot be
estimated as it is a linear combination of other parameters. In our case, estimating the diseased
effect would use information that is already used to estimate the patient-level intercepts. In other words,
once you know the patient, you immediately also know the disease status, so estimating the
diseased vs healthy effect on top of the patient effect provides no additional information if we have already
estimated the patient-level effects. This concept is called aliasing, and is a common technical issue in ’omics
experiments with complex experimental designs.

While to understand the origin of the aliasing it is crucial to understand the relationship between the variables
in the experimental design, we can also investigate it in detail using the alias function, to give us an idea.

alias(m)

Model :

y ~ patient + disease * time

#it

Complete

(Intercept) patientb patientc patientd patiente patientf patientg
diseasecancer 0 0 0 0 1 1 1

patienth timeafter diseasecancer:timeafter

diseasecancer 1 0 0

We see that the effect diseasecancer is a linear combination of the patient-specific effects of the cancer
patients. This makes sense!

For clarity, let’s reproduce this using our design matrix.
X <- model.matrix(~ patient + diseasextime) # this ts the design used in glm()

these are indeed identical.
X[,"diseasecancer"]

##

1 9 10 11 12 13 14 15 16
O 1

2 3 4 5 6 7 8
0 0 00 0 0 O 11 1 1 1 1 1

X[,"patiente"] + X[,"patientf"] + X[,"patientg"] + X[,"patienth"]

1 2 9 10 11 12 13 14 15 16
0 O 1

3 4 5 6 7 8
0 0 0 0 0 O 11 1 1 1 1 1

Since one of our parameters is a linear combination of other parameters, it cannot be estimated simultaneously
with the other parameters. In this case, we can actually drop the disease main effect from the model, since

we know that it is already included in the patient effect.

49

We will have to carefully construct our design matrix in order to account for all important sources of variation
while still allowing us to answer the research question of interest. The aliasing exploration above has made
it clear we may drop the disease main effect, so let’s start by constructing this design matrix.

X <- model.matrix(~ patient + time + disease:time)

m2 <- glm(y ~ -1 + X,

family = "poisson")
summary (m2)
##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients: (1 not defined because of singularities)
#i# Estimate Std. Error z value Pr(>|zl)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 **x
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530
Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.28823 0.16077 1.793 0.0730 .
Xpatientf 0.14939 0.16500 0.905 0.3653
Xpatientg 0.10590 0.16643 0.636 0.5246
Xpatienth 0.18081 0.16400 1.102 0.2703
Xtimeafter -0.01567 0.10220 -0.153 0.8782
Xtimebefore:diseasecancer -0.12374 0.14407 -0.859 0.3904
Xtimeafter:diseasecancer NA NA NA NA
-
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
#i#
#i# Null deviance: 4489.2752 on 16 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16
##
Number of Fisher Scoring iterations: 4
alias(m2)
Model :
#y ~-1+X
##
Complete :
X(Intercept) Xpatientb Xpatientc Xpatientd Xpatiente
Xtimeafter:diseasecancer O 0 0 0 1
Xpatientf Xpatientg Xpatienth Xtimeafter

50

Xtimeafter:diseasecancer 1 1 1 0
Xtimebefore:diseasecancer
Xtimeafter:diseasecancer -1

We are still confronted with aliasing as the model matrix contains an interaction effect timebefore:diseasecancer
as well as timeafter:diseasecancer, while only the latter is relevant. Indeed, we know that we can derive
the timebefore:diseasecancer effect by averaging the patient effects of the cancer patients.

X <- X[,!'colnames(X) %in% "timebefore:diseasecancer"]

fit a Poisson model
m2 <- glm(y ~ -1 + X,

family = "poisson")
summary (m2)
##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients:
#it Estimate Std. Error z value Pr(>|zl)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 **x
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530
Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.16449 0.16224 1.014 0.3107
Xpatientf 0.02565 0.16644 0.154 0.8775
Xpatientg -0.01784 0.16785 -0.106 0.9154
Xpatienth 0.05706 0.16544 0.345 0.7302
Xtimeafter -0.01567 0.10220 -0.153 0.8782
Xtimeafter:diseasecancer 0.12374 0.14407 0.859 0.3904
##H -
Signif. codes: O '**x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 4489.2752 on 16 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16
##

Number of Fisher Scoring iterations: 4

We see that all coefficients can now be estimated. The timeafter effect may be interpreted as the time
effect for healthy patients, while the timeafter:diseasecancer effect may be interpreted as the difference
in the time effect for cancer patients as compared to healthy patients, i.e., it is the relevant interaction effect
we are interested in.

o1

	Parameter Estimation and Inference in Generalized linear models
	Simulate Poisson Data
	Exponential Family
	Components of Generalized Linear Model
	Likelihood
	Parameter Estimation: Maximum Likelihood
	Poisson Example
	Comparison with GLM Function
	Hypothesis testing: Large sample theory

	EdgeR
	EdgeR - Quasi-Likelihood
	Limma - Voom
	Independent Filtering
	A Dependent Test Statistic
	An Independent Test Statistic

	Normalization
	TMM method (default of edgeR)
	Median-of-Ratios Method (default of DESeq2)

	Aliasing

