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1 The study of gene expression

e The first part of this course focussed on proteomics, studying the concentration of proteins in biological
samples. We have seen that identification of proteins and measuring their respective concentrations
are extremely challenging, leading to many technological and statistical challenges in order to interpret
these data.

e In the second part of the course, we will focus on measuring gene expression, i.e., measuring the
concentration of mRNA molecules, that may eventually be translated into proteins, but may also have
functions on their own.

include_graphics("./images_sequencing/centralParadigm.png")
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Figure 1: Central Paradigm of Biology: a gene, a specific region in the DNA| is first transcribed into RNA
and then into proteins. Note, that for RNA-genes the RNA molecule is the end product itself, which is

referred to as non-coding RNA (ncRNA) (Source: Wikipedia)



1.1

Alternative splicing

include_graphics("./images_sequencing/alternative_splicing.png")

2 Sequencing technology

2.1

2.2

2.3

2.4

Measuring mRNA molecules typically happens through sequencing.

The technology continues to evolve at an incredible speed. The data output of so-called ‘next genera-
tion’ sequencing machines has more than doubled each year! Simultaneously, the cost of sequencing (in
terms of § per Gigabase) is dropping. Each year, we’re able to sequence more for less money, providing
more information, as well as also computational and statistical challenges.

This tremendous technological revolution has revolutionized biology, and genomic sequencing is now a
core component of the modern-day biologist’s toolkit.

The large majority of sequencing data is generated using sequencing-by-synthesis using machines pro-
duced by the company [llumina. While new players such as Pacific Biosciences and Oxford Nanopore
have entered the scene, these are typically most useful for (but not limited to) DNA sequencing rather
than gene expression studies, owing to their capability of sequencing long molecules.

From sample to data analysis
Ilumina Sequencing
Single vs paired end

The sequencing workflow with Details

Library preparation steps

. First, the biological samples of interest are collected. Owing to the maturity of different protocols

for sequencing, several types of biological input samples are amenable to sequencing, such as frozen
tissues or FFPE-preserved samples.

The mRNA molecules from our sample are captured. This typically involves cell lysis in order
to release the mRNA molecules from within the cells. The mRNA molecules are most often captured
using (i) polyA-capture to select for polyadenylated RNA, or (ii) ribosomal depletion, where ribosomal
and transfer RNAs are depleted, and so also non-polyA-mRNA molecules may be captured, such as
long non-coding RNAs. In the case of ‘targeted sequencing’, where relevant molecules are of main
interest (e.g., a gene panel), these targets can be specifically targeted in this step.

Fragmentation of captured molecules. The captured molecules are fragmented, either chemically or
mechanically. The appropriate size of fragments depends on the sequencing machines, but is often in
the range of 300 - 500bp.

. Reverse transcription. Current dominant sequencing machines only sequence double-stranded DNA

molecules. Therefore, in order to measure single-stranded mRNA | we must first reverse transcribe these
molecules to a double-stranded complementary (cDNA) molecule.

Adapter ligation. Adapters are oligonucleotides (short sequences of nucleotides) that are platform-
specific sequences for fragment recognition by the sequencing machines. These are added either to the
3’ or 5" end of the cDNA molecules or used as primers in the reverse transcription reaction. The final
c¢DNA library consists of cDNA inserts flanked by an adapter sequence on each end.

PCR amplification. To increase concentration, several PCR reactions are performed.
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Figure 2: Alternative splicing allows a single gene in Eucaryotes to code for multiple proteins. During
alternative splicing particular exons of a gene may be included or excluded from the premature messenger
RNA when producing the messenger RNA (mRNA) from that gene. Hence exons can be joined in different
combinations, leading to different (alternative) mRNA strands. The proteins translated from alternatively
spliced mRNAs thus differ in their amino acid sequence and, often, in their biological functions (Source:
Wikipedia)
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Figure 2: Human Genome Sequencing Over the Decades— The capacity to sequence all 3.2 billion bases of the human genome (at 30:
exponentially since the 1990s. In 2005, with the introduction of the lllumina Genome Analyzer System, 1.3 human genomes could be s
later, with the llumina HiSeq X Ten fleet of sequencing systems, the number has climbed to 18,000 human genomes a year.

Figure 3: Figure: The data output revolution of sequencing machines. Image from Illumina documentation.
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Figure 4: Figure: The sequencing workflow. Image adapted from Van den Berge et al. (2019).
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Figure 5: Figure: Illumina sequencing steps 1-6 (Source: Illumina)
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Figure 6: Figure: Illumina sequencing steps 1-6 (Source: Illumina)
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Figure 7: Figure: Single vs paired end sequencing. In contrast to single-end sequencing, paired-end se-
quencing allows users to sequence both ends of a fra8gment (Image adopted from Zhernakova et al., 2013,
doi.org/10.1371/journal.pgen.1003594).



7. Loading the amplified cDNA library on the sequencing machine. Find out how sequencing-by-
synthesis works through this video. Note that the video shows paired-end sequencing, where a number
of basepairs are sequenced at each end of the fragment. All previous steps together are described as
‘sample prep’ in that video.
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Figure 8: Figure: The sequencing workflow. Image adapted from Van den Berge et al. (2019).

Note that several variants of library preparation protocols are available. The most important ones are:

o Single-end vs paired-end sequencing: In single-end sequencing, a single end (3’ or 5’) of the cDNA
fragment is sequenced. In paired-end sequencing, both ends are sequenced, and depending on the size
of the fragment, the reads may or may not overlap.

e Strand-specific protocols: Some library preparation protocols allow measuring strand specificity, where
the strand information (i.e., sense/antisense) of each read can be preserved.

2.5 The sequencing output files

e The typical output of a sequencing machine we will be working with are FASTA or FASTQ files for
each sample. FEach of these files are several gigbases large and contain millions of sequences, which we
will call reads. For paired-end sequencing, there are two files for each sample, one for each end of the
sequenced fragments.

e The difference between a FASTA file and a FASTQ file, is that while FASTA files only store the results
of base calls (sequences), FASTQ files also store the quality score of each base call (i.e., each called
nucleotide), which can be useful in downstream analyses such as mapping or variant calling.

e A FASTQ file contains four lines for each sequenced read:

1. Sequence identifier line, starting with Q.

2. The sequence.

3. Another sequence identifier line, now starting with +.
4. Quality scores.


https://www.youtube.com/watch?v=fCd6B5HRaZ8

FASTQ format

@D7MHBFN1:202:D1BUDACXX:4:1101:1340:1967 1:N:0:(
NATCTTCGGATCACTTTGGTCAAATTGAAACGATACAGAGAAGATTG]

+
#1=DDFFFHHHHHJJJJJJJHIJIJJIIJIIGIIIIIIJIIITII]].

e D/MHBFNI - unique instrument name
¢« 202 -runlID

 D1BUDACXX - flowcell ID

« 4 -flowcell lane

e 1101 - tile number within lane

e 1340 - x-coordinate of cluster within tile

e 1967 - y-coordinate of cluster within tile

Figure 9: Figure: One read in a FASTQl%le. Slide courtesy by Charlotte Soneson.



As you’ll have noticed, the base call quality scores are encoded as ASCII characters for efficient storage.
These ASCII characters can be converted into integers called Phred scores, which are logarithmically related
to the probability of an erroneous base call.

2.5.1 Quality score

The Phred Score is a quality score
Q =—10log,,p

, with p the probability on an incorrect base call

Phred Score Probability on incorrect base call Base call accuracy

10 1/10 90%

20 1/100 99%

30 1/1000 99.9%
40 1/10000 99.99%
50 1/10000 99.999%

Phred score encoded as an ASCII letter. E.g. Phred+33:

Pheedt 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
PhB3B4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
+
33
ASCIT #$ % &’ () *+, -./0123456789:; <=>? @QABCDEFGHI

3 Preprocessing of raw sequencing data

After sequencing, we typically do a quality control (QC) check to verify the quality of the samples. During
QC check, aberrant samples due to e.g. degraded mRNA can be detected.

The sequencing reads on their own contain a lot of information, but are most useful if we would be able to
assign sequencing reads to genomic features (genes, exons, transcripts, etc.), i.e., for each sequencing read
we will try to derive the (set of) feature(s) that could have plausibly produced the fragment through the
process of gene expression. This process is called mapping. Most often we map reads to genes.

3.1 Quality control

During quality control, diagnostic plots are created for each sample in order to determine its quality. The
most popular QC tool for bulk RNA-seq data is FastQC. If many samples are sequenced, then MultiQC can
be used to aggregate the QC checks across samples in a conveniently organized overview.

The FastQC website provides interesting example reports for us to look at and compare against. Here are
example reports of high-quality Illumina data and low-quality Illumina data.
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
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Figure 10: Figure: An updated sequencing workflow, including sequencing and mapping. Image adapted
from Van den Berge et al. (2019).

3.2 Read Trimming

¢ Read Trimming

Adaptor sequence

Bar code

— (deteriorating bases at the end of reads)

often already done by the sequencing provider.
— remaining polyA tails

e Read filtering

— low quality reads
— PhiX reads (should be removed already by sequence provider) in

— RNA-seq never remove duplicates because they can occur for highly expressed transcripts

e Perform fastQC again

3.3 Mapping

e Mapping is a critical step in the interpretation of RNA-seq data, where we are attributing reads to
genomic features.

o Allows us to measure how strong a feature such as a gene is expressed: the number of reads mapping
to a gene serve as a proxy for how high that gene has been expressed in the sample.

e While this opens the door to many opportunities, mapping is hard.

e We are typically unable to assign each individual read uniquely to one specific gene; some
reads cannot be unambiguously mapped and are compatible with multiple genes. These reads are said
to be ‘multi-mapping’.
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Finally, a note on terminology. In this text we will use the words ‘read’ or ‘fragment’ (referring to the
fragmented mRNA molecule being sequenced) to designate a datum, note that this could be either a single
read (in single-end sequencing) or a read pair (in paired-end sequencing). The literature may also use these
words interchangeably, although ‘fragment’ seems better at avoiding ambiguity between single-end reads and
paired-end read pairs.

3.3.1

Reference files

The alignment most often relies on a reference genome of the species, which can be considered a
‘representative example’ of the genome sequence of that species. Reference genomes are contiuously
updated and released periodically.

Reference genomes can be freely downloaded from several providers, for example Ensembl or Gencode.
Along with a reference genome, an annotation GFF or GTF file defines the coordinates of specific
genomic features.

While here we will focus on reference-based alignment, i.e., alignment where a reference genome or
transcriptome is available, note that a de novo construction of a reference transcriptome is also possible,
where the reference may be constructed from the observed sequencing reads.

The human reference genome

www.ensembl.org/info/data/ftp/index.html https://www.gencodegenes.org/human/

Single species data Fasta files

Popular species are listed first. You can customise this list via our home page Caiiaril (zHeis (Bl il Download

*

Show

Transcript sequences CHR  + Nucleotide sequences of all transcripts on the reference chromosomes Fasta

10 4 CUES Show/hide columr Protein-coding transcript ~ CHR  « Nucleotide sequences of coding transcripts on the reference chromosomes Fasta
: sequences « Transcript biotypes: protein_coding, nonsense_mediated_decay, non_stop_decay,
Species cDNA CDS ncRNA  Protein 1G_"_gene, TR_*_gene, polymorphic_pseudogene
(FASTA) (FASTA) (FASTA) sequence Protein-coding transcript ~ CHR  « Amino acid sequences of coding transcript translations on the reference Fasta
(FASTA) translation sequences chromosomes
« Transcript biotypes: protein_coding, nonsense_mediated_decay, non_stop_decay,
Human FASTA FASTA& FASTA®& FASTAR IG_*_gene, TR *_gene, polymorphic_pseudogene
Homo Long non-coding RNA CHR  « Nucleotide sequences of long non-coding RNA transcripts on the reference Fasta
sapiens transcript sequences chromosomes
Mouse FASTAR' FASTAR FASTAZ FASTAR FASTA® Genome sequence ALL  « Nucleotide sequence of the GRCh38.p12 genome assembly version on all regions, Fasta
Mus (GRCh38.p12) including reference chromosomes, scaffolds, assembly patches and haplotypes
musculus « The sequence region names are the same as in the GTF/GFF3 files
Zebrafish FASTA® FASTA® FASTA® FASTA® FASTA® Genome sequence, PRI« Nucleotide sequence of the GRCh38 primary genome assembly (chromosomesand ~ Fasta
Danio reri primary assembly scaffolds)
anio rerio (GRCh38) « The sequence region names are the same as in the GTF/GFF3 files
Homo sapiens.GRCh38.dna.primary assembly.fa.gz 840 MB

Figure 11: slide courtesy Charlotte Soneson

More recently, mapping of RNA-seq data occurs more often against a reference transcriptome,
which is a reference file containing the sequences all known isoforms of a particular species, e.g., using
kallisto or Salmon.

The set of spliced transcripts is much smaller than the entire genome, and therefore mapping against
a reference transcriptome is typically fast and memory efficient.

However, it has been noted that mapping against a reference transcriptome may also introduce spurious
expression for genes that are not expressed. These observations can be explained by intronic reads
that share some sequence similarity with transcripts, and could map to spliced transcript sequences.
Recent methods, such as alevin-fry, avoid this by expanding the reference transcriptome to also include
intronic sequences.
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http://www.ensembl.org/info/data/ftp/index.html
https://www.gencodegenes.org/human/
https://www.nature.com/articles/nbt.3519
https://www.nature.com/articles/nmeth.4197
https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1
https://www.biorxiv.org/content/10.1101/2021.06.29.450377v1

o human — more « sh - /usr/bin/zmore Homo_sapiens.GRCh37.67.dna.t

:ACCCTAACCCTAACCCTAACCCTAACCCAACCCTAACCCTAACCCTAACCCTAACCCTAA
CCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAA
CCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTAAACCC
TAACCCTAACCCTAACCCTAACCCTAACCCCAACCCCAACCCCAACCCCAACCCCAACCC
CAACCCTAACCCCTAACCCTAACCCTAACCCTACCCTAACCCTAACCCTAACCCTAACCC
TAACCCTAACCCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC
CCCTAACCCTAACCCTAACCCTAACCCTCGCGGTACCCTCAGCCGGCCCGCCCGCCCGGG
TCTGACCTGAGGAGAACTGTGCTCCGCCTTCAGAGTACCACCGAAATCTGTGCAGAGGAC
AACGCAGCTCCGCCCTCGCGGTGCTCTCCGGGTCTGTGCTGAGGAGAACGCAACTCCGCC
GTTGCAAAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCG
CAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCA
GAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGA
CACATGCTAGCGCGTCGGGGTGGAGGCGTGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGG
CGCAGGCGCAGAGACACATGCTACCGCGTCCAGGGGTGGAGGCGTGGCGCAGGCGCAGAG
AGGCGCACCGCGCCGGCGCAGGCGCAGAGACACATGCTAGCGCGTCCAGGGGTGGAGGCG
TGGCGCAGGCGCAGAGACGCAAGCCTACGGGCGGGGGTTGGGGGGGCGTGTGTTGCAGGA
GCAAAGTCGCACGGCGCCGGGCTGGGGCGGGGGGAGGGTGGCGCCGTGCACGCGCAGAAA
CTCACGTCACGGTGGCGCGGCGCAGAGACGGGTAGAACCTCAGTAATCCGAAAAGCCGGG
ATCGACCGCCCCTTGCTTGCAGCCGGGCACTACAGGACCCGCTTGCTCACGGTGCTGTGC
CAGGGCGCCCCCTGCTGGCGACTAGGGCAACTGCAGGGCTCTCTTGCTTAGAGTGGTGGC
CAGCGCCCCCTGCTGGCGCCGGGGCACTGCAGGGCCCTCTTGCTTACTGTATAGTGGTGG
CACGCCGCCTGCTGGCAGCTAGGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCA
GCACGCCCACCTGCTGGCAGCTGGGGACACTGCCGGGCCCTCTTGCTCCAACAGTACTGG
CGGATTATAGGGAAACACCCGGAGCATATGCTGTTTGGTCTCAGTAGACTCCTAAATATG
GGATTCCTGGGTTTAAAAGTAAAAAATAAATATGTTTAATTTGTGAACTGATTACCATCA
GAATTGTACTGTTCTGTATCCCACCAGCAATGTCTAGGAATGCCTGTTTCTCCACAAAGT
GTTTACTTTTGGATTTTTGCCAGTCTAACAGGTGAAGCCCTGGAGATTCTTATTAGTGAT
TTGGGCTGGGGCCTGGCCATGTGTATTTTTTTAAATTTCCACTGATGATTTTGCTGCATG
GCCGGTGTTGAGAATGACTGCGCAAATTTGCCGGATTTCCTTTGCTGTTCCTGCATGTAG
TTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCG
TCAGCCTTTTCTTTGACCTCTTCTTTCTGTTCATGTGTATTTGCTGTCTCTTAGCCCAGA
CTTCCCGTGTCCTTTCCACCGGGCCTTTGAGAGGTCACAGGGTCTTGATGCTGTGGTCTT
CATCTGCAGGTGTCTGACTTCCAGCAACTGCTGGCCTGTGCCAGGGTGCAAGCTGAGCAC

Figure 12: Figure: A reference sequence of human chrl.
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www.ensembl.org/info/data/ftp/index.html https://www.gencodegenes.org/human/

;e this list via our home page. GTF/GFF3files

STA) (FASTA) 1ce 1ce 1CH

TA® FASTA® FASTA® EMBLZ GenBankd

Content Regions Description Download
—

Show/hide columns

Comprehensive gene annotation CHR  + Itcontains the comprehensive gene annotation on the reference GTFGFF3

Whole Varie chromosomes only
atabases  (G\ « This is the main annotation file for most users

ncRNA  Protein Annotated Annotate

Comprehensive gene annotation AL« Itcontains the comprehensive gene annotation on the reference GTF GFF3
chromosormes, scaffolds, assembly patches and alternate loci
MySQL &7 G (haplotypes)

« This is a superset of the main annotation file

(FASTA) (EMBL) (GenBank

Comprehensive gene annotation PRI It contains the comprehensive gene annotation on the primary assembly ~ GTF GFF3
(chromosomes and scaffolds) sequence regions

TA® FASTAZ FASTA® EMBL& GenBanke? GG_I;I—ISS@@ MySQL& G + This is a superset of the main annotation file
- Basic gene annotation CHR  « Itcontains the basic gene annotation on the reference chromosomes GTF GFF3
only
\TA® FASTAZ FASTA® EMBLZ GenBankg? GTFE MySQL® G « Thisis asubset of the corresponding comprehensive annotation,

GFF3& including only those transcripts tagged as 'basic! in every gene

Figure 13: slide courtesy Charlotte Soneson

3.3.2 Alignment-based workflows

Traditionally, alignment-based workflows have been used to map reads, where one tries to find the
exact coordinates a read maps to on the reference genome or the reference transcriptome.

Note that due to alternative splicing, reads do not necessarily map contiguously on a reference genome,
as a read can overlap with a splicing junction, where an intron has been excised. When mapping against
a transcriptome, however, reads should be mapping contiguously.

A main challenge in spliced alignment against a reference genome is the proper alignment of reads that
span a splice junction, especially when these junctions are not annotated a priori. Indeed, in spliced
alignment reads can be split at any nucleotide, and the corresponding subsequences can map several
thousands of basepairs apart. Meanwhile, the main challenge in unspliced alignment to a transcriptome
is the redundant sequence among related transcripts in the transcriptome, which often leads to a high
multi-mapping rate (i.e., reads that cannot be unambiguously assigned to a single transcript).
Spliced alignment against a genome is therefore computationally a much harder task. Since the tran-
script sequences are already spliced when aligning to a reference transcriptome, reads should align
contiguously, and many of the computationally expensive steps and heuristics can be avoided, there.

3.3.3 Alignment-free workflows

o Modern approaches avoid mapping each fragment individually (i.e., do not attempt to find the exact
coordinates of a read’s origin), and instead posit a probabilistic model where transcript abundances are
typically defined using its constituent k-mers. These methods are sometimes referred to as lightweight.
A k-mer is a short sequence of nucleotides of length k. The space of possible k-mers and the corre-
sponding transcripts can be precomputed in advance using the reference transcriptome, providing a
computational advantage as it only needs to be computed once.

For each fragment, the transcripts its k-mers are compatible with is searched for using an indexed
(efficiently searchable) transcriptome. The set of compatible transcripts is called the ‘k-compatibility
class’, ‘equivalence class’ or ‘transcript compatibility class’ of the fragment.

3.4 Abundance quantification

Given a set of mappings, using either alignment-based or alignment-free workflows, the estimation of expres-

sion of a gene/transcript/exon may occur in several ways.

Counting;:
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® B gtf — -ba

(base) Koens-MacBook-Pro:gtf koenvandenberge$ cat test_ensemble_chr22.gtf

22 protein_coding UTR 12791 14009 . + ccds_
e_name "EP30@0"; gene_source "ensembl_havana"; p_id "P5137"; tag “CCDS"' trans
nsembl _havana"; tss_id "TSS138009";

22 protein_coding exon 12791 14103 i + ccds_
tein_coding"; gene_id "ENSGO@@00100393"; gene_name "EP300"; gene source "ense
cript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138009
22 protein_coding transcript 12791 101082 . + .
93"; gene_name "EP3@00"; gene_source "ensembl_havana"; p_id "P5137"; tag "CCDS
ource "ensembl_havana"; tss_id "TSS138009";

22 miRNA exon 13518 13571 5 + exon_id "ENSE
": gene_name "MIR1281"; gene_source "ensembl"; transcrlpt id "ENST00000408233
881" .

22 miRNA transcript 13518 13571 5 + gene_
"ensembl"; transcript_id "ENST0O0000408233"; transcript_name "MIR1281 201"; tr
22 protein_coding CDS 14010 14103 5 + (%] ccds_
00000100393"; gene_name "EP300"; gene_source "ensembl_havana"; p_id "P5137";
anscript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138
22 protein_coding start_codon 14010 14012 . + 0

id "ENSGPOP00100393"; gene_name "EP300"; gene_source "ensembl_havana"; p_id "
@1"; transcript_source "ensembl_havana"; tss_id "TSS138009";

22 protein_coding CDS 38192 38826 : + 2 ccds_
00000100393"; gene_name "EP300"; gene_source "ensembl_havana"; p_id "P5137";
anscript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138
22 protein_coding exon 38192 38826 : + : ccds_
tein_coding"; gene_id "ENSGO@000100393"; gene_name "EP300"; gene_source "ense
cript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138009
22 protein_coding CDS L6869 47045 . + %] ccds_
00000100393"; gene_name "EP300"; gene_source "ensembl_havana"; p_id "P5137";
anscript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138
22 protein_coding exon 46869 47045 : + : ccds_
tein_coding"; gene_id "ENSGPO0000100393"; gene_name "EP300"; gene_source "ense
cript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138009
22 protein_coding CDS 48492 48753 : + %] ccds_
00000100393"; gene_name "EP3@0"; gene_source "ensembl_havana"; p_id "P5137";
anscript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138
22 protein_coding exon 48492 48753 : + : ccds_
tein_coding"; gene_id "ENSGP0000100393"; gene_name "EP300"; gene_source "ense
cript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138009
22 protein_coding CDS 50895 51008 : + y ccds_
00000100393"; gene_name "EP300"; gene_source "ensembl_havana"; p_id "P5137";
anscript_name "EP300-001"; transcript_source "ensembl_havana"; tss_id "TSS138

Figure 14: Figure: An example GTF file.
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Figure 4

An illustration of spliced alignment of RNA sequencing (RNA-seq) fragmce
alignment to a transcriptome (/). Reads are designated by thick solid lines,
pairing relationship between paired-end reads. This illustration depicts ali
consisting of three distinct transcripts. In the spliced alignment (), the left
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transcript.

Figure 15: Figure: Unspliced and spliced alignment. Figure from Van den Berge et al. (2019).
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Figure 16: Figure: Overview of kallisto, image from Bray et al. (2016).
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome
and reads from an RNA-seq experiment. (a) An example of a read (in black)
and three overlapping transcripts with exonic regions as shown. (b) An index
Is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where
nodes (vq, v, v, ... ) are k-mers, each transcript corresponds to a colored
path as shown and the path cover of the transcriptome induces a
k-compatibility class for each k-mer. (¢) Conceptually, the k-mers of a read are
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping
(black dashed lines) uses the information stored in the T-DBG to skip k-mers
that are redundant because they have the same k-compatibility class. (e) The
k-compatibility class of the read is determined by taking the intersection

of the k-compatibility classes of its constituent k-mers.

Figure 17: Figure: Overview of kallisto, image from Bray et al. (2016).

e In alignment-based workflows, one could do a direct counting of fragments at the gene-level, counting
the number fragments mapping to each gene. This has been the dominant approach for the first decade
of RNA-seq data, often obtained using reference genome alignments.

e Many heuristic choices need to be made: Do we count a fragment as soon as it intersects with the
gene’s coordinates, or do we require the full fragment to map to the gene? Do we count intronic reads?
Do we count multi-mapping reads?

Estimation:

e Abundance quantification is more recently starting to shift from counting towards using statistical
models to estimate the expression counts for a feature, which in this case is typically a transcript.

o This approach is amenable to alignment-free workflows, since the number of fragments in each equiv-
alence class are sufficient statistics for the abundance quantification, meaning that they contain all
information needed to estimate the parameters of the statistical model, and hence the feature-level
abundances. Since the expression counts in this case are estimated, they are not necessarily integer
counts, and will be referred to as ‘estimated counts’.

e In order to derive these, the EM-algorithm is often used, although other approaches have been used
by tools like Salmon. A big advantage of the estimation approach is that it probabilistically assigns
fragments to transcripts, thereby automatically dealing with multi-mapping reads. The total number of
fragments mapping to each transcript is then the sum of all fragment-level probabilities to be assigned
to that respective transcript.

3.4.1 Abundance metrics

« For simplicity, we have only been talking about feature-level counts as in sums of fragments. However,
this is merely one metric that can be used as a proxy for expression, and several others exist.

e Most of these were introduced to attempt to make the abundances more comparable across samples or
features, as compared to the simple counts. These mainly serve to correct for technical biases such as
transcript length and sequencing depth, both of which have significant impact on the observed counts.
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Gene and transcripts

Figure 18: Figure: Gene- and exon-level read cg(l)mting. Image adapted from Charlotte Soneson.
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Figure 5

An illustration of the alignment of various reads to a gene with three isoforms: blue (B), green (G), and red (R). In this example, we wish
to estimate the abundances of these isoforms, but most reads have ambiguous origins and need to be probabilistically assigned to the
transcripts (relative probabilities for each read are shown by the magnitudes of the three colors). Some reads are consistent only with
the B and G transcripts, and a few reads uniquely align to a single transcript (single color). In the expectation-maximization (or related)
algorithm, given the current abundance estimates, fragments are probabilistically assigned to transcripts, and then estimated
abundances are updated by summarizing the (proportional) allocations over all fragments; transcript abundance estimates are
determined by iterating the procedure until convergence.

Figure 19: Figure: Abundance quantification using the EM algorithm. Figure from Van den Berge et al.
(2019).



e Indeed, for a gene with the same mRNA concentration in two samples, sequencing one sample deeper,
will on average result in a higher count.

o Likewise, for two transcripts with the same mRNA concentration but different transcript lengths, one
will tend to observe more fragments from the longer transcript due to the fragmentation step in the
RNA-seq protocol, where longer transcripts can be split into more fragments of appropriate length.

Below we introduce several relevant abundance metrics, but note that most data analysis methods we will
discuss in this course will work with (estimated) counts. In what follows, let Y}; denote the random variable
representing the expression counts of feature f in sample i (obtained either as a simple sum of fragments or
estimated using lightweight approaches), and let N; = > f Y}, denote the sequencing depth of sample .

o Counts per million (CPM) are the counts one could expect to observe if the sample was sequenced
to a depth of one million.

Y,
_ _fi
CPMy; = N 108

?

o Transcripts per million (TPM) refers to the concentration or proportion of your feature in the
sample. TPMs take into account the length of the feature, which is often reformulated into an effective
length lgfif f ), relating to the number of possible start sites that a feature may have in order to generate
fragments of a typical length observed in your dataset. This typical length is often calculated using
the observed fragment length distribution from the data and defined as

(eff) _ i
i =l —F;+1,
where [ is the total length of a feature in terms of number of nucleotides, and F, is the estimated
average fragment length in sample i. We can use this to define

1
— | 10°

fi
TPM, = —
fi e
D\ 2y

Note that the first part of the right-hand-side (RHS), W is the expression counts normalized for the

length of the feature. This measure, however, is still affected by the sequencing depth, which is then
alleviated by dividing by the sum of the length-normalized counts across all features, i.e., > f l:ﬁ}

TPMs hence normalize for the feature length as well as sequencing depth.

3.4.2 The final countdown
Once abundances have been quantified, the (estimated) counts are typically stored in a count matrix, with
genes spanning the rows and samples spanning the columns. This count matrix forms the basis of most

downstream analyses to interpret RNA-seq data, and it will be the main object we will be working with in
the following lectures.

4 References
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Figure 20: Figure: An updated sequencing workflow. Image
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