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In this lecture we will introduce the main principles of working with count data, and how to model these
using generalized linear models (GLMs). We focus on introducing the concept of generalized linear models,
and how they can be applied to genomics data analysis.

1 The Poisson distribution

e The Poisson distribution is a typical count distribution that is generally popular and fairly easy to
work with. It is defined by a single parameter: its mean p. For a Poisson distributed random variable
Y, with observations i € {1, ...,n}, its variance is equal to its mean. That is, if

Y; ~ Poi(p)



, then
E(Y,) = Var(Y) = u.
e This immediately shows an important feature of count data: the mean-variance relationship. In-

deed, in count data, the variance will always be a function of the mean.

e This is quite intuitive. Consider the following example. You have two bird cages, where in one bird
cage there are 10 birds, while in the other there are 100 birds. You let a sample of people look to the
number of birds in either one of the cages. It seems unlikely that a person in front of the 10-bird cage
would come up with an estimate of 3, while it seems likely that someone in front of the 100-bird cage
would come up with an estimate of 80. Even though the difference from the true value is the same,
the exact value has an impact on the plausible deviation around it.

set.seed(11)
y1l <- rpois(n=500, lambda=10)
y2 <- rpois(n=500, lambda=100)

par (mfrow = c(1,2))
gplot(yl, main="Poisson(10)", geom = "histogram", binwidth=.5,center=0)
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gplot(y2, main="Poisson(100)", geom = "histogram", binwidth=.5,center=0)
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1.1 The Poisson distribution in RN A-seq

e In RNA-seq, technical replicates represent different aliquots of the same sample being sequenced re-
peatedly. The underlying true expression of a gene can hence safely be assumed to be equal across
these technical replicates.

e Marioni et al. (2008) have shown that, for most genes, the distribution of observed gene expression
counts across technical replicates follow a Poisson distribution. A small proportion of genes (~ 0.5%)
do not follow this Poisson model, however, and actually show evidence for ‘extra-Poisson variation’.

1.2 Relative uncertainty for Poisson distributed random variables

Take a minute to consider the following question:

e Suppose that we have a solid tumor sample from a cancer patient, as well as a sample of surrounding
healthy tissue. For each sample, we have three technical replicates at our disposal. Let Y,,, denote the
observed gene expression values of gene g in replicate r € {1,2,3} from tissue t € {0,1}, where t =0
denotes healthy tissue and ¢ = 1 denotes tumoral tissue.

o We then know that the random variables Y, and Y, follow a Poisson distribution, and we would

estimate its mean as YgO =1 23:1 Yo and }791 = %Ziil Y1, respectively.

o Similar, for another gene k, we observe Y}, and estimate Y}, and Y}, correspondingly.

« Now suppose that 8, = Y;,/Y;, = 5, but also By = 791/1790 = 5, i.e., the two genes have the same
average expression ratio (also often called a fold-change) across samples. However, they are differently

expressed as Yy, = 100, and Yy, = 10 (making Y3, = 20, and Y, = 2).


https://genome.cshlp.org/content/18/9/1509
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Figure 1. Graphical representation of the study design. (A) Summary of the experimental design. (B)
The lanes in which each sample was sequenced across the two runs. In each run, the control sample
was sequenced in lane 5. Samples were sequenced at two concentrations: 1.5 pM (indicated by an
asterisk) and 3 pM (no asterisk).

Figure 1: Figure: Technical replication in RNA-seq. Figures from Marioni et al. (2008).
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e For which of the two genes is the uncertainty on the expression ratio the highest? In other words, do
we trust £, more or do we trust [, more?

Let’s approximate the uncertainty in beta, and 3, using simulation:

N <- 1e3
beta_g <- beta_k <- vector(length=N)
for(ii in 1:N){
ygrl <- rpois(n=3, lambda=10)
ygr0 <- rpois(n=3, lambda=2)
ykrl <- rpois(n=3, lambda=100)
ykr0 <- rpois(n=3, lambda=20)
beta_g[ii] <- mean(ygrl) / mean(ygrO)
beta_k[ii] <- mean(ykrl) / mean(ykrO)
}

par (mfrow=c(1,2), mar=c(4,2,3,1))
hist(beta_g, breaks=seq(0,50,by=1), xlim=c(0,50))
hist(beta_k, breaks=seq(0,50,by=1), xlim=c(0,50))
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We clearly see that the uncertainty on j3; is much lower than on 3,. Even though the variance on the counts
of gene k is higher, since its mean is higher and it is distributed as a Poisson variable. How do we explain
this?

e We may explain this by considering the relative uncertainty on the mean. Relative uncertainty may be
defined as the coefficient of variation CV = £ (this is, the standard deviation divided by the mean).
Indeed, the CV describes the relative deviation of the distribution relative to its mean, where a low
CV indicates low dispersion with respect to the mean.

e Calculating the CV shows that the relative uncertainty for gene k than for gene g, even though
the variance on the raw counts is higher for gene &k than for gene g.

e This lower relative uncertainty on the mean then propagates further to a lower uncertainty on the
fold-change. This basic result will be essential for understanding the results of a differential expression
analysis!

sqrt (100) /100 #CV for gene k

## [1] 0.1

sqrt(10) /10 #CV for gene g

## [1] 0.3162278

2 Modeling count data: Generalized linear models

Just like we have modeled protein abundances in the proteomics module of this course in order to assess
differential protein abundance, we can model gene expression counts to identify genes with differences in
average expression between groups of samples.

2.1 Why we can(’t) use linear models to model count data

o If we are using a linear model to model a response Y;, with ¢ € {1,...,n} in function of a single covariate
X, the linear model can be defined as follows:

Yi = [Bot+bizite
Vilz; ~ N(By+ fa;,0?).

e Or, equivalently, we can write it in matrix form as

Y = XT3+ €
YIX ~ N(XB,o%),

where X now represents our n X p design matrix, with row ¢ corresponding to observation 1.

o The variance-covariance matrix of Y is assumed a diagonal matrix with o2 on the diagonal elements
and zero everywhere else. This means that the data points are uncorrelated, and that every observation
has the same variance o2, also referred to as homoscedasticity.

e The latter does not hold for count data, due to the mean-variance relationship. This makes linear
models, in its basic form, unsuitable to model count data.

¢ In addition, count data are non-negative, while there are no such constraints in the standard linear
model to make sure that our estimates will be non-negative. Indeed, V; = fi; = X7 8 €] — o0, oa|.



2.2 Generalized linear models

o As the name suggests, generalized linear models (GLMs) extend linear models. In GLMs, we extend

two things with respect to the linear model:

— The conditional distribution of the response variable Y;|X, can be assumed to follow
any distribution that belongs to the exponential family of distributions, which includes the
Gaussian but also other commonly known distributions, such as the Binomial, Gamma and Poisson
distribution.

— The linear model assumed a linear relationship between Y; and X, since we assumed that
E(Y;|X;) = XTB. In GLMs, we will allow a link function g() that links the conditional mean
to the covariates. Hence, in GLMs we have that g(E(Y;|X;)) = X7 3. Note that each family has
got a canonical link function, which is the identity link function g(u) = p for Gaussian, the log
link function g(u) = log v for Poisson, or the logit link function g(u) = log(ﬁ) for Binomial.

2.2.1 A Poisson GLM

3

e« We can define a Poisson GLM as follows

Y, ~ Poi(p,)
log p; UB
U X?ﬁ

where Y; is the response variable, with mean p;, 7, is the linear predictor, X is the n x p model matrix
and [ is the p x 1 matrix of regression coefficients.

It is insightful to compare this model to a linear model where Y; is log-transformed. Indeed, in the
linear model case, we would be modeling E(logY;), while in the GLM we are modeling log E(Y;).
This shows that in the GLM setting we are modeling a transformed version of the expected value, and
after retransforming we can interpret the fit in terms of the mean of our response variable. In the
transformed linear model, however, we are working with the expected value of a transformed version
of our response variable, and we will not be able to interpret the fit in terms of the mean (because
E(logY;) #+ log E(Y;). In this specific case, we would have to resort to interpreting changes in terms
of a geometric mean.

Also note that X7 8 €] — oo, 00|, while ¥; must be non-negative [0,00[. The link function helps

with this, since the exponential function transforms any real number to a non-negative number, i.e.,

exp(XT'B) € [0, o0l

Sequencing Data

In this lecture we will use a subset of the real bulk RNA-seq dataset from Haglund et al. (2012).

Lets try to work out the experimental design using the following paragraph from the Methods section of the
paper.

3.1 Technical repeats

There are technical repeats in the datal

data("parathyroidGenesSE", package="parathyroidSE")
se <- parathyroidGenesSE

rm(parathyroidGenesSE)

colData(se) %>/ knitr::kable(.)


https://academic.oup.com/jcem/article/97/12/4631/2536573

Tissue for cell culturing was obtained from four chief cell
parathyroid adenomas collected directly at surgery from female
postmenopausal patients. Isolation of cells and culturing were
performed essentially as previously described (22). Cells were
plated and treated with 100 nm DPN (Tocris Bioscience, Min-
neapolis, MN) or 100 nm OHT (Sigma-Aldrich, St. Louis, MO)
for 24 or 48 h, respectively. Untreated cells cultured in parallel
were used as controls. Cells were harvested in RNeasy (QIAGEN
AB, Hilden, Germany), and quality control was performed using
Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Nano-
drop (Nanodrop Technology, Wilmington, DE) for all speci-
mens. RNA samples were isolated from four different adenomas,
and one sample (case 4, control 24 h) was omitted before tran-
scriptome sequencing based on low RIN value. The entire sample
set used for sequencing consisted of the treatment groups DPN
24h(n=4),DPN48h (n = 4), OHT 24 h (n = 4), OHT 48 h
(n = 4), control 24 h (n = 3), and control 48 h (n = 4).

Figure 2: Figure: A paragraph from the Methods section.

run experiment patient treatment time submission study sample
SRR479052 SRX140503 1 Control 24h SRA051611 SRP012167 SRS308865
SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167 SRS308866
SRR479054 SRX140505 1 DPN 24h SRA051611 SRP012167 SRS308867
SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167 SRS308868
SRR479056 SRX140507 1 OHT 24h SRA051611 SRP012167 SRS308869
SRR479057 SRX140508 1 OHT 48h SRA051611 SRP012167 SRS308870
SRR479058 SRX140509 2 Control 24h SRA051611 SRP012167 SRS308871
SRR479059 SRX140510 2 Control 48h SRA051611 SRP012167 SRS308872
SRR479060 SRX140511 2 DPN 24h SRA051611 SRP012167 SRS308873
SRR479061 SRX140511 2 DPN 24h SRA051611 SRP012167 SRS308873
SRR479062 SRX140512 2 DPN 48h SRA051611 SRP012167 SRS308874
SRR479063 SRX140513 2 OHT 24h SRA051611 SRP012167 SRS308875
SRR479064 SRX140513 2 OHT 24h SRA051611 SRP012167 SRS308875
SRR479065 SRX140514 2 OHT 48h SRA051611 SRP012167 SRS308876
SRR479066 SRX140515 3 Control 24h SRA051611 SRP012167 SRS308877
SRR479067 SRX140516 3 Control 48h SRA051611 SRP012167 SRS308878
SRR479068 SRX140517 3 DPN 24h SRA051611 SRP012167 SRS308879
SRR479069 SRX140518 3 DPN 48h SRA051611 SRP012167 SRS308880
SRR479070 SRX140519 3 OHT 24h SRA051611 SRP012167 SRS308881
SRR479071 SRX140520 3 OHT 48h SRA051611 SRP012167 SRS308882
SRR479072 SRX140521 4 Control 48h SRA051611 SRP012167 SRS308883
SRR479073 SRX140522 4 DPN 24h SRA051611 SRP012167 SRS308884
SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885
SRR479075 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885
SRR479076  SRX140524 4 OHT 24h SRA051611 SRP012167 SRS308886
SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887
SRR479078  SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887
se %%

colData %>%
as.data.frame %>
pull(sample) %>7%



nlevels

## [1] 23
se %>

colData %>%
nrow

## [1] 27

Extract sample names of duplicates!

dupl <- which(table(colData(se)$sample) > 1) %>’ names
techreps <- assays(se)$counts[,colData(se)$sample==dupl[1]]

3.1.1 Explore the data of two technical repeats

We expect the counts to be very similar. Indeed, they are based on the same cell culture, stimulated with
the same stimulus and incubated for the same time.

gplot(techreps[,1],techreps[,2]) +
geom_abline(intercept = 0, slope = 1) +

xlab("Technical repeat 1") +
ylab("Technical repeat 2")
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e The plot shows a systematic difference between the counts of both technical repeats!

o However, plotting the data on the original count scale does not give a good overview of the data. The
plot is dominated by a few very abundant genes, i.e. genes with very high counts.

3.1.2 Explore the data of two technical repeats

gplot(techreps[,1] ,techreps[,2], log="xy") +
geom_abline(intercept = 0, slope = 1) +
xlab("Technical repeat 1") +
ylab("Technical repeat 2")

## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous y-axis
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e The plot clearly shows that the counts for all genes are very different in the two technical repeats.

e However, we have to look at the plot via the diagonal.

o In omics we therefore often use MA plots. With M (log ratio) and A (log average).
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A <- techreps %>% log2 7>% rowMeans
M <- techreps %>% log2 %>% apply(.,1,diff)
w <- techreps[,1]==min(techreps[,1]) | techreps[,2]==min(techreps[,2])
if (any(w)) {
Alw] <- runif(sum(w), min = -1, max = .1)
M[w] <- log2(techreps([w,2] + 1) - log2(techreps[w,1] + 1)

}

MAplot <- gplot(A, M, col=w) +
theme (legend.position = "none") +
scale_color_manual(values = c("black","orange")) +
xlab("A: log2 Average") +
ylab("M: log2 Fold Change")

MAplot +
geom_abline(intercept=0,slope=0)

M: log2 Fold Change

0 5 10 15
A: log2 Average

The MA plot clearly shows that the counts of one technical repeat are systematically higher than that of
the other technical repeats.

colSums (techreps)

## [1] 5251911 19332369

11



logFCdepth <- colSums(techreps) %>% log2 %>% diff
logFCdepth

## [1] 1.880104
271ogFCdepth
## [1] 3.681016

The technical repeats differ with a factor 3.7 in sequencing depth!

MAplot + geom_abline(intercept = logFCdepth, slope = 0, color="red")

M: log2 Fold Change

0 5 10 15
A: log2 Average

e This log2 fold change in sequencing depth is also the baseline around which the log2 fold changes
between technical repeats of individual genes are fluctuating!

Hence, we will have to correct for differences in sequencing depth.

3.2 Count scaling using GLM offsets

e We have previously discussed count scaling transformations such as CPM and TPM.

12



e A more appropriate and natural way when working with GLMs is through the use of offsets. The
general use of an offset is to account for the ‘effort’ performed in order to gather that observation of
the response variable.

— i.e. sample being sequenced deeper contains more information as compared to a sample being sequenced
relatively shallow. We have more confidence in a count from a deeply sequenced sample than that from a
shallowly sequenced sample. We can therefore use the sequencing depth N, = Zg Y, as offset in the model.

e Adding an offset to the model is different from adding a new variable to the model. For each new
variable we add, we will estimate its average effect § on the response variable. When adding an offset,
however, we implicitly set g = 1.

e Offsets are typically added on the scale of the linear predictor. Suppose we have a gene g and sample
i specific offset O;, then we can define our GLM including the offset as
Yoi ~ Poi(jg;)

lOg :ugi = . 7791‘
Ngi X; By + log(ogi>

When we would like to correct for the overall sequencing depth O,; = N;. However, better offsets exist!

Note, that
uig = eXp(XzTBg) X Ogi

H
oz () =1,

gt

or

3.3 Biological repeats
We extract the four biological repeats from the study for the control treatment at time 24h.

bioreps <- colData(se)$treatment=="Control" & colData(se)$time=="24h"

biorepCounts <- assays(se)$counts[,bioreps]

gplot(rowMeans (biorepCounts) ,rowVars(biorepCounts),log="xy") +
geom_abline(intercept = 0,slope = 1,col="red") +
geom_smooth(col="orange")

## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## “geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Warning: Removed 37702 rows containing non-finite values (stat_smooth).

13
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e Having data on thousands of genes provides the opportunity to empirically assess the mean-variance
relationship.

o It is clear that the data is overdispersed with respect to the Poisson distribution (red y=x line). There
also seems to be a quadratic trend of the variance as a function of the mean.

4 Negative binomial distribution

The observed quadratic mean variance trend has motivated the use of the negative binomial distribution to
model (bulk) RNA-seq gene expression data.

Ygi ~ NB(/"ng ¢g)
IOg /'l‘gi = 7791'
Ngi = X’L’ng + lOg(ng‘>
with
var[Y,,] = po; + oo 12
gil = HKgi gHgi
Seq. technology real expression
total variability = technical + biological
variability variability
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Seq. technology real expression

V&Y[Ygi] = Mfi + %Mgi
total CV?2 = ™ + ¢g
gt

4.1 What about technical repeats?

e Technical repeats are Poisson distributed.

e The sum of two Poisson distributed counts is again Poisson. So we can summarize over technical
repeats by taking the sum of the counts. This enables us to collapse the technical repeats to the level
of biological repeats.

o We will illustrate that in the tutorial session.

4.2 Estimating the overdispersion?

e Gene wise: for every single gene, very unstable due to the lack of data

e Common dispersion for all genes

e Trended dispersion

o Tag-wise: EB shrinkage to a common (trended) dispersion: Borrow strength across genes (McCarthy
& Smyth, 2012, DOI: 10.1093/nar/gks042)

In the tutorials we will analyse the entire study and we will focus on assessing the main research questions:
i.e. comparing the early and late effects of the stimuli, and if the effect of stimuli is changes over time.

Here, we illustrate the estimation using the edgeR tool on a subset of control treatment for patients 1, 2 and
3. For this subset only biological repeats are sequenced and a measurement on time 24 and 48h has been
taken for cells of each patient.

So we can model the study using a simple block design with a time effect and a block effect for patient.

1. Setup the data
seSub <- se[,colData(se)$treatment=="Control"&colData(se)$patient’iny1:3]
colData(seSub)$patient <- colData(seSub)$patient %>%

as.double %>

as.factor

y <- DGEList(counts = assays(seSub)$counts)

design <- model.matrix(~time+patient,colData(seSub))

2. Typically lowly expressed genes are filtered.

keep <- filterByExpr(y,design)
y <= ylkeep,]

3. Normalisation to correct for differences in library size.

y <- calcNormFactors(y)

4. Estimate the dispersions using empirical Bayes (EB)

15


https://doi.org/10.1093/nar/gks042

y <- estimateDisp(y, design)

5. Estimate gene-wise dispersions without shrinkage for comparison purposes

yNoEB <- estimateDisp(y, design, prior.df = 0)

6. Visualisation and comparison of tag-wise (EB) and genewise dispersion

o <- order (y$AveLogCPM)
data.frame(
AveLogCPM=rep (yNoEB$AveLogCPM[0] ,2),
BCV=sqrt (
c(yNoEB$tagwise.dispersion[o],
y$tagwise.dispersion[o])
e
method=rep(c("genewise","tagwise"), each=nrow(y))) %>%
ggplot (aes (AveLogCPM,BCV,color=method)) +
geom_point(size = .2) +
geom_line(
data = data.frame(
AveLogCPM=y$AveLogCPM[o],
BCV = sqrt(y$trended.dispersion(o]),
method="trended")) +
scale_colour_manual(values =c('black', 'orange', 'blue'))+
ylab("Biological Coefficient of Variation") +
xlab("Average log CPM")

16
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Note, that

o The gene-wise dispersion is very variable (black dots).

o There is a dispersion - mean trend (blue line)

o The tag-wise dispersions (orange dots) are the result of shrinking the gene-wise dispersion (black dots)
to the trend (blue line)

By default edgeR provides the following plot

plotBCV (y)
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In the methods paper of edgeR different dispersion estimators were compared and the tag-wise dispersions
seemed to provide the best goodness of fit.

5 Statistical Inference

« Asymptotic statistical tests exist to test if (contrasts of the) parameters of the GLM are different from
zero.

e Implemented in edgeR and DESeq2.

e Again we have to correct for multiple testing !!! FDR correction is done by default in the edgeR and
DESeq2 output

1. Fit the model

fit <- glmFit(y,design)
head(fit$coefficients)

#it (Intercept) time48h  patient2 patient3
## ENSGO0000000003 -9.349871 0.13638138 -0.5613559 -0.7834884
## ENSGO0O000000419 -10.391095 -0.09800617 0.1057271 0.1356434
## ENSGO0000000457 -10.928625 -0.08069712 0.4491010 -0.1289007
## ENSGO0000000460 -10.041597 -0.81035512 0.5044914 -0.5433122
## ENSGO0000000938 -14.614695 0.39307169 1.4719170 0.1349905
## ENSGO0O000000971 -13.512986 0.46252084 -0.2107229 0.5042261

18
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Figure 3: QQ-plots of goodness of fit statistics using common, trended or empirical Bayes. Image from
McCarthy and Smyth, 2012, NAR, DOI: 10.1093/11&1-l oks042



Interpretation of model parameters?

2. Statistical test to assess the time effect

1rt <- glmLRT(fit, coef = "time48h")
topTags (1lrt)

## Coefficient: time48h

#i# logFC  logCPM
## ENSG00000164089 4.284786 3.099739
## ENSG00000148795 3.026969 3.686056
## ENSG00000133110 1.293005 7.185439
## ENSG00000211445 1.450374 8.966014
## ENSG00000107796 1.398750 6.002617
## ENSG00000169239 1.557744 7.377027
## ENSG00000188404 -1.590059 9.851890
## ENSG00000136235 1.375796 5.149565
## ENSG00000163631 1.835300 4.898878
## ENSG00000005189 -1.702284 5.615167
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.823032e-28
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