
Sequencing: Selected technical topics

Koen Van den Berge

Last compiled on 03 December, 2021

Contents

1 Independent filtering 1

1.1 A dependent test statistic . 3

1.2 An independent test statistic . 7

2 Aliasing 10

3 limma-voom as an alternative approach to modeling counts 16

3.1 The limma framework for the analysis of microarrays . 16

3.2 limma-voom: extending limma for RNA-seq data . 16

3.3 limma-voom analysis of parathyroid data . 16

1 Independent filtering

Independent filtering, where genes/transcripts/proteins are filtered out prior to statistical analysis, is a com-
mon practice in ‘omics experiments. Typically, lowly expressed features are filtered out, and one can argue
that these features’ expression is too low to be deemed biologically relevant. In addition, low-count features
are also associated with a low statistical power for differential expression (remember relative uncertainty of
counts, and edgeR’s BCV plot), and will increase the number of tests performed, and therefore lead to a
more severe multiple testing correction.

Independent filtering has been formalized by Bourgon et al. (2010), and the concept can be summarized as
follows.

• For each feature we calculate two statistics, 𝑆𝐹 and 𝑆𝑇 , respectively used for two stages: filtering and
testing (e.g., differential expression).

• In order for a feature to be deemed significant, both of its statistics must be greater than some cut-off.
• We want to control the type I error rate of the second stage (testing). But note that the second

stage is conditional on the first stage, as we only test features passing the filter, and basically
ignore the fact that filtering was performed. Indeed, one criticism is that computing and correcting
the 𝑝-values as if filtering had not been performed may lead to overoptimistic adjusted 𝑝-values.

1

https://www.pnas.org/content/107/21/9546

Figure 1: Figure 1 from Bourgon *et al.* (2010).

2

• Bourgon et al. (2010) show that filtering is only appropriate (i.e., does not inflate type I error rate) if
the conditional null distribution of test statistics for features passing the filter is the same as the un-
conditional null distribution. Therefore, filtering is appropriate if the statistic used for filtering
is independent of the statistic used for testing under the null hypothesis. A good filtering
statistic, however, is also informative under the alternative hypothesis. Indeed, a filtering statistic that
is independent of the test statistic under both the null- and alternative hypothesis will amount to a
random filter, hence deteriorate the quality of the analysis.

but only formally tests the most extreme results. If the standard
t-distribution is used to obtain p-values, type I error rate control
will clearly be lost.

More realistic nonspecific filters can also detrimentally affect
the conditional distribution of the test statistic. The limma t-sta-
tistic (~T) is based on an empirical Bayes approach which models
the gene-level error variances fσ21;…; σ2mg with a scaled inverse χ2
distribution. For many microarray datasets, this distribution pro-
vides a good fit (4). In ref. 7, an overall variance filter is combined
with the limma ~T. Because the within-class variance estimator (s2i)
and the overall variance are correlated, filtering on overall var-
iance will deplete the set of genes with low s2i (Fig. 2B). A scaled
inverse χ2 will then no longer provide a good fit to the data pas-
sing the filter, causing the limma algorithm to produce a posterior
degrees-of-freedom estimate of ∞. This has two consequences:
(i) gene-level variance estimates will be ignored, leading to an
unintended analysis based on fold change only; and (ii) the p-va-
lues will be overly optimistic (Fig. 2C). See SI Text for details.

Conditional Control Is Sufficient. Having shown that a two-stage
approach need not maintain control of type I error rates, even
when a nonspecific filter is used, we now examine conditions
under which control is maintained.

First, observe that with filtering, false positives and rejections
in general are only made at stage two. Therefore, type I errors
cannot arise from those hypotheses that have been filtered
out, since none of these are rejected. Second, observe that the
distributions of the test statistics at stage two are conditional dis-
tributions, since we only consider test statistics corresponding to
hypotheses which have passed the filter. (The pitfalls we describe
above demonstrate that for some filters, this conditioning can in
fact change the null distribution.) Combining these two observa-
tions, we see that the overall FWER is given by the conditional
probability of a false positive at stage two; and the overall FDR,
by the conditional expectation of the ratio of false to total discov-
eries at stage two. To control these type I error rates, we therefore
require a filter that leads to a conditional distribution of the
fUII

i : i ∈ Mg which is consistent with the requirements of the
p-value computation and multiple testing adjustment procedures.
One may, of course, adapt these procedures to accommodate
conditioning-induced changes in the null distributions. In the next

section, however, we will consider a simpler alternative: the use of
filters that leave the distributions of true-null test statistics un-
changed. In this case, the same procedures which are appropriate
for unfiltered data are still appropriate after conditioning on
filter passage.

Marginal Independence of Filter and Test Statistics. For gene i, the
two-stage approach employs two statistics, UI

i and UII
i , but only

compares UII
i —for those hypotheses passing the filter—to a null

distribution. The unconditional null distribution of UII
i is often

used for this purpose, but will only produce correct p-values if
the conditional and unconditional null distributions of UII

i are
the same. When the null distribution of UII

i does not depend on
the value of UI

i , we call this marginal independence for gene i.
Several commonly used pairs of statistics satisfy this marginal

independence criterion for true-null hypotheses. Let H0 denote
the set of indices for true nulls, and Yi ¼ ðY i1;…; Y inÞt, the data
for gene i. If Y i1;…; Y in are independent and identically distrib-
uted normal for each i ∈ H0, then both the overall mean and
overall variance filter statistics are marginally independent of
the standard two-sample t-statistic. If, on the other hand,
Y i1;…; Y in are only exchangeable for each i ∈ H0, then every
permutation-invariant filter statistic—including overall mean
and variance, and robust versions of the same—is independent
of the Wilcoxon rank sum statistic. ANOVA or the Kruskall-
Wallis test permit extension to more than two classes. Proofs
are given in SI Text.

In summary, the pairs of filter and test statics described above
are such that for true-null hypotheses, the conditional marginal
distributions of the test statistics after filtering are the same as the
unconditional distributions before filtering. As a consequence,
the unadjusted stage-two p-values will have the correct size for
single tests. This is an important and necessary starting point
for multiple testing adjustments which attempt to control the
experiment-wide type I error rate.

FWER: Bonferroni and Holm Adjustments. Independence of UI
i and

UII
i for each i ∈ H0 means that stage-two p-values computed

using the unconditional null distribution of UII
i will be correct.

Furthermore, the marginal independence property can be
used to directly understand the impact of using the Bonferroni

Null distributions for UII

U
II

−4 −2 0 2 4

Given U
I
 > u*

Unconditional

A Gene−level error SD estimates (filtered)

si

0 2 4 6 8 10

limma fit
Unconditional

B True null limma p−values

p

0.0 0.2 0.4 0.6 0.8 1.0

C

Fig. 2. (A) The null distribution of the test statistic is affected by filtering on the maximum of within-class averages. In this example, all genes have a known
common variance, the filter statistic is the maximum of within-class means, and the test statistic is a z-score. The unconditional distribution of the test statistic
for nondifferentially expressed genes is a standard normal. Its conditional null distribution, given that the filter statistic (UI) exceeds a certain threshold (u$),
however, has much heavier tails. Using the unconditional null distribution to compute p -values after filtering would therefore be inappropriate. See SI Text for
full details. (BandC) Overall variance filtering and the limmamoderated t-statistic. Data for 5,000 nondifferentially expressed genes were generated according
to the limma Bayesian model (n1 ¼ n2 ¼ 2, d0 ¼ 3, s20 ¼ 1). (B) Filtering on overall variance (θ ¼ 0.5) preferentially eliminated genes with small si , causing gene-
level standard deviation estimates for genes passing the filter (histogram) to be shifted relative to the unconditional distribution used to generate the data
(dashed curve). The limma inverse χ2 model was unable to provide a good fit (solid curve) to the si passing the filter. (C) The fitting problems lead to a posterior
degrees-of-freedom estimate of∞. As a consequence, p -values were computed using an inappropriate null distribution, producing toomany true-null p -values
close to zero, i.e., loss of type I error rate control. An analogous analysis comparing biological replicates from the ALL study—so that real array data were used
but no gene was expected to exhibit significant differential expression—yielded qualitatively similar results.

9548 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0914005107 Bourgon et al.

Figure 2: Figure 2 from Bourgon *et al.* (2010).

Let’s try a couple of examples to get some intuition using simulated data.

suppressPackageStartupMessages(library(DESeq2))
set.seed(24)
dds <- DESeq2::makeExampleDESeqDataSet()
simCounts <- counts(dds)
group <- dds$condition

1.1 A dependent test statistic

filter based on difference in means
filterStatEffectSize <- abs(rowMeans(simCounts[,group == "A"]) - rowMeans(simCounts[,group == "B"]))
calculate t-test results for each gene
testStat <- genefilter::rowttests(simCounts, group)

3

https://www.pnas.org/content/107/21/9546

unconditional distribution of test statistics prior to filtering
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
main = "Unconditional distribution")

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Unconditional distribution

Test statistic

D
en

si
ty

filter out ~20% of genes with lowest effect sizes
mean(filterStatEffectSize > 1)

[1] 0.792

hist(filterStatEffectSize, breaks=40)
abline(v=1, col="red")

4

Histogram of filterStatEffectSize

filterStatEffectSize

F
re

qu
en

cy

0 100 200 300 400

0
20

0
40

0
60

0
80

0

keepEffectSize <- filterStatEffectSize > 1
conditional distribution: very different!
plot(density(testStat$statistic[keepEffectSize], na.rm=TRUE),

xlab = "Test statistic",
main = "Conditional distribution")

5

−4 −2 0 2 4

0.
00

0.
10

0.
20

0.
30

Conditional distribution

Test statistic

D
en

si
ty

in same plot
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
col = "orange",
main = "Test statistics before and after filtering on mean difference",
lwd = 2)

lines(density(testStat$statistic[keepEffectSize], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution",
col = "steelblue",
lwd = 2)

legend("topright", c("Unconditional", "Conditional"),
col=c("orange", "steelblue"), lwd=2, bty='n')

6

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Test statistics before and after filtering on mean difference

Test statistic

D
en

si
ty

Unconditional
Conditional

1.2 An independent test statistic

filterStatGlobalMean <- rowMeans(simCounts)
we remove a similar fraction of ~20% genes
mean(filterStatGlobalMean > 5)

[1] 0.771

keepGlobalMean <- filterStatGlobalMean > 5

unconditional distribution
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
main = "Unconditional distribution")

7

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Unconditional distribution

Test statistic

D
en

si
ty

conditional distribution: the same.
plot(density(testStat$statistic[keepGlobalMean], na.rm=TRUE),

xlab = "Test statistic",
main = "Conditional distribution")

8

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Conditional distribution

Test statistic

D
en

si
ty

in same plot
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
col = "orange",
main = "Test statistics before and after filtering on global mean",
lwd = 2)

lines(density(testStat$statistic[keepGlobalMean], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution",
col = "steelblue",
lwd = 2)

legend("topright", c("Unconditional", "Conditional"),
col=c("orange", "steelblue"), lwd=2, bty='n')

9

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Test statistics before and after filtering on global mean

Test statistic

D
en

si
ty

Unconditional
Conditional

2 Aliasing

Suppose we are working with the following experimental design on colon cancer. Studying the effect of a
drug on gene expression, researchers gather RNA-seq data from four colon cancer patients and four healthy
individuals. For each individual, they obtain RNA-seq data from a blood sample before as well as two
weeks after taking a daily dose of the drug. The research question relates to differential expression after
vs. before taking the drug, in particular whether this is different for the diseased versus healthy group (i.e.,
the interaction between time (before/after taking the drug) and disease status (healthy/colon cancer)).
In terms of the model matrix, we could imagine a design such as ~ patient + disease*time, where

• disease is a binary indicator referring to colon cancer versus control sample.
• time defines if the sample is taken before or after taking the drug.
• patient defines the individual donor the sample comes from.

The research question could then amount to testing the disease * time interaction.
Let’s try this, by simulating random data for one gene.

set.seed(2)
2 samples per patient for 8 patients
patient <- factor(rep(letters[1:8], each=2))
first four are healthy, next four are diseased
disease <- factor(c(rep("healthy",8), rep("cancer",8)), levels=c("healthy", "cancer"))
one before and one after sample for each

10

time <- factor(rep(c("before", "after"), 8), levels=c("before", "after"))

table(patient, disease, time)

, , time = before
##
disease
patient healthy cancer
a 1 0
b 1 0
c 1 0
d 1 0
e 0 1
f 0 1
g 0 1
h 0 1
##
, , time = after
##
disease
patient healthy cancer
a 1 0
b 1 0
c 1 0
d 1 0
e 0 1
f 0 1
g 0 1
h 0 1

simulate data for one gene
n <- 16
y <- rpois(n = n, lambda = 50)

fit a Poisson model
m <- glm(y ~ patient + disease*time,

family = "poisson")
summary(m)

##
Call:
glm(formula = y ~ patient + disease * time, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.76900 0.11916 31.631 <2e-16 ***
patientb 0.06744 0.14999 0.450 0.6530
patientc 0.06744 0.14999 0.450 0.6530

11

patientd 0.27304 0.14310 1.908 0.0564 .
patiente 0.16449 0.16224 1.014 0.3107
patientf 0.02565 0.16644 0.154 0.8775
patientg -0.01784 0.16785 -0.106 0.9154
patienth 0.05706 0.16544 0.345 0.7302
diseasecancer NA NA NA NA
timeafter -0.01567 0.10220 -0.153 0.8782
diseasecancer:timeafter 0.12374 0.14407 0.859 0.3904

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 16.1200 on 15 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16
##
Number of Fisher Scoring iterations: 4

We find that one of the coefficients is NA! This is obviously not because we’re dealing with NA values in the
data as we’ve just simulated the response variable ourselves. What’s going on?

One of the parameters, in this case the parameter distinguishing cancer from healthy patients cannot be
estimated as it is a linear combination of other parameters. In our case, estimating the diseased
effect would use information that is already used to estimate the patient-level intercepts. In other words,
once you know the patient, you immediately also know the disease status, so estimating the
diseased vs healthy effect on top of the patient effect provides no additional information if we have already
estimated the patient-level effects. This concept is called aliasing, and is a common technical issue in ’omics
experiments with complex experimental designs.

While to understand the origin of the aliasing it is crucial to understand the relationship between the variables
in the experimental design, we can also investigate it in detail using the alias function, to give us an idea.

alias(m)

Model :
y ~ patient + disease * time
##
Complete :
(Intercept) patientb patientc patientd patiente patientf patientg
diseasecancer 0 0 0 0 1 1 1
patienth timeafter diseasecancer:timeafter
diseasecancer 1 0 0

We see that the effect diseasecancer is a linear combination of the patient-specific effects of the cancer
patients. This makes sense!

12

For clarity, let’s reproduce this using our design matrix.

X <- model.matrix(~ patient + disease*time) # this is the design used in glm()

these are indeed identical.
X[,"diseasecancer"]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

X[,"patiente"] + X[,"patientf"] + X[,"patientg"] + X[,"patienth"]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Since one of our parameters is a linear combination of other parameters, it cannot be estimated simultaneously
with the other parameters. In this case, we can actually drop the disease main effect from the model, since
we know that it is already included in the patient effect.

We will have to carefully construct our design matrix in order to account for all important sources of variation
while still allowing us to answer the research question of interest. The aliasing exploration above has made
it clear we may drop the disease main effect, so let’s start by constructing this design matrix.

X <- model.matrix(~ patient + time + disease:time)

m2 <- glm(y ~ -1 + X,
family = "poisson")

summary(m2)

##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 ***
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530
Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.28823 0.16077 1.793 0.0730 .
Xpatientf 0.14939 0.16500 0.905 0.3653
Xpatientg 0.10590 0.16643 0.636 0.5246
Xpatienth 0.18081 0.16400 1.102 0.2703
Xtimeafter -0.01567 0.10220 -0.153 0.8782
Xtimebefore:diseasecancer -0.12374 0.14407 -0.859 0.3904

13

Xtimeafter:diseasecancer NA NA NA NA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 4489.2752 on 16 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16
##
Number of Fisher Scoring iterations: 4

alias(m2)

Model :
y ~ -1 + X
##
Complete :
X(Intercept) Xpatientb Xpatientc Xpatientd Xpatiente
Xtimeafter:diseasecancer 0 0 0 0 1
Xpatientf Xpatientg Xpatienth Xtimeafter
Xtimeafter:diseasecancer 1 1 1 0
Xtimebefore:diseasecancer
Xtimeafter:diseasecancer -1

We are still confronted with aliasing as the model matrix contains an interaction effect timebefore:diseasecancer
as well as timeafter:diseasecancer, while only the latter is relevant. Indeed, we know that we can derive
the timebefore:diseasecancer effect by averaging the patient effects of the cancer patients.

X <- X[,!colnames(X) %in% "timebefore:diseasecancer"]

fit a Poisson model
m2 <- glm(y ~ -1 + X,

family = "poisson")
summary(m2)

##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 ***
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530

14

Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.16449 0.16224 1.014 0.3107
Xpatientf 0.02565 0.16644 0.154 0.8775
Xpatientg -0.01784 0.16785 -0.106 0.9154
Xpatienth 0.05706 0.16544 0.345 0.7302
Xtimeafter -0.01567 0.10220 -0.153 0.8782
Xtimeafter:diseasecancer 0.12374 0.14407 0.859 0.3904

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 4489.2752 on 16 degrees of freedom
Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16
##
Number of Fisher Scoring iterations: 4

We see that all coefficients can now be estimated. The timeafter effect may be interpreted as the time
effect for healthy patients, while the timeafter:diseasecancer effect may be interpreted as the difference
in the time effect for cancer patients as compared to healthy patients, i.e., it is the relevant interaction effect
we are interested in.

Question. Taking this further, suppose that we can safely assume that there is no interaction effect between
disease status and time. How would you now test for differential expression between healthy and cancer
patients at the first timepoint? Specify the experimental design and contrast used.

Answer.

Assuming no interaction, we can specify the design as follows:

XMain <- model.matrix(~ patient + time)
head(XMain)

(Intercept) patientb patientc patientd patiente patientf patientg patienth
1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0
5 1 0 1 0 0 0 0 0
6 1 0 1 0 0 0 0 0
timeafter
1 0
2 1
3 0
4 1
5 0
6 1

In order to set up the contrast testing for healthy versus diseased patients at the first timepoint, we need to
take the average of the appropriate patient-level intercepts. The average expression for healthy patients is

log𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 1
4 {𝛽0 + (𝛽0 + 𝛽1) + (𝛽0 + 𝛽2) + (𝛽0 + 𝛽3)} .

15

Similar, for the diseased patients it equals

log𝜇𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 = 1
4 {(𝛽0 + 𝛽4) + (𝛽0 + 𝛽5) + (𝛽0 + 𝛽6) + (𝛽0 + 𝛽7)} .

And thus the relevant contrast

log 𝜇𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑
𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦

= 1
4(𝛽4 + 𝛽5 + 𝛽6 + 𝛽7) − 1

4(𝛽1 + 𝛽2 + 𝛽3).

3 limma-voom as an alternative approach to modeling counts

limma is a powerful linear model based framework for modeling microarray gene expression data and inferring
differential expression results, and has been introduced in the proteomics module of this course. With the
inception of RNA-seq, the limma developers got creative and extended their framework to also model count
data, hence creating limma-voom.

3.1 The limma framework for the analysis of microarrays

In the proteomics module, we have previously introduced the powerful linear model based framework limma,
and how it uses an empirical Bayes strategy to borrow information across proteins to derive a posterior
variance estimate. In its default implementation, limma cannot be used to model count data, as it can not
account for their mean-variance relationship. The developers, however, came up with a creative approach to
use the limma framework to model count data.

3.2 limma-voom: extending limma for RNA-seq data

• Count models such as edgeR and DESeq2 automatically account for the mean-variance relationship of
the data by assuming a proper count distribution, given that the observed mean-variance relation-
ship is close to the one assumed by the distribution. However, they are also more complex, both
computationally as well as statistically and conceptually.

• limma-voom (Law et al. (2014)) is a method that unlocks Gaussian linear models to analyze count
data in the context of RNA-seq, by first estimating the mean-variance relationship of the dataset at
hand, and subsequently incorporating it in the analysis through observation-level weights in a linear
regression model.

• The mean-variance relationship is dataset-specific and needs to be estimated separately for each dataset.
• The mean-variance trend is estimated nonparametrically across all genes, using a global mean and

variance for each gene. Using this trend, observation-level variances are estimated for each individual
observation.

• These observation-level variances are then used as inverse weights in the linear modeling framework,
to account for heteroscedasticity.

3.3 limma-voom analysis of parathyroid data

limma has an extensive user’s guide which can be accessed via limma::limmaUsersGuide().

16

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29

Figure 3: Figure 1 from Law *et al.* (2014).

Figure 4: Figure 1 from Law *et al.* (2014).

17

library(limma)
library(edgeR)
se <- readRDS("data/seParathyroid.rds")
se

class: SummarizedExperiment
dim: 63193 23
metadata(1): MIAME
assays(1): counts
rownames(63193): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
rowData names(0):
colnames: NULL
colData names(8): run experiment ... study sample

design <- model.matrix(~treatment*time+patient,
data=colData(se))

keep <- filterByExpr(se, design)
table(keep)

keep
FALSE TRUE
46629 16564

filtCounts <- assays(se)$counts[keep,]

dge <- DGEList(counts=filtCounts)

normalize just as in edgeR
dge <- calcNormFactors(dge)
fit the mean-variance trend used to calculate weights
v <- voom(dge, design, plot=TRUE)

18

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

log2(count size + 0.5)

S
qr

t(
 s

ta
nd

ar
d

de
vi

at
io

n
)

voom: Mean−variance trend

this mean-variance trend is then automatically incorporated into the usual limma pipeline
fit <- lmFit(v, design)
fit <- eBayes(fit)
tt <- topTable(fit, coef=(ncol(design-1):ncol(design)), number=nrow(dge)) # test interaction effects
head(tt) #similar as in edgeR, we find no DE

logFC AveExpr t P.Value adj.P.Val B
ENSG00000172757 0.2569726 7.671195 3.390462 0.0025617823 0.9992981 -2.597205
ENSG00000204959 0.2544937 6.418769 3.381572 0.0026171741 0.9992981 -2.735431
ENSG00000180198 0.4734867 4.690567 3.925465 0.0006952729 0.9992981 -2.936835
ENSG00000124406 -0.4058466 7.816491 -2.982176 0.0067471187 0.9992981 -3.035082
ENSG00000146574 -0.4736870 6.218353 -3.067974 0.0055194390 0.9992981 -3.085528
ENSG00000131238 -0.2523463 6.925159 -2.907805 0.0080194108 0.9992981 -3.139045

3.3.1 Testing contrasts using limma-voom

When working with limma-voom, we cannot immediately test a contrast using a contrast matrix just like we
did in edgeR. Instead, we will reparametrize our model according to the contrasts, such that each parameter
corresponds to a specific contrast, using the contrasts.fit function.

contrast matrix we used before
L <- matrix(0, nrow = ncol(fit$coefficients), ncol = 7)
rownames(L) <- colnames(fit$coefficients)
colnames(L) <- c("DPNvsCON24", "DPNvsCON48",

19

"OHTvsCON24", "OHTvsCON48",
"DPNvsCONInt", "OHTvsCONInt",
"OHTvsDPNInt")

DPN vs control at 24h
L[2,"DPNvsCON24"] <- 1
DPN vs control at 48h
L[c(2,8),"DPNvsCON48"] <- 1
OHT vs control at 24h
L[3,"OHTvsCON24"] <- 1
OHT vs control at 48h
L[c(3,9),"OHTvsCON48"] <- 1
DPN control interaction
L[8,"DPNvsCONInt"] <- 1
OHT control interaction
L[9,"OHTvsCONInt"] <- 1
OHT DPN interaction
L[c(9,8),"OHTvsDPNInt"] <- c(1, -1)
L

DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt
(Intercept) 0 0 0 0 0
treatmentDPN 1 1 0 0 0
treatmentOHT 0 0 1 1 0
time48h 0 0 0 0 0
patient2 0 0 0 0 0
patient3 0 0 0 0 0
patient4 0 0 0 0 0
treatmentDPN:time48h 0 1 0 0 1
treatmentOHT:time48h 0 0 0 1 0
OHTvsCONInt OHTvsDPNInt
(Intercept) 0 0
treatmentDPN 0 0
treatmentOHT 0 0
time48h 0 0
patient2 0 0
patient3 0 0
patient4 0 0
treatmentDPN:time48h 0 -1
treatmentOHT:time48h 1 1

fit <- lmFit(v, design)
fit2 <- contrasts.fit(fit, L)
fit2 <- eBayes(fit2)
head(fit2$coefficients) # one coefficient is one contrast

DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt
ENSG00000000003 0.160189232 -0.015153215 0.11818144 -0.053716201 -0.17534245
ENSG00000000419 -0.081114061 -0.006840437 -0.05767507 0.116075037 0.07427362
ENSG00000000457 -0.196673615 -0.092219304 -0.19581292 -0.007131573 0.10445431
ENSG00000000460 0.101878901 0.346346109 0.16977808 0.407107755 0.24446721
ENSG00000000938 0.001144654 -0.027973867 -0.23689618 -0.270319390 -0.02911852
ENSG00000000971 0.558406693 -0.362972697 0.45660599 -0.594255351 -0.92137939
OHTvsCONInt OHTvsDPNInt

20

ENSG00000000003 -0.17189764 0.003444803
ENSG00000000419 0.17375011 0.099476483
ENSG00000000457 0.18868134 0.084227034
ENSG00000000460 0.23732967 -0.007137533
ENSG00000000938 -0.03342321 -0.004304688
ENSG00000000971 -1.05086134 -0.129481951

loop over all contrasts of interest
ttList <- list()
for(cc in 1:ncol(L)){
ttList[[cc]] <- topTable(fit2, coef=cc, number=nrow(dge))

}
names(ttList) <- colnames(L)
nDE <- unlist(lapply(ttList, function(x) sum(x$adj.P.Val <= 0.05)))
nDE

DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt OHTvsCONInt
0 0 0 7 0 0
OHTvsDPNInt
0

21

	Independent filtering
	A dependent test statistic
	An independent test statistic

	Aliasing
	limma-voom as an alternative approach to modeling counts
	The limma framework for the analysis of microarrays
	limma-voom: extending limma for RNA-seq data
	limma-voom analysis of parathyroid data

