Sequencing: Selected technical topics

Koen Van den Berge

Last compiled on 03 December, 2021

Contents

1 Independent filtering 1
1.1 A dependent test statistic L L e 3
1.2 An independent test statistic L 7

2 Alijasing 10

3 limma-voom as an alternative approach to modeling counts 16
3.1 The limma framework for the analysis of microarrays 16
3.2 limma-voom: extending limma for RNA-seqdata 16
3.3 limma-voom analysis of parathyroid data L oL 16

1 Independent filtering

Independent filtering, where genes/transcripts/proteins are filtered out prior to statistical analysis, is a com-
mon practice in ‘omics experiments. Typically, lowly expressed features are filtered out, and one can argue
that these features’ expression is too low to be deemed biologically relevant. In addition, low-count features
are also associated with a low statistical power for differential expression (remember relative uncertainty of
counts, and edgeR’s BCV plot), and will increase the number of tests performed, and therefore lead to a
more severe multiple testing correction.

Independent filtering has been formalized by Bourgon et al. (2010), and the concept can be summarized as
follows.

o For each feature we calculate two statistics, Sp and Sy, respectively used for two stages: filtering and
testing (e.g., differential expression).

e In order for a feature to be deemed significant, both of its statistics must be greater than some cut-off.

o We want to control the type I error rate of the second stage (testing). But note that the second
stage is conditional on the first stage, as we only test features passing the filter, and basically
ignore the fact that filtering was performed. Indeed, one criticism is that computing and correcting
the p-values as if filtering had not been performed may lead to overoptimistic adjusted p-values.

https://www.pnas.org/content/107/21/9546

>

Rejected null hypotheses

@)

Rejected null hypotheses

0 200 400 600 800 1000

100 200 300 400

0

I

1

1

Filtering on overall variance

o9)

o

S -
8 - — 0=50%
2 o — 8=40%
_QC-’ S - | — 6=30%
B © — 0=20%

— 0=10%

S g | —0-0%
f © Random 50%
=}
c 3
- ¥
'E‘) o
15}
o &7
)
an

.

Filtering on overall mean

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Adjusted p-value cutoff

Rejections, for adjusted p<0.10 [) Overall variance

Overall variance
Overall mean

10

Filtered
© Insig.
© Sig.

Il

T T T
0.2 0.4 0.6
Fraction filtered out ()

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Adjusted p-value cutoff

Overall mean

T 1
min max

0.8

l
min

Rank of filter statistic

Fig. 1. Power assessment of filtering applied to the
ALL data (12,625 genes). R, the number of genes called
differentially expressed between the two cytogenetic
groups, was computed for different stage-one filters,
filtering stringencies, and FDR-adjusted p-value cutoffs.
In all cases, a standard t-statistic (T) was used in stage
two, and adjustment for multiple testing was by the
method of ref. 24. Similar results were obtained with
other adjustment procedures. Filter cutoffs were se-
lected so that a fraction @ of genes were removed. A
random filter, which arbitrarily selected and removed
one half of the genes, was also considered. (A) Filtering
on overall variance (S?). At all FDR cutoffs, increasingly
stringent filtering increased total discoveries, even
though fewer genes were tested. This effect was not,
however, due to the reduction in the number of hypoth-
eses alone: filtering half of the genes at random re-
duced total discoveries by approximately one half, as
expected. (B) Filtering on overall mean (Y), on the other
hand, produced a small increase in rejections at low
stringency, but then substantially reduced rejections,
and thus power, at higher stringencies. (C) Effect of in-
creasing filtering stringency for fixed adjusted p-value
cutoff @ = 0.1. At higher stringencies, both filters even-
tually reduced rejections. For the ALL data, this effect oc-
curred much more quickly for the overall mean filter.
With the overall variance filter, the number of rejections
increased by up to 50%. (D) Filtering on overall
mean (¢ = 0.5 is shown) removed many significant |T;|
(e.g., |T;| >4), while filtering on overall variance
retained them.

Figure 1: Figure 1 from Bourgon *et al.* (2010).

o Bourgon et al. (2010) show that filtering is only appropriate (i.e., does not inflate type I error rate) if
the conditional null distribution of test statistics for features passing the filter is the same as the un-
conditional null distribution. Therefore, filtering is appropriate if the statistic used for filtering
is independent of the statistic used for testing under the null hypothesis. A good filtering
statistic, however, is also informative under the alternative hypothesis. Indeed, a filtering statistic that
is independent of the test statistic under both the null- and alternative hypothesis will amount to a

random filter, hence deteriorate the quality of the analysis.

C True null limma p-values

A Null distributions for U" B Gene-level error SD estimates (filtered)
— GivenU'> u* N i it I
iti i — limma fi
Unconditional : " - - - Unconditional -
r T T T 1 r T T T T 1 r T T T T 1
-4 -2 0 2 4 0 2 4 8 10 0.0 0.2 0.4 0.6 0.8 1.0
U s, p

Fig. 2. (A) The null distribution of the test statistic is affected by filtering on the maximum of within-class averages. In this example, all genes have a known
common variance, the filter statistic is the maximum of within-class means, and the test statistic is a z-score. The unconditional distribution of the test statistic
for nondifferentially expressed genes is a standard normal. Its conditional null distribution, given that the filter statistic (U') exceeds a certain threshold (u*),
however, has much heavier tails. Using the unconditional null distribution to compute p-values after filtering would therefore be inappropriate. See S/ Text for
full details. (B and C) Overall variance filtering and the /imma moderated t-statistic. Data for 5,000 nondifferentially expressed genes were generated according
to the limma Bayesian model (n; = n, =2,dy =3, sg = 1). (B) Filtering on overall variance (9 = 0.5) preferentially eliminated genes with small s;, causing gene-
level standard deviation estimates for genes passing the filter (histogram) to be shifted relative to the unconditional distribution used to generate the data
(dashed curve). The limma inverse y2 model was unable to provide a good fit (solid curve) to the s; passing the filter. (C) The fitting problems lead to a posterior
degrees-of-freedom estimate of co. As a consequence, p-values were computed using an inappropriate null distribution, producing too many true-null p-values
close to zero, i.e., loss of type | error rate control. An analogous analysis comparing biological replicates from the ALL study—so that real array data were used

but no gene was expected to exhibit significant differential expression—yielded qualitatively similar results.

Figure 2: Figure 2 from Bourgon *et al.* (2010).

Let’s try a couple of examples to get some intuition using simulated data.

suppressPackageStartupMessages (library(DESeq2))

set.seed(24)
dds <- DESeq2::makeExampleDESeqgDataSet ()

simCounts <- counts(dds)
group <- dds$condition

1.1 A dependent test statistic

filter based on difference in means
filterStatEffectSize <- abs(rowMeans(simCounts[,group == "A"]) - rowMeans(simCounts[,group == "B"]))

calculate t-test results for each gene
testStat <- genefilter: :rowttests(simCounts, group)

https://www.pnas.org/content/107/21/9546

unconditional distribution of test statistics prior to filtering
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
main = "Unconditional distribution")
Unconditional distribution
@ _]
o
2 o
8 o
(]
()]
|
o
o _|
e I I I I
-4 -2 0 2

Test statistic

filter out ~20/ of genes with lowest effect sizes
mean(filterStatEffectSize > 1)

[1] 0.792

hist(filterStatEffectSize, breaks=40)
abline(v=1, col="red")

Histogram of filterStatEffectSize

Frequency
400 600 800
I I |
]

200
I

I

0 100 200 300 400

filterStatEffectSize

keepEffectSize <- filterStatEffectSize > 1
conditional distridbution: wvery different!
plot(density(testStat$statistic[keepEffectSize], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution")

Conditional distribution

o
(V)__
o
o
2z 94
) o
[
(] |
a)
o
\—!_
o
o
Q_i
© | | | | |

Test statistic

in same plot
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
col = "orange",
main = "Test statistics before and after filtering on mean difference",
lwd = 2)
lines(density(testStat$statistic[keepEffectSize], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution",
col = "steelblue",
lwd = 2)

legend ("topright", c("Unconditional", "Conditional"),
col=c("orange", "steelblue"), lwd=2, bty='n')

Test statistics before and after filtering on mean difference

Unconditional
o | —— Conditional
o
2
2 o
(]
a
-]
o
o _|
© I I I I I
-4 -2 0 2 4

Test statistic

1.2 An independent test statistic

filterStatGlobalMean <- rowMeans(simCounts)
we remove a similar fraction of ~20] genes
mean(filterStatGlobalMean > 5)

[1] 0.771
keepGlobalMean <- filterStatGlobalMean > 5

unconditional distribution
plot(density(testStat$statistic, na.rm=TRUE),
xlab = "Test statistic",
main = "Unconditional distribution")

Unconditional distribution

™ |
o
2 o |
wn
b o
(]
)]
— |
o
o | _
o

Test statistic

conditional distribution: the same.
plot(density(testStat$statistic[keepGlobalMean], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution")

Conditional distribution

™ _|
o
>
2 o |
2 o
o
(|
— _]
o
o 1 _
o

Test statistic

in same plot
plot(density(testStat$statistic, na.rm=TRUE),

xlab = "Test statistic",
col = "orange",
main = "Test statistics before and after filtering on global mean",
lwd = 2)
lines(density(testStat$statistic[keepGlobalMean], na.rm=TRUE),
xlab = "Test statistic",
main = "Conditional distribution",
col = "steelblue",
lwd = 2)

legend ("topright", c("Unconditional", "Conditional"),
col=c("orange", "steelblue"), lwd=2, bty='n')

Test statistics before and after filtering on global mean

Unconditional
o | —— Conditional
o
2 o |
2 o
(]
a
-]
o
o _|
o

Test statistic

2 Aliasing

Suppose we are working with the following experimental design on colon cancer. Studying the effect of a
drug on gene expression, researchers gather RNA-seq data from four colon cancer patients and four healthy
individuals. For each individual, they obtain RNA-seq data from a blood sample before as well as two
weeks after taking a daily dose of the drug. The research question relates to differential expression after
vs. before taking the drug, in particular whether this is different for the diseased versus healthy group (i.e.,
the interaction between time (before/after taking the drug) and disease status (healthy/colon cancer)).

In terms of the model matrix, we could imagine a design such as ~ patient + diseasextime, where

e disease is a binary indicator referring to colon cancer versus control sample.
e time defines if the sample is taken before or after taking the drug.
o patient defines the individual donor the sample comes from.

The research question could then amount to testing the disease * time interaction.

Let’s try this, by simulating random data for one gene.

set.seed(2)

2 samples per patient for 8 patients

patient <- factor(rep(letters[1:8], each=2))

first four are healthy, next four are diseased

disease <- factor(c(rep("healthy",8), rep("cancer",8)), levels=c("healthy", "cancer"))
one before and one after sample for each

10

time <- factor(rep(c("before", "after"), 8), levels=c("before", "after"))

table(patient, disease, time)

, , time = before

#i#

disease

patient healthy cancer
#it 1
#i#
#i#
#i#
#i#t
#it
#it
#i#
#i#
, , time = after

#it

#it disease

patient healthy cancer
1
#i#
#i#t
#it
#i#
#i#
#i#
#i#

»

50 O Q0 T
O O O O - = =
Ll el el e e

v

5@ H 0 Q0 o
O O O O - = =
P)PP, OO0OO0OOoO

simulate data for one gene
n <- 16
y <- rpois(n = n, lambda = 50)

fit a Poisson model
m <- glm(y ~ patient + disease*time,

family = "poisson")
summary (m)
##
Call:
glm(formula = y ~ patient + disease * time, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients: (1 not defined because of singularities)
#it Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.76900 0.11916 31.631 <2e-16 **x*
patientb 0.06744 0.14999 0.450 0.6530
patientc 0.06744 0.14999 0.450 0.6530

11

patientd 0.27304 0.14310 1.908 0.0564 .
patiente 0.16449 0.16224 1.014 0.3107
patientf 0.02565 0.16644 0.154 0.8775
patientg -0.01784 0.16785 -0.106 0.9154
patienth 0.05706 0.16544 0.345 0.7302
diseasecancer NA NA NA NA
timeafter -0.01567 0.10220 -0.163 0.8782
diseasecancer:timeafter 0.12374 0.14407 0.859 0.3904
——

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for poisson family taken to be 1)

#i#

#it Null deviance: 16.1200 on 15 degrees of freedom

Residual deviance: 8.8417 on 6 degrees of freedom
AIC: 120.16

#it

Number of Fisher Scoring iterations: 4

We find that one of the coefficients is NA! This is obviously not because we’re dealing with NA values in the
data as we’ve just simulated the response variable ourselves. What’s going on?

One of the parameters, in this case the parameter distinguishing cancer from healthy patients cannot be
estimated as it is a linear combination of other parameters. In our case, estimating the diseased
effect would use information that is already used to estimate the patient-level intercepts. In other words,
once you know the patient, you immediately also know the disease status, so estimating the
diseased vs healthy effect on top of the patient effect provides no additional information if we have already
estimated the patient-level effects. This concept is called aliasing, and is a common technical issue in ’omics
experiments with complex experimental designs.

While to understand the origin of the aliasing it is crucial to understand the relationship between the variables
in the experimental design, we can also investigate it in detail using the alias function, to give us an idea.

alias(m)

Model :

y ~ patient + disease * time

#i#t

Complete :

(Intercept) patientb patientc patientd patiente patientf patientg
diseasecancer 0 0 0 0 1 1 1

patienth timeafter diseasecancer:timeafter

diseasecancer 1 0 0

We see that the effect diseasecancer is a linear combination of the patient-specific effects of the cancer
patients. This makes sense!

12

For clarity, let’s reproduce this using our design matrix.
X <- model.matrix(~ patient + diseasextime) # this ts the design used in glm()

these are indeed tdentical.
X[,"diseasecancer"]

1 2 3 4 6 7 9 10 11 12 13 14 15 16
0 0 O O 0 0 1

5 8
0 0 11 1 1 1 1 1

X[,"patiente"] + X[,"patientf"] + X[,"patientg"] + X[,"patienth"]

H
H*

s
(o
o N
o w
o

6 7 8 910 11 12 13 14 15 16
0 0 0 1

11 1 1 1 1 1

[@XNe!

Since one of our parameters is a linear combination of other parameters, it cannot be estimated simultaneously
with the other parameters. In this case, we can actually drop the disease main effect from the model, since
we know that it is already included in the patient effect.

We will have to carefully construct our design matrix in order to account for all important sources of variation
while still allowing us to answer the research question of interest. The aliasing exploration above has made
it clear we may drop the disease main effect, so let’s start by constructing this design matrix.

X <- model.matrix(~ patient + time + disease:time)

m2 <- glm(y ~ -1 + X,

family = "poisson")
summary (m2)
##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
#i#
Coefficients: (1 not defined because of singularities)
#it Estimate Std. Error z value Pr(>|z]|)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 **x
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530
Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.28823 0.16077 1.793 0.0730 .
Xpatientf 0.14939 0.16500 0.905 0.3653
Xpatientg 0.10590 0.16643 0.636 0.5246
Xpatienth 0.18081 0.16400 1.102 0.2703
Xtimeafter -0.01567 0.10220 -0.153 0.8782
Xtimebefore:diseasecancer -0.12374 0.14407 -0.859 0.3904

13

Xtimeafter:diseasecancer NA NA NA NA

——

Signif. codes: O 's*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for poisson family taken to be 1)

##

Null deviance: 4489.2752 on 16 degrees of freedom

Residual deviance: 8.8417 on 6 degrees of freedom

AIC: 120.16

##

Number of Fisher Scoring iterations: 4

alias(m2)

Model :

y ~ -1 + X

#i#

Complete

#it X(Intercept) Xpatientb Xpatientc Xpatientd Xpatiente
Xtimeafter:diseasecancer O 0 0 0 1

Xpatientf Xpatientg Xpatienth Xtimeafter

Xtimeafter:diseasecancer 1 1 1 0

Xtimebefore:diseasecancer

Xtimeafter:diseasecancer -1

We are still confronted with aliasing as the model matrix contains an interaction effect timebefore:diseasecancer
as well as timeafter:diseasecancer, while only the latter is relevant. Indeed, we know that we can derive
the timebefore:diseasecancer effect by averaging the patient effects of the cancer patients.

X <- X[,!'colnames(X) %in% "timebefore:diseasecancer"]

fit a Poisson model
m2 <- glm(y ~ -1 + X,

family = "poisson")
summary (m2)
##
Call:
glm(formula = y ~ -1 + X, family = "poisson")
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.52772 -0.43544 0.00013 0.44162 1.34650
##
Coefficients:
#it Estimate Std. Error z value Pr(>|zl)
X(Intercept) 3.76900 0.11916 31.631 <2e-16 *xx
Xpatientb 0.06744 0.14999 0.450 0.6530
Xpatientc 0.06744 0.14999 0.450 0.6530

14

Xpatientd 0.27304 0.14310 1.908 0.0564 .
Xpatiente 0.16449 0.16224 1.014 0.3107
Xpatientf 0.02565 0.16644 0.154 0.8775
Xpatientg -0.01784 0.16785 -0.106 0.9154
Xpatienth 0.05706 0.16544 0.345 0.7302
Xtimeafter -0.01567 0.10220 -0.1563 0.8782
Xtimeafter:diseasecancer 0.12374 0.14407 0.859 0.3904
#H -

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for poisson family taken to be 1)

##

Null deviance: 4489.2752 on 16 degrees of freedom

Residual deviance: 8.8417 on 6 degrees of freedom

AIC: 120.16

##

Number of Fisher Scoring iterations: 4

We see that all coefficients can now be estimated. The timeafter effect may be interpreted as the time
effect for healthy patients, while the timeafter:diseasecancer effect may be interpreted as the difference
in the time effect for cancer patients as compared to healthy patients, i.e., it is the relevant interaction effect
we are interested in.

Question. Taking this further, suppose that we can safely assume that there is no interaction effect between
disease status and time. How would you now test for differential expression between healthy and cancer
patients at the first timepoint? Specify the experimental design and contrast used.

Answer.

Assuming no interaction, we can specify the design as follows:

XMain <- model.matrix(~ patient + time)
head (XMain)

#it (Intercept) patientb patientc patientd patiente patientf patientg patienth

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0
5 1 0 1 0 0 0 0 0
6 1 0 1 0 0 0 0 0
timeafter
1 0
2 1
3 0
4 1
5 0
6 1

In order to set up the contrast testing for healthy versus diseased patients at the first timepoint, we need to
take the average of the appropriate patient-level intercepts. The average expression for healthy patients is

1
log ppeqithy = 1 {Bo + (Bo + B1) + (B + B2) + (By + B3) -

15

Similar, for the diseased patients it equals

1
10g 11giseased = 1 {(Bo + Ba) + (Bo + Bs) + (Bo + Bs) + (8o + B7)} -

And thus the relevant contrast

isease 1 1
log iscased — (5, + 5 4 B + B7) — 2(By + By + By).
/’Lhealthy

3 limma-voom as an alternative approach to modeling counts

limma is a powerful linear model based framework for modeling microarray gene expression data and inferring
differential expression results, and has been introduced in the proteomics module of this course. With the
inception of RNA-seq, the 1imma developers got creative and extended their framework to also model count
data, hence creating limma-voom.

3.1 The limma framework for the analysis of microarrays

In the proteomics module, we have previously introduced the powerful linear model based framework 1imma,
and how it uses an empirical Bayes strategy to borrow information across proteins to derive a posterior
variance estimate. In its default implementation, 1imma cannot be used to model count data, as it can not
account for their mean-variance relationship. The developers, however, came up with a creative approach to
use the limma framework to model count data.

3.2 limma-voom: extending limma for RNA-seq data

e Count models such as edgeR and DESeq2 automatically account for the mean-variance relationship of
the data by assuming a proper count distribution, given that the observed mean-variance relation-
ship is close to the one assumed by the distribution. However, they are also more complex, both
computationally as well as statistically and conceptually.

o limma-voom (Law et al. (2014)) is a method that unlocks Gaussian linear models to analyze count
data in the context of RNA-seq, by first estimating the mean-variance relationship of the dataset at
hand, and subsequently incorporating it in the analysis through observation-level weights in a linear
regression model.

¢ The mean-variance relationship is dataset-specific and needs to be estimated separately for each dataset.

e The mean-variance trend is estimated nonparametrically across all genes, using a global mean and
variance for each gene. Using this trend, observation-level variances are estimated for each individual
observation.

e These observation-level variances are then used as inverse weights in the linear modeling framework,
to account for heteroscedasticity.

3.3 limma-voom analysis of parathyroid data

limma has an extensive user’s guide which can be accessed via limma: :1limmaUsersGuide ().

16

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29

Sqrt(standard deviation)

Sqrt(standard deviation)

T T T T TT T T
10 200 10 200 10 20

log2(count size + 0.5) log2(count size + 0.5) log2(count size + 0.5)

o -

Figure 1 Mean-variance relationships. Gene-wise means and variances of RNA-seq data are represented by black points with a LOWESS trend.
Plots are ordered by increasing levels of biological variation in datasets. (a) voom trend for HBRR and UHRR genes for Samples A, B, C and D of the
SEQC project; technical variation only. (b) C57BL/6J and DBA mouse experiment; low-level biological variation. (¢) Simulation study in the presence
of 100 upregulating genes and 100 downregulating genes; moderate-level biological variation. (d) Nigerian lymphoblastoid cell lines; high-level
biological variation. (e) Drosophila melanogaster embryonic developmental stages; very high biological variation due to systematic differences
between samples. (f) LOWESS voom trends for datasets (a)—(e). HBRR, Ambion’s Human Brain Reference RNA; LOWESS, locally weighted regression;
UHRR, Stratagene’s Universal Human Reference RNA.

Figure 3: Figure 1 from Law *et al.* (2014).

voom: Mean-variance trend

N

. b c
- o
c =~
il
-g «© | gene-wise gene-wise
% © mean-variance trend mean-variance trend
T 9]
T O
k=]

sqrt standard
S <« Geviatonor. |
% o observation 2, 4,
~ sqrt standard dqviation
b= ~ observation 1, Bg1
(?)— S lowess fit
log2 count for log2 count for
s\)bservatlon 2, Ebservatlon 1,
g B Kg2 Kg1
T T T T T T T T T T T T T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14
Average log2(count size + 0.5) Average log2(count size + 0.5) Fitted log2(count size + 0.5)

Figure 2 voom mean-variance modeling. (a) Gene-wise square-root residual standard deviations are plotted against average log-count. (b) A
functional relation between gene-wise means and variances is given by a robust LOWESS fit to the points. (€) The mean-variance trend enables
each observation to map to a square-root standard deviation value using its fitted value for log-count. LOWESS, locally weighted regression.

Figure 4: Figure 1 from Law *et al.* (2014).

17

library(limma)

library (edgeR)
se <- readRDS("data/seParathyroid.rds")
se

class: SummarizedExperiment

dim: 63193 23

metadata(l): MIAME

assays(1): counts

rownames(63193): ENSG00000000003 ENSGO0000000005 ... LRG_98 LRG_99
rowData names(0):

colnames: NULL

colData names(8): run experiment ... study sample

design <- model.matrix(~treatment*time+patient,
data=colData(se))

keep <- filterByExpr(se, design)
table (keep)

keep
FALSE TRUE
46629 16564

filtCounts <- assays(se)$counts [keep,]
dge <- DGEList(counts=filtCounts)

mormalize just as in edgeR

dge <- calcNormFactors(dge)

fit the mean-variance trend used to calculate weights
v <- voom(dge, design, plot=TRUE)

18

Sqgrt(standard deviation)

this mean-vartance trend %s then automatically incorporated into the usual limma pipeline

voom: Mean-variance trend

02 04 06 08 10 1.2

fit <- lmFit(v, design)

fit

tt <- topTable(fit, coef=(ncol(design-1):ncol(design)), number=nrow(dge)) # test interaction effects

<- eBayes(fit)

log2(count size + 0.5)

head(tt) #similar as in edgeR, we find no DE

##
##
##
##
##
##
##

ENSG0O0000172757
ENSG00000204959
ENSG00000180198
ENSG00000124406
ENSG00000146574
ENSG00000131238

logFC

.2569726
.2544937
.4734867
.4058466
.4736870
.2523463

DO N PO

AveExpr
.671195
.418769
.690567
.816491
.218353
.925159

3.3.1 Testing contrasts using limma-voom

When working with limma-voom, we cannot immediately test a contrast using a contrast matrix just like we
did in edgeR. Instead, we will reparametrize our model according to the contrasts, such that each parameter

t

.390462
.381572
.925465
.982176
.067974
.907805

P.Value adj.P.Val

.0025617823
.0026171741
.0006952729
.0067471187
.0055194390
.0080194108

corresponds to a specific contrast, using the contrasts.fit function.

contrast matricz we used before
ncol (fit$coefficients), ncol
rownames (L) <- colnames(fit$coefficients)
colnames (L) <- c("DPNvsCON24", "DPNvsCON48",

L <- matrix(0, nrow

19

=7)

0.

0.
0.
0.
0.
0.

9992981
9992981
9992981
9992981
9992981
9992981

B

.597205
. 735431
.936835
.035082
.085528
.139045

I

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

"OHTvsCON24",
"DPNvsCONInt",

"OHTvsDPNInt")
DPN wvs control at 24h
L[2,"DPNvsCON24"] <- 1

DPN vs control at 48h
L[c(2,8),"DPNvsCON48"] <- 1
OHT wvs control at 24h
L[3,"0OHTvsCON24"] <- 1

OHT wvs control at 48h
L[c(3,9),"0OHTvsCON48"] <- 1
DPN control interaction

L[8,"DPNvsCONInt"] <- 1
OHT control interaction
L[9,"0OHTvsCONInt"] <- 1
OHT DPN interaction

L[c(9,8),"0HTvsDPNInt"] <- c(1, -1)

(Intercept)
treatmentDPN
treatmentOHT

time48h

patient2

patient3

patient4
treatmentDPN:time48h
treatmentOHT:time48h

(Intercept)
treatmentDPN
treatmentOHT

time48h

patient2

patient3

patient4
treatmentDPN:time48h
treatmentOHT:time48h

fit <- lmFit(v, design)
fit2 <- contrasts.fit(fit, L)
fit2 <- eBayes(fit2)
head(fit2$coefficients) # one coefficient is

##
##
##
##
##
##
##
##

"OHTvsCON48",
"OHTvsCONInt",

DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt

0

O OO O O O+

0

0

O O O O O+

0

0

O OO O OO = O

OHTvsCONInt OHTvsDPNInt

DPNvsCON24
ENSGO0000000003 0.160189232 -0.
ENSGO0000000419 -0.081114061 -0.
ENSGO0000000457 -0.196673615 -0.
ENSGO0000000460 0.101878901 O.
ENSGO0000000938 0.001144654 -0.
ENSGO0000000971 0.558406693 -0.

OHTvsCONInt

0

= O O OO O OO

D

PNvsCON48
015153215
006840437
092219304
346346109
027973867
362972697

OHTvsDPNInt

O OO O O O o

one contrast

OHTvsCON24
0.11818144
-0.05767507
-0.19581292
0.16977808
-0.23689618
0.45660599

20

0

H O O O OO+~ O

OHTvsCON48
.053716201
.116075037
.007131573
.407107755
.270319390
.594255351

O, OO OO O OoOOo

DPNvsCONInt
-0.17534245
0.07427362
0.10445431
0.24446721
-0.02911852
-0.92137939

ENSGO0000000003 -0.17189764 0.003444803
ENSGO0000000419 0.17375011 0.099476483
ENSGO0000000457 0.18868134 0.084227034
ENSGO0O000000460 0.23732967 -0.007137533
ENSGO0O000000938 -0.03342321 -0.004304688
ENSGO0O000000971 -1.05086134 -0.129481951

loop over all contrasts of interest
ttlist <- list()
for(cc in 1:ncol(L)){
ttlist[[cc]] <- topTable(fit2, coef=cc, number=nrow(dge))
}
names (ttList) <- colnames(L)
nDE <- unlist(lapply(ttList, function(x) sum(x$adj.P.Val <= 0.05)))
nDE

DPNvsCON24 DPNvsCON48 O0OHTvsCON24 OHTvsCON48 DPNvsCONInt OHTvsCONInt

0 0 0 7 0 0
OHTvsDPNInt
0

21

	Independent filtering
	A dependent test statistic
	An independent test statistic

	Aliasing
	limma-voom as an alternative approach to modeling counts
	The limma framework for the analysis of microarrays
	limma-voom: extending limma for RNA-seq data
	limma-voom analysis of parathyroid data

