Sequencing: RNA-seq data intro

Koen Van den Berge

Last compiled on 03 December, 2021

Contents

1	Exp	perimental design, data import and data exploration	2
	1.1	Experimental design	2
	1.2	Data import and exploration	2
	1.3	Independent filtering	5
	1.4	Data exploration	6
2	Cha	allenge I: Choice of modeling assumptions	15
3	Cha	allenge II: Normalization	19
	3.1	Count scaling versus GLM offsets	21
	3.2	How to normalize?	22
	3.3	${\it Median-of-ratios\ method\ (default\ of\ DESeq2)\ \ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ $	25
	3.4	Full-quantile (FQ) normalization	26
	3.5	Uncertainty in normalization	26
4	Cha	allenge III: Parameter estimation (under limited information setting)	28
	4.1	Defining the model for the mean	28
	4.2	Parameter estimation and empirical Bayes	28
	4.3	In practice	29
5	Cha	allenge IV: Statistical inference across many genes	32
	5.1	Contrasts on the treatment effects	32
	5.2	Contrast on the time effect	39
6	Alt	ernative parameterizations	40

7 Additional Challenge (Opportunity?): The importance of reproducible analysis

In this lecture we will start working with a real bulk RNA-seq dataset from Haglund *et al.* (2012). After importing the data, we will be working our way through four major challenges which, together, will form a full RNA-seq differential expression (DE) analysis pipeline where the result of our analysis will be a(n ordered) list of genes that we find to be differently expressed between our conditions of interest. The four main challenges we will look into are

 $\mathbf{44}$

- Choice of modeling assumptions (distribution).
- Normalization.
- Parameter estimation under a limited information setting.
- Statistical inference under high dimensionality (many genes).

1 Experimental design, data import and data exploration

1.1 Experimental design

Let's try to work out the experimental design using the following paragraph from the Methods section of the paper.

Tissue for cell culturing was obtained from four chief cell parathyroid adenomas collected directly at surgery from female postmenopausal patients. Isolation of cells and culturing were performed essentially as previously described (22). Cells were plated and treated with 100 nM DPN (Tocris Bioscience, Minneapolis, MN) or 100 nM OHT (Sigma-Aldrich, St. Louis, MO) for 24 or 48 h, respectively. Untreated cells cultured in parallel were used as controls. Cells were harvested in RNeasy (QIAGEN AB, Hilden, Germany), and quality control was performed using Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Nanodrop (Nanodrop Technology, Wilmington, DE) for all specimens. RNA samples were isolated from four different adenomas, and one sample (case 4, control 24 h) was omitted before transcriptome sequencing based on low RIN value. The entire sample set used for sequencing consisted of the treatment groups DPN 24 h (n = 4), DPN 48 h (n = 4), OHT 24 h (n = 4), OHT 48 h (n = 4), control 24 h (n = 3), and control 48 h (n = 4).

Figure 1: Figure: A paragraph from the Methods section.

1.2 Data import and exploration

We will be importing the dataset using the parathyroidSE data package from Bioconductor.

```
if (!requireNamespace("BiocManager", quietly = TRUE)){
    install.packages("BiocManager")
}
if(!"SummarizedExperiment" %in% installed.packages()[,1]){
    BiocManager::install("SummarizedExperiment")
}
# install package if not installed.
if(!"parathyroidSE" %in% installed.packages()[,1]) BiocManager::install("parathyroidSE")
```

```
suppressPackageStartupMessages({
  library(parathyroidSE)
  library(SummarizedExperiment)
})
# import data
data("parathyroidGenesSE", package="parathyroidSE")
# rename for convenience
se1 <- parathyroidGenesSE</pre>
rm(parathyroidGenesSE)
# three treatments
treatment1 <- colData(se1)$treatment</pre>
table(treatment1)
## treatment1
               DPN
                     OHT
## Control
        7
              10
                       10
##
# two timepoints
time1 <- colData(se1)$time</pre>
table(time1)
## time1
## 24h 48h
## 13 14
# four donor patients
patient1 <- colData(se1)$patient</pre>
table(patient1)
## patient1
## 1 2 3 4
## 6 8 6 7
table(patient1, treatment1, time1)
## , , time1 = 24h
##
##
          treatment1
## patient1 Control DPN OHT
##
      1 1 1 1
          2
##
                  1
                      2
                          2
                 1 1
##
         3
                          1
##
         4
                  0 1 1
##
## , , time1 = 48h
##
##
          treatment1
## patient1 Control DPN OHT
```

##

1 1 1 1

```
3
```

##	2	1	1	1
##	3	1	1	1
##	4	1	2	2

- We observe that the number of samples that we are observing here is larger than what is described in the paper. As also described in the parathyroidSE vignette, some samples were spread over multiple sequencing runs (i.e., the same sample being sequenced repeatedly) and therefore constitute **technical replication**, rather than biological replication.
- We have previously seen that technical replicates can be considered to be distributed according to a Poisson distribution. One important property of Poisson random variables is that a sum of Poisson random variables still follow a Poisson distribution. Indeed, if $X \sim Poi(\mu_X)$ and $Y \sim Poi(\mu_Y)$, then $X + Y = Z \sim Poi(\mu_X + \mu_Y)$.
- For this reason, it is often suggested to sum technical replicates rather than, for example, averaging, which does not retain the Poisson property (try for yourself!). We'll therefore first sum the technical replicates.

```
dupExps <- as.character(colData(se1)$experiment[duplicated(colData(se1)$experiment)])
dupExps</pre>
```

[1] "SRX140511" "SRX140513" "SRX140523" "SRX140525"

```
counts <- assays(se1)$counts</pre>
newCounts <- counts
cd <- colData(se1)
for(ss in 1:length(dupExps)){
  # check which samples are duplicates
  relevantId <- which(colData(se1)$experiment == dupExps[ss])</pre>
  # sum counts
  newCounts[,relevantId[1]] <- rowSums(counts[,relevantId])</pre>
  # keep which columns / rows to remove.
  if(ss == 1){
    toRemove <- relevantId[2]</pre>
  } else {
    toRemove <- c(toRemove, relevantId[2])</pre>
  }
}
# remove after summing counts (otherwise IDs get mixed up)
newCounts <- newCounts[,-toRemove]</pre>
newCD <- cd[-toRemove,]</pre>
# Create new SummarizedExperiment
se <- SummarizedExperiment(assays = list("counts" = newCounts),</pre>
                              colData = newCD,
                              metadata = metadata(se1))
treatment <- colData(se)$treatment</pre>
table(treatment)
```

##	treatment		
##	Control	DPN	OHT
##	7	8	8

```
time <- colData(se)$time</pre>
table(time)
## time
## 24h 48h
##
    11
       12
patient <- colData(se)$patient</pre>
table(patient)
## patient
## 1 2 3 4
## 6 6 6 5
table(patient, treatment, time) # agrees with paper.
     , time = 24h
##
##
##
           treatment
##
  patient Control DPN OHT
##
          1
                   1
                        1
                            1
##
          2
                   1
                        1
                            1
          3
##
                   1
                       1
                            1
##
          4
                   0
                        1
                            1
##
##
     , time = 48h
##
##
           treatment
  patient Control DPN OHT
##
##
          1
                   1
                        1
                            1
##
          2
                   1
                        1
                            1
##
          3
                   1
                       1
                            1
          4
##
                   1
                        1
                            1
```

- After summing the technical replicates and appropriately updating the sample information, we again create a SummarizedExperiment object, which is essentially a data container that contains all relevant information about your experiment. Please see the vignette for more information on how to use this class.
- By directly matching columns (samples) and rows (genes) to their relevant metadata, the SummarizedExperiment class avoids mistakes by mis-matching columns and rows with each other (provided you haven't mismatched them when you create the object).
- The SummarizedExperiment class is modular and extendable, and extensions exist for example for the analysis of single-cell RNA-seq data, i.e., the SingleCellExperiment class.
- Due to their convenient organization and widely supported usage within Bioconductor, we will typically work with such classes in the analysis of RNA-seq data.

1.3 Independent filtering

Independent filtering is a strategy to remove features (in this case, genes) prior to the analysis. Removal of these features may lower the multiple testing correction for other genes that pass the filter. We try to

remove genes that have a low power to be found statistically significant, and/or that are biologically less relevant. A common filtering strategy is to remove genes with a generally low expression, as low counts have lower relative uncertainty (hence lower statistical power), and may be considered biologically less relevant.

```
suppressPackageStartupMessages({
    library(limma)
    library(edgeR)
})
keep <- rowSums(cpm(se) > 2) >= 3
table(keep)
## keep
## FALSE TRUE
## 47837 15356
```

se <- se[keep,]</pre>

1.4 Data exploration

```
# library size distribution
hist(colSums(assays(se)$counts)/1e6, breaks=10)
```


Histogram of colSums(assays(se)\$counts)/1e+06

colSums(assays(se)\$counts)/1e+06

boxplot(colSums(assays(se)\$counts)/1e6 ~ treatment)


```
boxplot(colSums(assays(se)$counts)/1e6 ~ time)
```


boxplot(colSums(assays(se)\$counts)/1e6 ~ patient)

boxplot(colSums(assays(se)\$counts)/1e6 ~ interaction(treatment, time))

Leading logFC dim 1 (48%)

Leading logFC dim 1 (56%)

Observations based on MDS plot:

- There is a very large between-patient variability, which is the major source of variation in this dataset. The samples from each patient cluster together tightly.
- Within patient, time consistently explains more variation than the treatments.
- Relative to patients and time, the treatment seems to have a fairly small effect.

2 Challenge I: Choice of modeling assumptions

When working with a GLM, as part of the choices of modeling assumptions, we need to pick an appropriate distribution for the expression counts. Below we perform some exploratory analyses to investigate.

Data for the first gene


```
# Mean-variance trend within each experimental condition
cont24ID <- which(treatment == "Control" & time == "24h")</pre>
DPN24ID <- which(treatment == "DPN" & time == "24h")</pre>
OHT24ID <- which(treatment == "OHT" & time == "24h")
cont48ID <- which(treatment == "Control" & time == "48h")</pre>
DPN48ID <- which(treatment == "DPN" & time == "48h")
OHT48ID <- which(treatment == "OHT" & time == "48h")
idList <- list(cont24ID, DPN24ID, OHT24ID,</pre>
                cont48ID, DPN48ID, OHT48ID)
names(idList) <- paste0(rep(levels(treatment),2), rep(levels(time), each=3))</pre>
par(mfrow=c(3,2), mar=c(2,2,2,1))
for(kk in 1:length(idList)){
  # extract counts for each condition
  curCounts <- assays(se)$counts[,idList[[kk]]]</pre>
  plot(x = rowMeans(curCounts)+1,
       y = rowVars(curCounts)+1,
       pch = 16, cex=1/2,
       xlab = "Mean", ylab="Variance",
       main = names(idList)[kk],
       log="xy")
  abline(0,1, col="red")
  lw1 <- loess((rowVars(curCounts)+1) ~ (rowMeans(curCounts)+1), span=1/4, lwd=3)</pre>
  oo <- order(rowMeans(curCounts)+1)</pre>
  lines(rowMeans(curCounts)[oo]+1, lw1$fitted[oo], col="orange")
```

```
smoothScatter(x = log1p(rowMeans(curCounts)),
    y = log1p(rowVars(curCounts)),
    pch = 16, cex=1/2,
    xlab = "Mean", ylab="Variance")
    abline(0,1, col="red")
    lines(log(rowMeans(curCounts)[oo]+1), log(lw1$fitted[oo]+1), col="orange")
}
```


- Having data on thousands of genes provides the opportunity to empirically assess the mean-variance relationship.
- It is clear that the data is overdispersed with respect to the Poisson distribution (red y = x line). There also seems to be a quadratic trend of the variance as a function of the mean. This has motivated the negative binomial distribution as the most popular choice to model (bulk) RNA-seq gene expression data.
- The negative binomial distribution is also referred to as the Gamma-Poisson distribution as it can be formulated as such. Indeed, if

$$\lambda \sim \Gamma(\alpha,\beta) Y | \lambda \sim Poi(\lambda),$$

then this is equivalent to

$$Y \sim NB(\mu = \alpha/\beta, \phi = 1/\alpha).$$

- This can be shown analytically, but is considered out of the scope of this course. Below, we show it empirically using simulation.
- This theoretical result has got some practical consequences. The Gamma-Poisson formulation makes it clear why we can sum technical replicates as the sum of Poisson random variables is again a Poisson random variable.
- The Poisson statement can thus be considered as capturing technical variation, while the Gamma statement can be considered to capture biological variation, i.e., variation in the mean expression across biological replicates.

```
alpha <- 20
beta <- 10
lambda <- rgamma(n = 1e5, shape = alpha, rate = beta)
y1 <- rpois(n = 1e5, lambda = lambda)
# note phi = 1 / size
y2 <- rnbinom(n=1e5, mu=alpha / (beta), size=alpha)
plot(density(y1))
lines(density(y2), col="steelblue")
```


density.default(x = y1)

3 Challenge II: Normalization

Normalization is necessary to correct for several sources of technical variation:

- **Differences in sequencing depth** between samples. Some samples get sequenced deeper in the sense that they consist of more (mapped) reads and therefore can be considered to contain a higher amount of information, which we should be taking into account. In addition, if a sample is sequenced deeper, it is natural that the counts for each gene will be higher, jeopardizing a direct comparison of the expression counts.
- Differences in RNA population composition between samples. As an extreme example, suppose that two samples have been sequenced to the exact same depth. One sample is contaminated and has

a very high concentration of the contaminant cDNA being sequenced, but otherwise the two samples are identical. Since the contaminant will be taking up a significant proportion of the reads being sequenced, the counts will not be directly comparable between the samples. Hence, we may also want to correct for differences in the composition of the RNA population of the samples.

• Other technical variation such as sample-specific GC-content or transcript length effects may also be accounted for.

Let's take a look at how comparable different replicates are in the Control condition at 48h in our dataset. We will investigate this using MD-plots (mean-difference plots as introduced by Dudoit *et al.* (2002)), also sometimes referred to as MA-plots.

cont48ID # relevant samples

```
## [1] 2 8 14 19
colSums(assays(se)$counts[,cont48ID]) / 1e6
## [1] 10.801193 6.828259 8.038079 7.678421
combs <- combn(cont48ID, m=2) #pairwise combinations between samples
par(mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
  curSamples <- combs[,cc]</pre>
 M <- rowMeans(assays(se)$counts[,curSamples])</pre>
 D <- assays(se)$counts[,curSamples[2]] / assays(se)$counts[,curSamples[1]]</pre>
  plot(x = log(M), y = log2(D),
       pch = 16, cex=1/3,
       main = paste0("Sample ", curSamples[2], " vs sample ", curSamples[1]),
       xlab = "Log mean", ylab = "Log2 fold-change",
       bty = 'l')
  abline(h = 0, col="orange", lwd=2)
}
```


• We see clear bias for some pairwise comparisons. For example, in the first plot comparing sample 8 versus sample 2, the log fold-changes are biased downwards. This means that, on average, a gene is lower expressed in sample 8 versus sample 2. Looking at the library sizes, we can indeed see that the library size for sample 2 is about 11×10^6 while it is only about 7×10^6 for sample 8! This is a clear library size effect that we should take into account.

3.1 Count scaling versus GLM offsets

- We have previously discussed count scaling transformations such as CPM and TPM.
- A more appropriate and natural way when working with GLMs is through the use of **offsets**. The general use of an offset is to account for the 'effort' performed in order to gather that observation of the response variable. Two examples:
 - 1. A biologist studying whale migration has one fixed spot where, in the migration season, she counts migrating whales day after day, over several years. For each day she records the number of spotted whales. Of course, the time spent whale-watching may differ from day to day and it is natural that you are more likely to spot more whales if you spend more time looking for them. The time spent spotting whales can then be used as an offset.
 - 2. In our case, a sample being sequenced deeper contains more information, i.e., more 'effort' has been performed, as compared to a sample being sequenced relatively shallow. We have more confidence of a count from a deeply sequenced sample than from a shallowly sequenced sample. We can therefore use the sequencing depth $N_i = \sum_{g} Y_{gi}$ as offset in the model.
- Adding an offset to the model is different from adding a new variable to the model. For each new variable we add, we will estimate its average effect β on the response variable. When adding an offset, however, we are implicitly assuming that $\beta = 1$.

• Offsets are typically added on the scale of the linear predictor. Suppose we have a gene g and sample i specific offset O_{gi} , then we can define a negative binomial GLM including the offset as

$$\left\{ \begin{array}{rrr} Y_{gi} & \sim & NB(\mu_{gi}, \phi_g) \\ \log \mu_{gi} & = & \eta_{gi} \\ \eta_{gi} & = & \mathbf{X}_i^T \beta_g + \log(O_{gi}) \end{array} \right.$$

• Please read this page for an intuitive reasoning as to why offsets are preferred over count scaling.

3.2 How to normalize?

Many approaches are available for normalizing RNA-seq data, and we will review a couple of these. Most methods calculate an offset that is used in the GLM used to model gene expression. One notable method, full-quantile normalization, does not calculate an offset, and rather normalizes counts directly, immediately enforcing the same sequencing depth for all samples.

3.2.1 TMM method (default of edgeR)

The trimmed mean of M-values (TMM) method introduced by Robinson & Oshlack (2010) is a normalization procedure that calculates a single normalization factor for each sample. As the name suggests, it is based on a trimmed mean of fold-changes (*M*-values) as the scaling factor. A trimmed mean is an average after removing a set of 'extreme' values. Specifically, TMM calculates a normalization factor $F_i^{(r)}$ across genes g for each sample *i* as compared to a reference sample r,

$$\log_2(F_i^{(r)}) = \frac{\sum_{g \in G^*} w_{gi}^r M_{gi}^r}{\sum_{g \in G^*} w_{gi}^r},$$

where M_{gi}^r represents the log₂-fold-change of the gene expression fraction as compared to a reference sample r, i.e.,

$$M_{gi}^r = \log_2\left(\frac{Y_{gi}/N_i}{Y_{gr}/N_r}\right),$$

and w_{gi}^r represents a precision weight calculated as

$$w_{gi}^r = \frac{N_i - Y_{gi}}{N_i Y_{qi}} + \frac{N_r - Y_{gr}}{N_r Y_{qr}},$$

and G^* represents the set of genes after trimming those with the most extreme average expression and foldchange. The weights serve to account for the fact that fold-changes for genes with lower read counts are more variable.

The procedure only takes genes into account where both $Y_{gi} > 0$ and $Y_{gr} > 0$. By default, TMM trims genes with the 30% most extreme *M*-values and 5% most extreme average gene expression, and chooses as reference *r* the sample whose upper-quartile is closest to the across-sample average upper-quartile. The normalization factor is then used in conjunction with the library size to calculate an **effective library size**

$$N_i^{eff} = N_i F_i^{(r)}$$

which is used as offset in the GLM. The normalized counts may be given by $\tilde{Y}_{gi} = Y_{gi}/N_i^s$, with size factor

$$N_{i}^{s} = \frac{N_{i}F_{i}^{(r)}}{\frac{1}{n}\sum_{i=1}^{n}N_{i}F_{i}^{(r)}}.$$

TMM normalization may be performed from the calcNormFactors function implemented in edgeR:

dge <- edgeR::calcNormFactors(se)
dge\$samples #normalization factors added to colData</pre>

##		group	lib.size	norm.factor	rs run	experiment	patient	treatment
##	Sample1	1	9079958	0.982400	6 SRR479052	SRX140503	1	Control
##	Sample2	1	10801193	0.973090	5 SRR479053	SRX140504	1	Control
##	Sample3	1	5205034	0.977168	30 SRR479054	SRX140505	1	DPN
##	Sample4	1	9681399	0.993509	00 SRR479055	SRX140506	1	DPN
##	Sample5	1	5685671	0.973082	27 SRR479056	SRX140507	1	OHT
##	Sample6	1	7835627	0.983786	32 SRR479057	SRX140508	1	OHT
##	Sample7	1	8590615	0.935021	8 SRR479058	SRX140509	2	Control
##	Sample8	1	6828259	0.943614	7 SRR479059	SRX140510	2	Control
##	Sample9	1	24525588	0.944572	26 SRR479060	SRX140511	2	DPN
##	Sample10	1	8248985	0.932002	20 SRR479062	SRX140512	2	DPN
##	Sample11	1	23535205	0.938482	23 SRR479063	SRX140513	2	OHT
##	Sample12	1	8228473	0.931118	35 SRR479065	SRX140514	2	OHT
##	Sample13	1	7317690	1.056790	9 SRR479066	SRX140515	3	Control
##	Sample14	1	8038079	1.043159	94 SRR479067	SRX140516	3	Control
##	Sample15	1	12443101	1.060780	2 SRR479068	SRX140517	3	DPN
##	Sample16	1	16260235	1.040763	39 SRR479069	SRX140518	3	DPN
##	Sample17	1	23624835	1.043793	36 SRR479070	SRX140519	3	OHT
##	Sample18	1	7619275	1.035415	59 SRR479071	SRX140520	3	OHT
##	Sample19	1	7678421	1.044045	57 SRR479072	SRX140521	4	Control
##	Sample20	1	7114567	1.054197	'0 SRR479073	SRX140522	4	DPN
##	Sample21	1	13777391	1.036570	01 SRR479074	SRX140523	4	DPN
##	Sample22	1	6081314	1.061105	51 SRR479076	SRX140524	4	OHT
##	Sample23	1	15778115	1.041410	01 SRR479077	SRX140525	4	OHT
##		time	submission	study	sample			
##	Sample1	24h	SRA051611	SRP012167	SRS308865			
##	Sample2	48h	SRA051611	SRP012167	SRS308866			
##	Sample3	24h	SRA051611	SRP012167	SRS308867			
##	Sample4	48h	SRA051611	SRP012167	SRS308868			
##	Sample5	24h	SRA051611	SRP012167	SRS308869			
##	Sample6	48h	SRA051611	SRP012167	SRS308870			
##	Sample7	24h	SRA051611	SRP012167	SRS308871			
##	Sample8	48h	SRA051611	SRP012167	SRS308872			
##	Sample9	24h	SRA051611	SRP012167	SRS308873			
##	Sample10	48h	SRA051611	SRP012167	SRS308874			
##	Sample11	24h	SRA051611	SRP012167	SRS308875			
##	Sample12	48h	SRA051611	SRP012167	SRS308876			
##	Sample13	24h	SRA051611	SRP012167	SRS308877			
##	Sample14	48h	SRA051611	SRP012167	SRS308878			
##	Sample15	24h	SRAU51611	SRP012167	SRS308879			
## ##	Sample16	48n 04b	SRAU51611	SRP012167	SK5308880			
##	Sample1/	24n	SRAU51611	SRP012167	SR5308881			
##	Sample18	48n 401	SRAU51611	SRP012167	SR5308882			
## ##	Sample19	40N	SKAU51011	SRPU1210/	SUSSACOCO SUSSACOCO SUSSACOCO			
## ##	Sample20	∠4n 40⊾	SKAU51011	SRPU1210/	SUSSUSSE			
## ##	Sampie21	40N	SKAU51011	SRPU1210/	COCONCERC CDCONCERC			
## ##	Sampie22	∠4n 401-	SRAU51611	SKPU1210/	00000UCGNG			
##	Sample23	48h	SKAU51611	SKP012167	242308881			

Let's check how our MD-plots look like after normalization. Note that, we can rewrite the GLM as

$$\log\left(\frac{\mu_{gi}}{N_i^s}\right) = \mathbf{X}_i^T \beta_g$$

and so $\frac{\mu_{gi}}{N_{\cdot}^{s}}$ can be considered as an 'offset-corrected average count'.

We see that all MD-plots are now nicely centered around a log-fold-change of zero!

```
## normalize
effLibSize <- dge$samples$lib.size * dge$samples$norm.factors
normCountTMM <- sweep(assays(se)$counts, 2, FUN="/", effLibSize)
par(mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
    curSamples <- combs[,cc]
    M <- rowMeans(normCountTMM[,curSamples])
    D <- normCountTMM[,curSamples])
    D <- normCountTMM[,curSamples[2]] / normCountTMM[,curSamples[1]]
    plot(x = log(M), y = log2(D),
        pch = 16, cex=1/3,
        main = paste0("Sample ", curSamples[2], " vs sample ", curSamples[1]),
        xlab = "Log mean", ylab = "Log2 fold-change",
        bty = 'l')
    abline(h = 0, col="orange", lwd=2)
```

```
}
```


3.3 Median-of-ratios method (default of DESeq2)

The median-of-ratios method is used in DESeq2 as described in Love *et al.* (2014). It assumes that the expected value $\mu_{gi} = E(Y_{gi})$ is proportional to the true expression of the gene, q_{gi} , scaled by a size factor s_i for each sample,

$$\mu_{gi} = s_i q_{gi}.$$

The size factor s_i is then estimated using the median-of-ratios method compared to a synthetic reference sample r defined based on geometric means of counts across samples

$$s_i = \text{median}_{\{g: Y_{gr}^* \neq 0\}} \frac{Y_{gi}}{Y_{qr}^*},$$

with

$$Y_{gr}^* = \left(\prod_{i=1}^n Y_{gi}\right)^{1/n}.$$

We can then use the size factors s_i as offsets to the GLM.

Question. Do you see any issues with the procedure described as such?

Answer.

The procedure relies on genes being expressed in all samples. As sample size increases, the number of genes with this property steadily decreases. This will become crucial in single-cell RNA-seq data analysis.

Median-of-ratios normalization is implemented in the DESeq2 package:

converting counts to integer mode

```
dds <- DESeq2::estimateSizeFactors(dds)
sizeFactors(dds)</pre>
```

[1] 0.9166999 1.0640199 0.5224518 0.9806075 0.5664996 0.7802413 0.8282554
[8] 0.6592136 2.3949029 0.7898898 2.2781598 0.7858861 0.7775688 0.8399826
[15] 1.3311498 1.6977165 2.4949218 0.7875376 0.8106158 0.7607974 1.4476678
[22] 0.6529423 1.6653456

You may also want to check out the StatQuest video on DESeq2 normalization.

3.3.1 Comparing TMM with DESeq2 normalization

We can compare the size factors for both normalizations to verify if they agree on the normalization factors. Note we need to scale the effective library sizes from edgeR to enforce a similar scale as the size factors from DESeq2. While below we are using an arithmetic mean, a geometric mean may be used as well, which will be more robust to outlying effective library sizes.

Full-quantile (FQ) normalization $\mathbf{3.4}$

In full-quantile normalization, originally introduced in the context of microarrays by Bolstad et al. (2003), the samples are forced to each have a distribution identical to the distribution of the median/average of the quantiles across samples. In practice, we can implement full-quantile normalization using the following procedure

- 1. Given a data matrix $\mathbf{Y}_{G \times n}$ for G genes (rows) and n samples (columns), 2. sort each column to get \mathbf{Y}^S ,
- 3. replace all elements of each row by the median (or average) for that row,
- 4. obtain the normalized counts $\tilde{\mathbf{Y}}$ by re-arranging (i.e., unsorting) each column.

3.5Uncertainty in normalization

- The offsets that are being calluated for normalization purposes are estimates.
- The downstream analyses incorporates these estimates as if they are known, i.e., conditions on the ٠ estimates.
- The analysis therefore **ignores the uncertainty** in their estimation.

BOX 1 GLOBAL-SCALING NORMALIZATION FOR scRNA-seq DATA SETS

RNA-seq experiments are inherently stochastic, with reads being randomly sampled from a pool of amplified cDNA molecules. Accordingly, let X_{ij} denote a random variable representing the read count of gene *i* in cell *j*. Typically, the parameter of interest is the expression level of each gene (see left panel), i.e., the relative abundance of mRNA molecules for a gene within the population of mRNA molecules in each cell. For the sake of simplicity, we consider here the case of a homogeneous cell population.

Intuitively, a first effect captured through the scaling factor s_j is the endogenous mRNA content n_j , the total number of mRNA molecules per cell (middle panel). Indeed, even within a homogeneous population, n_j can vary across cells. Furthermore, after cell lysis, only a fraction (F_j) of these n_j molecules, are captured and reverse transcribed into cDNA. Consequently, only $n_j \times F_j$ cDNA molecules can potentially be amplified and subsequently sequenced. Critically, the capture and reverse transcription efficiency F_j varies between cells; this introduces cell-to-cell variability that should also be handled by s_j .

Subsequently, because of the minute amount of genetic material contained in a cell, this pool of $n_j \times F_j$ cDNA molecules must be amplified before sequencing library preparation. Variability in amplification efficiency can introduce cell- and gene-specific biases in the measurement of expression levels. We denote the cell-specific amplification factor as A_j , such that amplification leads to a pool of $n_i \times F_i \times A_i$ molecules.

Unlike microarray experiments, RNA-seg is inherently com-

petitive, meaning that a fixed number of reads are distributed

between genes. Given this, the amplified pools are subsequently diluted by a cell-specific factor D_{i} , so that there are $n_i \times F_i \times A_i \times D_i$ amplified cDNA molecules to be sequenced. In principle, the dilution factor D_i can be set so that a library contains the same number of molecules from each cell by carrying out a library quantification step and setting $D_i = m/(n_i \times F_i \times A_i)$, where *m* is the desired number of molecules per cell. Alternatively, each cell can contribute the same volume of amplified cDNA solution to the library, such that each library will contain a different number of amplified cDNA molecules if the concentration of the solution varies between cells. In this case, $D_i = d$, where d is the proportion of amplified molecules used to prepare the sequencing library. This decision is critical for interpreting the scaling factor s_i , since it affects the number of molecules that are available for sequencing and, consequently, the scale of cell-specific read counts.

Finally, the number of sequenced reads per molecule from each cell (sequencing depth), R_j , also varies stochastically. Consequently, by considering all the above factors, we expect to observe $n_j \times F_j \times A_j \times D_j \times R_j$ reads from cell *j*. Hence, even within the same sequencing lane, differences in sequencing depth introduce cell-specific artifacts that will be incorporated into the global scaling factor s_i .

While the above discussion assumes a homogeneous population of cells, this interpretation of scaling factors is still valid for more realistic scenarios—with heterogeneous populations under specific assumptions, such as that the majority of genes is not differentially expressed or that there are roughly equal numbers of upregulated and downregulated genes.

Figure 2: Figure: Box 1 from Vallejos et al. (2017).

4 Challenge III: Parameter estimation (under limited information setting)

There are two challenges to be overcome here:

- First, we need to get the structure of our mean model right, this is, which covariates to include, and how to include them, such that we are capable of capturing important sources of variation in our experiment, in order to derive a correct interpretation of the data in terms of our research question.
- Second, we need to be able to estimate the parameters of our model in an efficient way, while having limited information (i.e., we are often confronted with only a small number of replicates).

4.1 Defining the model for the mean

Let's first check how the authors of the original study parameterized the mean model.

transcripts using Cufflinks (version 1.0.3). Read counts per gene were calculated using HTSeq (version 0.5.1), and differential expression analysis was performed using the edgeR package, (26) employing treatment type, time point, and sample ID as factors in the model. Four different comparisons between sample groups were done: DPN 24 h *vs.* control 24 h, DPN 48 h *vs.* control 48 h, OHT 24 h *vs.* control 24 h, and OHT 48 h *vs.* control 48 h. All raw data are accessible through NCBI GEO Series accession no. GSE37211 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37211).

Figure 3: Figure: Another paragraph from the Methods section.

The authors write that they are "employing treatment type, time point and sample ID as factors in the model". Concerning experimental variables, this suggests they have added covariates defining the treatment and time point for each sample. The sample ID in the text refers to the original tissue sample and therefore corresponds to the donor patient. While there is also a variable called sample in the colData, this is not what the authors refer to. Note the ambiguity here and since the authors didn't share their code, this is hard to check! But, more on reproducibility later...

Question. What are the authors assuming when using this structure for the mean model? Do you think that there are extensions or simplifications of the mean model that would be relevant?

Answer.

The authors are acknowledging the relatedness of samples derived from the same donor patient by adding it as a fixed effect to the model, which is great. This blocking strategy has been extensively discussed in the proteomics part of this course. However, by only adding a main effect for treatment and time, they are assuming that the effect of time is identical for all treatments, i.e., the average gene expression in-/decrease at 48h versus 24h is identical for the DPN, OHT or the control samples, which seems like a quite stringent assumption. We can make the model more flexible by allowing for a treatment * time interaction.

4.2 Parameter estimation and empirical Bayes

- Even in limited sample size settings, the parameters β of the mean model may be estimated reasonably efficiently, and we have previously discussed the IRLS algorithm to do so.
- However, estimating parameters for the variance (this is, the dispersion parameter ϕ from the negative binomial or the variance parameter σ from the Gaussian) is typically quite a bit harder.

- In genomics, we often take advantage of the parallel structure of the thousands of regression models (one for each gene) to **borrow information across genes** in a procedure called **empirical Bayes**, as also seen in the proteomics part of this course.
- In the Bayesian setting, we use not only the data, but also a prior distribution, to derive our parameter estimates. In a traditional Bayesian analysis, one assumes an *a priori* known prior distribution, which reflects our prior belief into all possible values of the parameter. This prior distribution is completely independent of the observed data and the idea is that one specifies the prior distribution before observing the data. One can then use the data and prior distribution to derive a **posterior distribution** for the parameter(s) θ of interest through Bayes rule

$$p(\theta|\mathbf{Y}) = \frac{p(\mathbf{Y}|\theta)p(\theta)}{\int_{\theta\in\Theta} p(\mathbf{Y}|\theta)p(\theta)d\theta}.$$

Here, the posterior distribution $p(\theta|\mathbf{Y})$ is calculated using the data likelihood $p(\mathbf{Y}|\theta)$, prior distribution $p(\theta)$ and the 'marginal likelihood' $\int_{\theta \in \Theta} p(\mathbf{Y}|\theta)p(\theta)d\theta$, where Θ denotes the parameter space of θ . We can see that the posterior probability for a specific value of the parameter θ will be high if both the data likelihood as well as prior probability are high.

- In empirical Bayes, we basically take a semi-Bayesian approach to parameter estimation. Indeed, we do not assume a known prior distribution, but estimate it empirically using the data. This empirically estimated prior $\hat{p}(\theta)$ is then used to calculate the posterior distribution.
- While in some settings one can easily calculate the posterior distribution, sometimes it can be a hard problem. In such cases, it may be useful to restrict ourselves to calculating the **maximum a posteriori** (MAP) estimate, which corresponds to the mode of the posterior distribution. This can be considered to be analogous to point estimation in the frequentist setting.
- In our setting, we use genes with a similar average expression to moderate the dispersion estimate for a particular gene. The basic assumption for this to make sense is that genes with similar means might have similar dispersion parameters (or variances), owing to the mean-variance trend.
- Once initial estimates for the gene-wise dispersions have been derived ($\hat{\Phi}_g^{ML}$ in the figure), we use a parametric model to estimate its distribution (typically as a function of the mean) across genes. This distribution is the **prior distribution**.
- Then, each initial estimate is shrunken towards that empirically estimated prior distribution. The amount of shrinkage being performed is data-driven, and depends on the data, taking into account the precision of our initial estimate (i.e., shape of the likelihood) and the variability of the prior distribution.
- These strategies result in impressive performance gains in terms of differential expression analysis and are implemented in all popular differential expression analysis software packages (though in slightly differing ways) like limma, edgeR and DESeq2.

The blog post on understanding empirical Bayes estimation using baseball statistics is a great primer for further reading, as well as the accompanying book by David Robinson.

4.3 In practice

Let's fit the model using edgeR.

Figure 8

Steps in an empirical Bayes model. In an RNA sequencing experiment, one assesses the observed differences in gene expression across groups of samples with respect to within-group variance. (*a*) The unobserved population distribution for the true within-group variance of each gene. (*b*) Variances are estimated from limited sample size experiments, and so there is sampling variance in our estimate of the variance. A maximum likelihood estimate (MLE) or a bias-corrected estimator for expression variance can be used. (*c*) Thousands of genes are typically observed and estimates are made for each, providing an empirical distribution of MLEs across all genes. This empirical distribution of MLEs can be used to determine a prior distribution for empirical Bayes analysis; the posterior distribution for the variance of each gene is calculated using Bayes' formula. (*d*) Distribution of the maximum a posteriori (MAP), or posterior mode, estimates of variance over all genes. The posterior modes represent shrunken estimates, where the amount of shrinkage is determined by the shape of the likelihood and the width of the prior distribution.

Figure 4: Figure 8 from Van den Berge *et al.* (2019).

```
design <- model.matrix(~ treatment*time + patient, data=colData(se))</pre>
```

```
dge <- calcNormFactors(se)
dge <- estimateDisp(dge, design) # estimate dispersion estimates
plotBCV(dge)</pre>
```


Average log CPM

```
fit <- glmFit(dge, design)
head(fit$coefficients)</pre>
```

##		(Intercept)	treatmentDPN	treatmentOHT	time48h	patient2
##	ENSG0000000003	-9.332660	0.11215980	0.08617711	0.13277338	-0.5185631
##	ENSG0000000419	-10.374585	-0.05233370	-0.03544105	-0.09301681	0.1376257
##	ENSG0000000457	-10.935441	-0.12815863	-0.13380545	-0.07347351	0.4574027
##	ENSG0000000460	-10.098383	0.08875322	0.13754925	-0.89357390	0.5407554
##	ENSG0000000971	-13.689209	0.29526136	0.26736723	0.49224506	-0.1468142
##	ENSG0000001036	-8.280283	0.02211192	-0.02416563	-0.08638397	-0.4676508
##		patient3	patient4 t	reatmentDPN:t	ime48h	
##	ENSG0000000003	-0.82994270	-0.6245673	-0.122	278804	
##	ENSG0000000419	0.10515134	0.1023421	0.048	310092	
##	ENSG0000000457	-0.05731193	0.2089687	0.064	105330	
##	ENSG0000000460	-0.33459640	-0.1321134	0.159	904868	
##	ENSG0000000971	0.93857349	-0.2676066	-0.604	187781	
##	ENSG0000001036	-1.52141542	-1.0046446	0.042	238597	
##		treatmentOH	[:time48h			

##	ENSG0000000003	-0.11955914
##	ENSG0000000419	0.11561301
##	ENSG0000000457	0.13101511
##	ENSG0000000460	0.18156925
##	ENSG0000000971	-0.71520710
##	ENSG0000001036	0.08331487

5 Challenge IV: Statistical inference across many genes

5.1 Contrasts on the treatment effects

We will first derive all contrasts that are also investigated in the original manuscript, using our extended model where we are allowing for an interaction effect between treatment and time.

The mean model is

$$\log(\mu_{gi}) = \beta_{g0} + \beta_{g1} x_{DPN} + \beta_{g2} x_{OHT} + \beta_{g3} x_{48h} + \beta_{g4} x_{pat2} + \beta_{g5} x_{pat3} + \beta_{g6} x_{pat4} + \beta_{g7} x_{DPN:48h} + \beta_{g8} x_{OHT:48h} + \beta_{g8}$$

The intercept corresponds to the log average gene expression in the control group at 24h for patient 1.

DPN 24h vs control 24h. The respective means are

$$\log \mu_{g,DPN,24h} = \beta_{g0} + \beta_{g1},$$
$$\log \mu_{g,con,24h} = \beta_{g0}.$$

And their difference is

 $\delta_g=\beta_{g1}.$

DPN 48h vs control 48h. The respective means are

$$\begin{split} \log \mu_{g,DPN,48h} &= \beta_{g0} + \beta_{g1} + \beta_{g3} + \beta_{g7},\\ \log \mu_{g,con,48h} &= \beta_{g0} + \beta_{g3}. \end{split}$$

And their difference is

$$\delta_g = \beta_{g1} + \beta_{g7}.$$

OHT 24h vs control 24h. The respective means are

$$\log \mu_{g,OHT,24h} = \beta_{g0} + \beta_{g2},$$
$$\log \mu_{g,con,24h} = \beta_{g0}.$$

 $\delta_{g}=\beta_{g2}.$

And their difference is

$$\begin{split} \log \mu_{g,OHT,48h} &= \beta_{g0} + \beta_{g2} + \beta_{g3} + \beta_{g8},\\ \log \mu_{g,con,48h} &= \beta_{g0} + \beta_{g3}. \end{split}$$

And their difference is

$$\delta_g = \beta_{g2} + \beta_{g8}$$

However, we can also assess the interaction effects: is the time effect different between DPN and OHT treatment versus the control? And how about the DPN vs OHT treatments?

DPN vs control interaction. The time effect for each condition is

$$\delta_{DPN} = \log \mu_{g,DPN,48h} - \log \mu_{g,DPN,24h} = \beta_{g3} + \beta_{g7}$$
$$\delta_{con} = \log \mu_{g,con,48h} - \log \mu_{g,con,24h} = \beta_{g3}.$$

So the interaction effect is

$$\delta_{DPN-con} = \beta_{g7}.$$

OHT vs control interaction. The time effect for each condition is

$$\begin{split} \delta_{OHT} &= \log \mu_{g,OHT,48h} - \log \mu_{g,OHT,24h} = \beta_{g3} + \beta_{g8} \\ \delta_{con} &= \log \mu_{g,con,48h} - \log \mu_{g,con,24h} = \beta_{g3}. \end{split}$$

So the interaction effect is

$$\delta_{DPN-con} = \beta_{g8}$$

OHT vs DPN interaction. The time effect for each condition is

$$\begin{split} \delta_{OHT} &= \log \mu_{g,OHT,48h} - \log \mu_{g,OHT,24h} = \beta_{g3} + \beta_{g8}, \\ \delta_{DPN} &= \log \mu_{g,DPN,48h} - \log \mu_{g,DPN,24h} = \beta_{g3} + \beta_{g7}, \end{split}$$

So the interaction effect is

$$\delta_{OHT-DPN} = \beta_{g8} - \beta_{g7}.$$

Let's implement all of these in a contrast matrix.

```
L <- matrix(0, nrow = ncol(fit$coefficients), ncol = 7)</pre>
rownames(L) <- colnames(fit$coefficients)</pre>
colnames(L) <- c("DPNvsCON24", "DPNvsCON48",</pre>
                 "OHTvsCON24", "OHTvsCON48",
                  "DPNvsCONInt", "OHTvsCONInt",
                  "OHTvsDPNInt")
# DPN vs control at 24h
L[2,"DPNvsCON24"] <- 1
# DPN vs control at 48h
L[c(2,8),"DPNvsCON48"] <- 1
# OHT vs control at 24h
L[3,"OHTvsCON24"] <- 1
# OHT vs control at 48h
L[c(3,9),"OHTvsCON48"] <- 1
# DPN control interaction
L[8, "DPNvsCONInt"] <- 1
# OHT control interaction
L[9,"OHTvsCONInt"] <- 1
# OHT DPN interaction
L[c(9,8),"OHTvsDPNInt"] <- c(1, -1)
```

L

##		DPNvsCON24	DPNvsCON48	OHTvsCON24	OHTvsCON48	DPNvsCONInt
##	(Intercept)	0	0	0	0	0
##	treatmentDPN	1	1	0	0	0
##	treatmentOHT	0	0	1	1	0
##	time48h	0	0	0	0	0

##	patient2	0	0	0	0	0
##	patient3	0	0	0	0	0
##	patient4	0	0	0	0	0
##	<pre>treatmentDPN:time48h</pre>	0	1	0	0	1
##	<pre>treatmentOHT:time48h</pre>	0	0	0	1	0
##		OHTvsCONInt	OHTvsDPNInt			
##	(Intercept)	0	0			
##	treatmentDPN	0	0			
##	treatmentOHT	0	0			
##	time48h	0	0			
##	patient2	0	0			
##	patient3	0	0			
##	patient4	0	0			
##	<pre>treatmentDPN:time48h</pre>	0	-1			
##	<pre>treatmentOHT:time48h</pre>	1	1			

And, finally, we can assess each hypothesis using the glmLRT function implemented in edgeR. We can assess each hypothesis separately by looping over the contrasts.

```
lrtList <- list() #list of results</pre>
for(cc in 1:ncol(L)) lrtList[[cc]] <- glmLRT(fit, contrast = L[,cc])</pre>
# p-value histograms
pvalList <- lapply(lrtList, function(x) x$table$PValue)</pre>
pvalMat <- do.call(cbind, pvalList)</pre>
colnames(pvalMat) <- colnames(L)</pre>
par(mfrow=c(3,3))
sapply(1:ncol(pvalMat), function(ii) hist(pvalMat[,ii],
                                            main = colnames(pvalMat)[ii],
                                            xlab = "p-value"))
                                                                [,4]
##
            [,1]
                              [,2]
                                              [,3]
            numeric,21
                             numeric,21
                                              numeric,21
                                                               numeric,21
## breaks
## counts
            integer,20
                             integer,20
                                              integer,20
                                                               integer,20
            numeric,20
                             numeric,20
                                              numeric,20
                                                               numeric,20
## density
## mids
            numeric,20
                             numeric,20
                                              numeric,20
                                                               numeric,20
            "pvalMat[, ii]" "pvalMat[, ii]" "pvalMat[, ii]" "pvalMat[, ii]"
## xname
                             TRUE
## equidist TRUE
                                              TRUE
                                                               TRUE
                             [,6]
##
            [,5]
                                              [,7]
## breaks
            numeric,21
                             numeric,21
                                              numeric,21
## counts
            integer,20
                             integer,20
                                              integer,20
## density numeric,20
                             numeric,20
                                              numeric,20
## mids
            numeric,20
                             numeric,20
                                              numeric,20
            "pvalMat[, ii]" "pvalMat[, ii]"
                                              "pvalMat[, ii]"
## xname
                                              TRUE
## equidist TRUE
                             TRUE
```


5.1.1 Multiple testing

```
# number of DE genes
padjMat <- apply(pvalMat, 2, p.adjust, method="fdr")
colSums(padjMat <= 0.05 )</pre>
```

##	DPNvsCON24	DPNvsCON48	OHTvsCON24	OHTvsCON48	DPNvsCONInt	OHTvsCONInt
##	2	62	0	22	0	0
##	OHTvsDPNInt					
##	0					

We are finding low numbers of DE genes between treatments at a 5% FDR level. This was already reflected in the the MDS plots.

5.1.2 Visualization

Let's visualize some results for the DPN vs control at 48h contrast.

```
library(scales) # for scales::alpha()
deGenes <- p.adjust(lrtList[[2]]$table$PValue, "fdr") <= 0.05</pre>
```

```
## volcano plot
```

```
plot(x = lrtList[[2]]$table$logFC,
    y = -log10(lrtList[[2]]$table$PValue),
    xlab = "log Fold-change",
    ylab = "-log10 P-value",
    pch = 16, col = alpha(deGenes+1, .4),
    cex=2/3, bty='1')
legend("topright", c("DE", "not DE"),
    col = 2:1, pch=16, bty='n')
```


log Fold-change

```
## MD-plot
plot(x = lrtList[[2]]$table$logCPM,
    y = lrtList[[2]]$table$logFC,
    xlab = "Average log CPM",
    ylab = "Log fold-change",
    pch = 16, col = alpha(deGenes+1, .4),
    cex=2/3, bty='l')
legend("topright", c("DE", "not DE"),
    col = 2:1, pch=16, bty='n')
abline(h=0, col="orange", lwd=2, lty=2)
```


extract all DE genes
deGenes <- rownames(lrtList[[2]]\$table)[p.adjust(lrtList[[2]]\$table\$PValue, "fdr") <= 0.05]
deGenes</pre>

##	[1]	"ENSG0000035928"	"ENSG00000044574"	"ENSG00000070882"	"ENSG0000075790"
##	[5]	"ENSG0000091137"	"ENSG0000092621"	"ENSG0000099864"	"ENSG0000099875"
##	[9]	"ENSG00000100219"	"ENSG00000100867"	"ENSG00000101255"	"ENSG00000101974"
##	[13]	"ENSG00000102547"	"ENSG00000103064"	"ENSG00000103257"	"ENSG00000103449"
##	[17]	"ENSG00000107796"	"ENSG00000111181"	"ENSG00000111790"	"ENSG00000119242"
##	[21]	"ENSG00000120129"	"ENSG00000120217"	"ENSG00000133935"	"ENSG00000135473"
##	[25]	"ENSG00000135541"	"ENSG00000138685"	"ENSG00000143127"	"ENSG00000145050"
##	[29]	"ENSG00000145244"	"ENSG00000149428"	"ENSG00000149485"	"ENSG00000152952"
##	[33]	"ENSG00000155111"	"ENSG00000155330"	"ENSG00000155660"	"ENSG00000164597"
##	[37]	"ENSG00000166813"	"ENSG00000167608"	"ENSG00000167703"	"ENSG00000168014"
##	[41]	"ENSG00000169174"	"ENSG00000169239"	"ENSG00000169762"	"ENSG00000170122"
##	[45]	"ENSG00000170837"	"ENSG00000171798"	"ENSG00000173210"	"ENSG00000175198"
##	[49]	"ENSG00000181790"	"ENSG00000182704"	"ENSG00000182836"	"ENSG00000183401"
##	[53]	"ENSG00000185818"	"ENSG00000187908"	"ENSG00000188783"	"ENSG00000197976"
##	[57]	"ENSG00000219481"	"ENSG00000226887"	"ENSG00000233705"	"ENSG00000234431"
##	[61]	"ENSG00000236044"	"ENSG00000243927"		

```
# order according to absolute fold-change
orderedDEGenes <- deGenes[order(abs(lrtList[[2]]$table[deGenes, "logFC"]), decreasing = TRUE)]
par(mfrow=c(3,3))
for(kk in 1:9){
    boxplot(log1p(assays(se)$counts[orderedDEGenes[kk],]) ~ interaction(treatment, time))
    boxplot(fit$fitted.values[orderedDEGenes[kk],] ~ interaction(treatment, time))
}</pre>
```


5.2 Contrast on the time effect

Based on the MDS plot, we can expect comparatively more DE genes for the time effect. For didactic purposes, here we assess an **average time effect across the three treatments**. The analysis shows how flexible one can be when using contrasts.

Mean of time 24h:

$$\log \mu_{g,24h} = \frac{1}{3} \left\{ \underbrace{(\beta_{g0})}_{\text{Control, 24h}} + \underbrace{(\beta_{g0} + \beta_{g1})}_{\text{DPN, 24h}} + \underbrace{(\beta_{g0} + \beta_{g2})}_{\text{OHT, 24h}} \right\}$$

Mean of time 48h:

$$\log \mu_{g,48h} = \frac{1}{3} \left\{ \underbrace{(\beta_{g0} + \beta_{g3})}_{\text{Control}, 48h} + \underbrace{(\beta_{g0} + \beta_{g1} + \beta_{g3} + \beta_{g7})}_{\text{DPN}, 48h} + \underbrace{(\beta_{g0} + \beta_{g2} + \beta_{g3} + \beta_{g8})}_{\text{OHT}, 48h} \right\}$$

Difference:

$$\log\left(\frac{\mu_{g,48h}}{\mu_{g,24h}}\right) = \beta_{g3} + \frac{1}{3}(\beta_{g7} + \beta_{g8})$$

```
Ltime <- matrix(0, nrow = ncol(fit$coefficients), ncol = 1)
rownames(Ltime) <- colnames(fit$coefficients)
Ltime[c("time48h", "treatmentDPN:time48h", "treatmentOHT:time48h"),1] <- c(1, 1/3, 1/3)</pre>
```

```
lrtTime <- glmLRT(fit, contrast=Ltime)
hist(lrtTime$table$PValue) # very different p-value distribution</pre>
```

0.4

IrtTime\$table\$PValue

Histogram of IrtTime\$table\$PValue

Т

0.6

0.8

OHT48h

4

1.0

sum(p.adjust(lrtTime\$table\$PValue, "fdr") <= 0.05) # many DE genes</pre>

0.2

[1] 5938

6000

4000

2000

0

Γ

0.0

Frequency

6 Alternative parameterizations

While our design matrix here was parameterized as ~ treatment*time + patient alternative, equivalent parameterizations are also possible. Below, we demonstrate another parameterization that could work, too, and can be more intuitive. In this parameterization, we estimate a mean for each experimental condition, without an intercept, which can be convenient to think about how to set up contrasts.

```
treatTime <- as.factor(paste0(treatment, time))
table(treatTime)
## treatTime
## Control24h Control48h DPN24h DPN48h OHT24h
## 3 4 4 4
design2 <- model.matrix(~ 0 + treatTime + patient)
dge2 <- calcNormFactors(se)</pre>
```

```
dge2 <- estimateDisp(dge2, design2)
plotBCV(dge2)</pre>
```


fit2 <- glmFit(dge2, design2) head(fit2\$coefficients)</pre>

##		${\tt treatTimeControl24h}$	treatTimeControl48h	treatTimeDPN24h
##	ENSG000000003	-9.332660	-9.199887	-9.220500
##	ENSG0000000419	-10.374585	-10.467601	-10.426918
##	ENSG0000000457	-10.935441	-11.008915	-11.063600
##	ENSG0000000460	-10.098383	-10.991957	-10.009630
##	ENSG0000000971	-13.689209	-13.196964	-13.393947
##	ENSG0000001036	-8.280283	-8.366667	-8.258171
##		treatTimeDPN48h trea	atTimeOHT24h treatTi	meOHT48h patient2
##	ENSG000000003	-9.210515	-9.246483 -	9.233269 -0.5185631
##	ENSG0000000419	-10.471834	-10.410026 -1	0.387429 0.1376257
##	ENSG0000000457	-11.073020	-11.069247 -1	1.011705 0.4574027
##	ENSG0000000460	-10.744155	-9.960834 -1	0.672839 0.5407554
##	ENSG0000000971	-13.506580	-13.421841 -1	3.644803 -0.1468142
##	ENSG0000001036	-8.302169	-8.304449 -	8.307518 -0.4676508
##		patient3 patier	nt4	
##	ENSG000000003	-0.82994270 -0.62456	673	
##	ENSG0000000419	0.10515134 0.10234	421	
##	ENSG0000000457	-0.05731193 0.20896	687	
##	ENSG0000000460	-0.33459640 -0.13211	134	
##	ENSG0000000971	0.93857349 -0.26760	066	
##	ENSG0000001036	-1.52141542 -1.00464	146	

```
## for example: the estimate for the DPN24h vs control 24h is still the same,
## but requires a different combination of parameters
plot(fit$coefficients[,"treatmentDPN"],
    fit2$coefficients[,"treatTimeDPN24h"] - fit2$coefficients[,"treatTimeControl24h"],
    xlab="Intercept model estimate", ylab="No intercept model estimate")
```



```
# Let's implement the DPNvsCON48 contrast
L2 <- matrix(0, nrow = ncol(fit2$coefficients), ncol = 1)
rownames(L2) <- colnames(fit2$coefficients)
L2[c("treatTimeDPN48h", "treatTimeControl48h"),1] <- c(1, -1)
lrt2 <- glmLRT(fit2, contrast=L2[,1])
hist(lrt2$table$PValue)
```


Histogram of Irt2\$table\$PValue

7 Additional Challenge (Opportunity?): The importance of reproducible analysis

Finally, it is crucial to make your analysis reproducible using tools such as RMarkdown and GitHub. Please sit back and watch this amazing lecture from Professor Keith Baggerly on "The Importance of Reproducible Research in High-Throughput Biology.