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7 Additional Challenge (Opportunity?): The importance of reproducible analysis 44

In this lecture we will start working with a real bulk RNA-seq dataset from Haglund et al. (2012). After
importing the data, we will be working our way through four major challenges which, together, will form
a full RNA-seq differential expression (DE) analysis pipeline where the result of our analysis will be a(n
ordered) list of genes that we find to be differently expressed between our conditions of interest. The four
main challenges we will look into are

• Choice of modeling assumptions (distribution).
• Normalization.
• Parameter estimation under a limited information setting.
• Statistical inference under high dimensionality (many genes).

1 Experimental design, data import and data exploration

1.1 Experimental design

Let’s try to work out the experimental design using the following paragraph from the Methods section of
the paper.

Figure 1: Figure: A paragraph from the Methods section.

1.2 Data import and exploration

We will be importing the dataset using the parathyroidSE data package from Bioconductor.

if (!requireNamespace("BiocManager", quietly = TRUE)){
install.packages("BiocManager")

}
if(!"SummarizedExperiment" %in% installed.packages()[,1]){
BiocManager::install("SummarizedExperiment")

}
# install package if not installed.
if(!"parathyroidSE" %in% installed.packages()[,1]) BiocManager::install("parathyroidSE")
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suppressPackageStartupMessages({
library(parathyroidSE)
library(SummarizedExperiment)

})

# import data
data("parathyroidGenesSE", package="parathyroidSE")
# rename for convenience
se1 <- parathyroidGenesSE
rm(parathyroidGenesSE)

# three treatments
treatment1 <- colData(se1)$treatment
table(treatment1)

## treatment1
## Control DPN OHT
## 7 10 10

# two timepoints
time1 <- colData(se1)$time
table(time1)

## time1
## 24h 48h
## 13 14

# four donor patients
patient1 <- colData(se1)$patient
table(patient1)

## patient1
## 1 2 3 4
## 6 8 6 7

table(patient1, treatment1, time1)

## , , time1 = 24h
##
## treatment1
## patient1 Control DPN OHT
## 1 1 1 1
## 2 1 2 2
## 3 1 1 1
## 4 0 1 1
##
## , , time1 = 48h
##
## treatment1
## patient1 Control DPN OHT
## 1 1 1 1
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## 2 1 1 1
## 3 1 1 1
## 4 1 2 2

• We observe that the number of samples that we are observing here is larger than what is described in
the paper. As also described in the parathyroidSE vignette, some samples were spread over multiple
sequencing runs (i.e., the same sample being sequenced repeatedly) and therefore constitute technical
replication, rather than biological replication.

• We have previously seen that technical replicates can be considered to be distributed according to a
Poisson distribution. One important property of Poisson random variables is that a sum of Poisson
random variables still follow a Poisson distribution. Indeed, if 𝑋 ∼ 𝑃𝑜𝑖(𝜇𝑋) and 𝑌 ∼ 𝑃𝑜𝑖(𝜇𝑌 ), then
𝑋 + 𝑌 = 𝑍 ∼ 𝑃𝑜𝑖(𝜇𝑋 + 𝜇𝑌 ).

• For this reason, it is often suggested to sum technical replicates rather than, for example, averaging,
which does not retain the Poisson property (try for yourself!). We’ll therefore first sum the technical
replicates.

dupExps <- as.character(colData(se1)$experiment[duplicated(colData(se1)$experiment)])
dupExps

## [1] "SRX140511" "SRX140513" "SRX140523" "SRX140525"

counts <- assays(se1)$counts
newCounts <- counts
cd <- colData(se1)
for(ss in 1:length(dupExps)){

# check which samples are duplicates
relevantId <- which(colData(se1)$experiment == dupExps[ss])
# sum counts
newCounts[,relevantId[1]] <- rowSums(counts[,relevantId])
# keep which columns / rows to remove.
if(ss == 1){
toRemove <- relevantId[2]

} else {
toRemove <- c(toRemove, relevantId[2])

}
}

# remove after summing counts (otherwise IDs get mixed up)
newCounts <- newCounts[,-toRemove]
newCD <- cd[-toRemove,]

# Create new SummarizedExperiment
se <- SummarizedExperiment(assays = list("counts" = newCounts),

colData = newCD,
metadata = metadata(se1))

treatment <- colData(se)$treatment
table(treatment)

## treatment
## Control DPN OHT
## 7 8 8
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time <- colData(se)$time
table(time)

## time
## 24h 48h
## 11 12

patient <- colData(se)$patient
table(patient)

## patient
## 1 2 3 4
## 6 6 6 5

table(patient, treatment, time) # agrees with paper.

## , , time = 24h
##
## treatment
## patient Control DPN OHT
## 1 1 1 1
## 2 1 1 1
## 3 1 1 1
## 4 0 1 1
##
## , , time = 48h
##
## treatment
## patient Control DPN OHT
## 1 1 1 1
## 2 1 1 1
## 3 1 1 1
## 4 1 1 1

• After summing the technical replicates and appropriately updating the sample information, we again
create a SummarizedExperiment object, which is essentially a data container that contains all relevant
information about your experiment. Please see the vignette for more information on how to use this
class.

• By directly matching columns (samples) and rows (genes) to their relevant metadata, the
SummarizedExperiment class avoids mistakes by mis-matching columns and rows with each
other (provided you haven’t mismatched them when you create the object).

• The SummarizedExperiment class is modular and extendable, and extensions exist for example for the
analysis of single-cell RNA-seq data, i.e., the SingleCellExperiment class.

• Due to their convenient organization and widely supported usage within Bioconductor, we will typically
work with such classes in the analysis of RNA-seq data.

1.3 Independent filtering

Independent filtering is a strategy to remove features (in this case, genes) prior to the analysis. Removal
of these features may lower the multiple testing correction for other genes that pass the filter. We try to
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remove genes that have a low power to be found statistically significant, and/or that are biologically less
relevant. A common filtering strategy is to remove genes with a generally low expression, as low counts have
lower relative uncertainty (hence lower statistical power), and may be considered biologically less relevant.

suppressPackageStartupMessages({
library(limma)
library(edgeR)

})

keep <- rowSums(cpm(se) > 2) >= 3
table(keep)

## keep
## FALSE TRUE
## 47837 15356

se <- se[keep,]

1.4 Data exploration

# library size distribution
hist(colSums(assays(se)$counts)/1e6, breaks=10)

Histogram of colSums(assays(se)$counts)/1e+06
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boxplot(colSums(assays(se)$counts)/1e6 ~ treatment)
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boxplot(colSums(assays(se)$counts)/1e6 ~ time)
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boxplot(colSums(assays(se)$counts)/1e6 ~ patient)
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boxplot(colSums(assays(se)$counts)/1e6 ~ interaction(treatment, time))
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# MDS plot
plotMDS(se,

labels = treatment,
col=as.numeric(patient))
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## hard to see influence of experimental factors due to large between-patient variation
## we could also make an MDS plot per patient to take a look.
for(kk in 1:4){
id <- which(patient == kk)
plotMDS(se[,id],

labels = paste0(treatment[id],"_",time[id]),
col=as.numeric(time[id]))

}
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Observations based on MDS plot:

• There is a very large between-patient variability, which is the major source of variation in this dataset.
The samples from each patient cluster together tightly.

• Within patient, time consistently explains more variation than the treatments.
• Relative to patients and time, the treatment seems to have a fairly small effect.

2 Challenge I: Choice of modeling assumptions

When working with a GLM, as part of the choices of modeling assumptions, we need to pick an appropriate
distribution for the expression counts. Below we perform some exploratory analyses to investigate.

y <- assays(se)$counts[1,]
hist(y, breaks = 40,

xlab = "Gene expression",
xaxt = "n", yaxt = "n",
main = "Data for the first gene")

axis(1, at = seq(200, 1200, by=200))
axis(2, at = 0:3)
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Data for the first gene
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# Mean-variance trend within each experimental condition
cont24ID <- which(treatment == "Control" & time == "24h")
DPN24ID <- which(treatment == "DPN" & time == "24h")
OHT24ID <- which(treatment == "OHT" & time == "24h")
cont48ID <- which(treatment == "Control" & time == "48h")
DPN48ID <- which(treatment == "DPN" & time == "48h")
OHT48ID <- which(treatment == "OHT" & time == "48h")
idList <- list(cont24ID, DPN24ID, OHT24ID,

cont48ID, DPN48ID, OHT48ID)
names(idList) <- paste0(rep(levels(treatment),2), rep(levels(time), each=3))

par(mfrow=c(3,2), mar=c(2,2,2,1))
for(kk in 1:length(idList)){

# extract counts for each condition
curCounts <- assays(se)$counts[,idList[[kk]]]
plot(x = rowMeans(curCounts)+1,

y = rowVars(curCounts)+1,
pch = 16, cex=1/2,
xlab = "Mean", ylab="Variance",
main = names(idList)[kk],
log="xy")

abline(0,1, col="red")
lw1 <- loess((rowVars(curCounts)+1) ~ (rowMeans(curCounts)+1), span=1/4, lwd=3)
oo <- order(rowMeans(curCounts)+1)
lines(rowMeans(curCounts)[oo]+1, lw1$fitted[oo], col="orange")
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smoothScatter(x = log1p(rowMeans(curCounts)),
y = log1p(rowVars(curCounts)),
pch = 16, cex=1/2,
xlab = "Mean", ylab="Variance")

abline(0,1, col="red")
lines(log(rowMeans(curCounts)[oo]+1), log(lw1$fitted[oo]+1), col="orange")

}
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• Having data on thousands of genes provides the opportunity to empirically assess the mean-variance
relationship.

• It is clear that the data is overdispersed with respect to the Poisson distribution (red 𝑦 = 𝑥 line).
There also seems to be a quadratic trend of the variance as a function of the mean. This has motivated
the negative binomial distribution as the most popular choice to model (bulk) RNA-seq
gene expression data.

• The negative binomial distribution is also referred to as the Gamma-Poisson distribution as it can be
formulated as such. Indeed, if

𝜆 ∼ Γ(𝛼, 𝛽)𝑌 |𝜆 ∼ 𝑃𝑜𝑖(𝜆),
then this is equivalent to

𝑌 ∼ 𝑁𝐵(𝜇 = 𝛼/𝛽, 𝜙 = 1/𝛼).
• This can be shown analytically, but is considered out of the scope of this course. Below, we show it

empirically using simulation.
• This theoretical result has got some practical consequences. The Gamma-Poisson formulation makes

it clear why we can sum technical replicates as the sum of Poisson random variables is again a Poisson
random variable.

• The Poisson statement can thus be considered as capturing technical variation, while the Gamma
statement can be considered to capture biological variation, i.e., variation in the mean expression
across biological replicates.
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alpha <- 20
beta <- 10
lambda <- rgamma(n = 1e5, shape = alpha, rate = beta)
y1 <- rpois(n = 1e5, lambda = lambda)

# note phi = 1 / size
y2 <- rnbinom(n=1e5, mu=alpha / (beta), size=alpha)

plot(density(y1))
lines(density(y2), col="steelblue")
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3 Challenge II: Normalization

Normalization is necessary to correct for several sources of technical variation:

• Differences in sequencing depth between samples. Some samples get sequenced deeper in the
sense that they consist of more (mapped) reads and therefore can be considered to contain a higher
amount of information, which we should be taking into account. In addition, if a sample is sequenced
deeper, it is natural that the counts for each gene will be higher, jeopardizing a direct comparison of
the expression counts.

• Differences in RNA population composition between samples. As an extreme example, suppose
that two samples have been sequenced to the exact same depth. One sample is contaminated and has

19



a very high concentration of the contaminant cDNA being sequenced, but otherwise the two samples
are identical. Since the contaminant will be taking up a significant proportion of the reads being
sequenced, the counts will not be directly comparable between the samples. Hence, we may also want
to correct for differences in the composition of the RNA population of the samples.

• Other technical variation such as sample-specific GC-content or transcript length effects may also
be accounted for.

Let’s take a look at how comparable different replicates are in the Control condition at 48h in our dataset.
We will investigate this using MD-plots (mean-difference plots as introduced by Dudoit et al. (2002)), also
sometimes referred to as MA-plots.

cont48ID # relevant samples

## [1] 2 8 14 19

colSums(assays(se)$counts[,cont48ID]) / 1e6

## [1] 10.801193 6.828259 8.038079 7.678421

combs <- combn(cont48ID, m=2) #pairwise combinations between samples

par(mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
curSamples <- combs[,cc]
M <- rowMeans(assays(se)$counts[,curSamples])
D <- assays(se)$counts[,curSamples[2]] / assays(se)$counts[,curSamples[1]]
plot(x = log(M), y = log2(D),

pch = 16, cex=1/3,
main = paste0("Sample ", curSamples[2], " vs sample ", curSamples[1]),
xlab = "Log mean", ylab = "Log2 fold-change",
bty = 'l')

abline(h = 0, col="orange", lwd=2)
}
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• We see clear bias for some pairwise comparisons. For example, in the first plot comparing sample 8
versus sample 2, the log fold-changes are biased downwards. This means that, on average, a gene is
lower expressed in sample 8 versus sample 2. Looking at the library sizes, we can indeed see that the
library size for sample 2 is about 11 × 106 while it is only about 7 × 106 for sample 8! This is a clear
library size effect that we should take into account.

3.1 Count scaling versus GLM offsets

• We have previously discussed count scaling transformations such as CPM and TPM.
• A more appropriate and natural way when working with GLMs is through the use of offsets. The

general use of an offset is to account for the ‘effort’ performed in order to gather that observation of
the response variable. Two examples:
1. A biologist studying whale migration has one fixed spot where, in the migration season, she counts

migrating whales day after day, over several years. For each day she records the number of spotted
whales. Of course, the time spent whale-watching may differ from day to day and it is natural
that you are more likely to spot more whales if you spend more time looking for them. The time
spent spotting whales can then be used as an offset.

2. In our case, a sample being sequenced deeper contains more information, i.e., more ‘effort’ has
been performed, as compared to a sample being sequenced relatively shallow. We have more
confidence of a count from a deeply sequenced sample than from a shallowly sequenced sample.
We can therefore use the sequencing depth 𝑁𝑖 = ∑𝑔 𝑌𝑔𝑖 as offset in the model.

• Adding an offset to the model is different from adding a new variable to the model. For each new
variable we add, we will estimate its average effect 𝛽 on the response variable. When adding an offset,
however, we are implicitly assuming that 𝛽 = 1.
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• Offsets are typically added on the scale of the linear predictor. Suppose we have a gene 𝑔 and sample
𝑖 specific offset 𝑂𝑔𝑖, then we can define a negative binomial GLM including the offset as

⎧{
⎨{⎩

𝑌𝑔𝑖 ∼ 𝑁𝐵(𝜇𝑔𝑖, 𝜙𝑔)
log𝜇𝑔𝑖 = 𝜂𝑔𝑖

𝜂𝑔𝑖 = X𝑇
𝑖 𝛽𝑔 + log(𝑂𝑔𝑖).

• Please read this page for an intuitive reasoning as to why offsets are preferred over count scaling.

3.2 How to normalize?

Many approaches are available for normalizing RNA-seq data, and we will review a couple of these. Most
methods calculate an offset that is used in the GLM used to model gene expression. One notable method,
full-quantile normalization, does not calculate an offset, and rather normalizes counts directly, immediately
enforcing the same sequencing depth for all samples.

3.2.1 TMM method (default of edgeR)

The trimmed mean of M-values (TMM) method introduced by Robinson & Oshlack (2010) is a normalization
procedure that calculates a single normalization factor for each sample. As the name suggests, it is based
on a trimmed mean of fold-changes (𝑀 -values) as the scaling factor. A trimmed mean is an average after
removing a set of ‘extreme’ values. Specifically, TMM calculates a normalization factor 𝐹 (𝑟)

𝑖 across genes 𝑔
for each sample 𝑖 as compared to a reference sample 𝑟,

log2(𝐹 (𝑟)
𝑖 ) =

∑𝑔∈𝐺∗ 𝑤𝑟
𝑔𝑖𝑀𝑟

𝑔𝑖
∑𝑔∈𝐺∗ 𝑤𝑟

𝑔𝑖
,

where 𝑀𝑟
𝑔𝑖 represents the log2-fold-change of the gene expression fraction as compared to a reference sample

𝑟, i.e.,
𝑀𝑟

𝑔𝑖 = log2 ( 𝑌𝑔𝑖/𝑁𝑖
𝑌𝑔𝑟/𝑁𝑟

) ,

and 𝑤𝑟
𝑔𝑖 represents a precision weight calculated as

𝑤𝑟
𝑔𝑖 = 𝑁𝑖 − 𝑌𝑔𝑖

𝑁𝑖𝑌𝑔𝑖
+ 𝑁𝑟 − 𝑌𝑔𝑟

𝑁𝑟𝑌𝑔𝑟
,

and 𝐺∗ represents the set of genes after trimming those with the most extreme average expression and fold-
change. The weights serve to account for the fact that fold-changes for genes with lower read counts are
more variable.
The procedure only takes genes into account where both 𝑌𝑔𝑖 > 0 and 𝑌𝑔𝑟 > 0. By default, TMM trims
genes with the 30% most extreme 𝑀 -values and 5% most extreme average gene expression, and chooses
as reference 𝑟 the sample whose upper-quartile is closest to the across-sample average upper-quartile. The
normalization factor is then used in conjunction with the library size to calculate an effective library size

𝑁𝑒𝑓𝑓
𝑖 = 𝑁𝑖𝐹 (𝑟)

𝑖

which is used as offset in the GLM. The normalized counts may be given by ̃𝑌𝑔𝑖 = 𝑌𝑔𝑖/𝑁𝑠
𝑖 , with size factor

𝑁𝑠
𝑖 = 𝑁𝑖𝐹 (𝑟)

𝑖
1
𝑛 ∑𝑛

𝑖=1 𝑁𝑖𝐹 (𝑟)
𝑖

.

TMM normalization may be performed from the calcNormFactors function implemented in edgeR:
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dge <- edgeR::calcNormFactors(se)
dge$samples #normalization factors added to colData

## group lib.size norm.factors run experiment patient treatment
## Sample1 1 9079958 0.9824006 SRR479052 SRX140503 1 Control
## Sample2 1 10801193 0.9730905 SRR479053 SRX140504 1 Control
## Sample3 1 5205034 0.9771680 SRR479054 SRX140505 1 DPN
## Sample4 1 9681399 0.9935090 SRR479055 SRX140506 1 DPN
## Sample5 1 5685671 0.9730827 SRR479056 SRX140507 1 OHT
## Sample6 1 7835627 0.9837862 SRR479057 SRX140508 1 OHT
## Sample7 1 8590615 0.9350218 SRR479058 SRX140509 2 Control
## Sample8 1 6828259 0.9436147 SRR479059 SRX140510 2 Control
## Sample9 1 24525588 0.9445726 SRR479060 SRX140511 2 DPN
## Sample10 1 8248985 0.9320020 SRR479062 SRX140512 2 DPN
## Sample11 1 23535205 0.9384823 SRR479063 SRX140513 2 OHT
## Sample12 1 8228473 0.9311185 SRR479065 SRX140514 2 OHT
## Sample13 1 7317690 1.0567909 SRR479066 SRX140515 3 Control
## Sample14 1 8038079 1.0431594 SRR479067 SRX140516 3 Control
## Sample15 1 12443101 1.0607802 SRR479068 SRX140517 3 DPN
## Sample16 1 16260235 1.0407639 SRR479069 SRX140518 3 DPN
## Sample17 1 23624835 1.0437936 SRR479070 SRX140519 3 OHT
## Sample18 1 7619275 1.0354159 SRR479071 SRX140520 3 OHT
## Sample19 1 7678421 1.0440457 SRR479072 SRX140521 4 Control
## Sample20 1 7114567 1.0541970 SRR479073 SRX140522 4 DPN
## Sample21 1 13777391 1.0365701 SRR479074 SRX140523 4 DPN
## Sample22 1 6081314 1.0611051 SRR479076 SRX140524 4 OHT
## Sample23 1 15778115 1.0414101 SRR479077 SRX140525 4 OHT
## time submission study sample
## Sample1 24h SRA051611 SRP012167 SRS308865
## Sample2 48h SRA051611 SRP012167 SRS308866
## Sample3 24h SRA051611 SRP012167 SRS308867
## Sample4 48h SRA051611 SRP012167 SRS308868
## Sample5 24h SRA051611 SRP012167 SRS308869
## Sample6 48h SRA051611 SRP012167 SRS308870
## Sample7 24h SRA051611 SRP012167 SRS308871
## Sample8 48h SRA051611 SRP012167 SRS308872
## Sample9 24h SRA051611 SRP012167 SRS308873
## Sample10 48h SRA051611 SRP012167 SRS308874
## Sample11 24h SRA051611 SRP012167 SRS308875
## Sample12 48h SRA051611 SRP012167 SRS308876
## Sample13 24h SRA051611 SRP012167 SRS308877
## Sample14 48h SRA051611 SRP012167 SRS308878
## Sample15 24h SRA051611 SRP012167 SRS308879
## Sample16 48h SRA051611 SRP012167 SRS308880
## Sample17 24h SRA051611 SRP012167 SRS308881
## Sample18 48h SRA051611 SRP012167 SRS308882
## Sample19 48h SRA051611 SRP012167 SRS308883
## Sample20 24h SRA051611 SRP012167 SRS308884
## Sample21 48h SRA051611 SRP012167 SRS308885
## Sample22 24h SRA051611 SRP012167 SRS308886
## Sample23 48h SRA051611 SRP012167 SRS308887
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Let’s check how our MD-plots look like after normalization. Note that, we can rewrite the GLM as

log(𝜇𝑔𝑖
𝑁𝑠

𝑖
) = X𝑇

𝑖 𝛽𝑔

and so 𝜇𝑔𝑖
𝑁𝑠

𝑖
can be considered as an ‘offset-corrected average count’.

We see that all MD-plots are now nicely centered around a log-fold-change of zero!

## normalize
effLibSize <- dge$samples$lib.size * dge$samples$norm.factors
normCountTMM <- sweep(assays(se)$counts, 2, FUN="/", effLibSize)

par(mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
curSamples <- combs[,cc]
M <- rowMeans(normCountTMM[,curSamples])
D <- normCountTMM[,curSamples[2]] / normCountTMM[,curSamples[1]]
plot(x = log(M), y = log2(D),

pch = 16, cex=1/3,
main = paste0("Sample ", curSamples[2], " vs sample ", curSamples[1]),
xlab = "Log mean", ylab = "Log2 fold-change",
bty = 'l')

abline(h = 0, col="orange", lwd=2)
}
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3.3 Median-of-ratios method (default of DESeq2)

The median-of-ratios method is used in DESeq2 as described in Love et al. (2014). It assumes that the
expected value 𝜇𝑔𝑖 = 𝐸(𝑌𝑔𝑖) is proportional to the true expression of the gene, 𝑞𝑔𝑖, scaled by a size factor 𝑠𝑖
for each sample,

𝜇𝑔𝑖 = 𝑠𝑖𝑞𝑔𝑖.

The size factor 𝑠𝑖 is then estimated using the median-of-ratios method compared to a synthetic reference
sample 𝑟 defined based on geometric means of counts across samples

𝑠𝑖 = median{𝑔∶𝑌 ∗𝑔𝑟≠0}
𝑌𝑔𝑖
𝑌 ∗𝑔𝑟

,

with

𝑌 ∗
𝑔𝑟 = (

𝑛
∏
𝑖=1

𝑌𝑔𝑖)
1/𝑛

.

We can then use the size factors 𝑠𝑖 as offsets to the GLM.

Question. Do you see any issues with the procedure described as such?

Answer.

The procedure relies on genes being expressed in all samples. As sample size increases, the number of genes
with this property steadily decreases. This will become crucial in single-cell RNA-seq data analysis.

Median-of-ratios normalization is implemented in the DESeq2 package:

dds <- DESeq2::DESeqDataSetFromMatrix(countData = assays(se)$counts,
colData = colData(se),
design = ~ 1) #just add intercept to showcase normalization

## converting counts to integer mode

dds <- DESeq2::estimateSizeFactors(dds)
sizeFactors(dds)

## [1] 0.9166999 1.0640199 0.5224518 0.9806075 0.5664996 0.7802413 0.8282554
## [8] 0.6592136 2.3949029 0.7898898 2.2781598 0.7858861 0.7775688 0.8399826
## [15] 1.3311498 1.6977165 2.4949218 0.7875376 0.8106158 0.7607974 1.4476678
## [22] 0.6529423 1.6653456

You may also want to check out the StatQuest video on DESeq2 normalization.

3.3.1 Comparing TMM with DESeq2 normalization

We can compare the size factors for both normalizations to verify if they agree on the normalization factors.
Note we need to scale the effective library sizes from edgeR to enforce a similar scale as the size factors from
DESeq2. While below we are using an arithmetic mean, a geometric mean may be used as well, which will
be more robust to outlying effective library sizes.

plot(effLibSize / mean(effLibSize), sizeFactors(dds),
xlab = "edgeR size factor",
ylab = "DESeq2 size factor")
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3.4 Full-quantile (FQ) normalization

In full-quantile normalization, originally introduced in the context of microarrays by Bolstad et al. (2003),
the samples are forced to each have a distribution identical to the distribution of the median/average of
the quantiles across samples. In practice, we can implement full-quantile normalization using the following
procedure

1. Given a data matrix Y𝐺×𝑛 for 𝐺 genes (rows) and 𝑛 samples (columns),
2. sort each column to get Y𝑆,
3. replace all elements of each row by the median (or average) for that row,
4. obtain the normalized counts Ỹ by re-arranging (i.e., unsorting) each column.

3.5 Uncertainty in normalization

• The offsets that are being cacluated for normalization purposes are estimates.
• The downstream analyses incorporates these estimates as if they are known, i.e., conditions on the

estimates.
• The analysis therefore ignores the uncertainty in their estimation.
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Figure 2: Figure: Box 1 from Vallejos et al. (2017).
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4 Challenge III: Parameter estimation (under limited information
setting)

There are two challenges to be overcome here:

• First, we need to get the structure of our mean model right, this is, which covariates to include, and
how to include them, such that we are capable of capturing important sources of variation in our
experiment, in order to derive a correct interpretation of the data in terms of our research question.

• Second, we need to be able to estimate the parameters of our model in an efficient way, while having
limited information (i.e., we are often confronted with only a small number of replicates).

4.1 Defining the model for the mean

Let’s first check how the authors of the original study parameterized the mean model.

Immunostaining was done using the automatic Autostainer Plus
Link (both from Dako, Glostrup, Denmark) with the primary
antibodies for human ER!1 (mouse monoclonal, clone PPG5/
10; Dako) at dilution 1:100 and human ER!2 (mouse mono-
clonal, clone 57/3; AbD Serotec, Oxford, UK) at dilution 1:300.
Anonymized samples of breast cancer, pancreas, and normal
testis were included as positive controls. Normal liver as well as
omission of the primary antibody served as negative controls.

All ER!1 and ER!2 slides were scanned in a Hamamatsu
scanner (Hamamatsu, Shizuoka, Japan). Additionally, ER!1 im-
munoreactivity was analyzed for nuclear intensity using Visio-
pharm, Tissuemorph Digital Pathology (Visiopharm, Hoersh-
olm, Denmark) image analysis software. An algorithm for
nuclear expression was designed based on a red-green-blue red
(RGB-R) setting selecting both negative and positive nuclei.
Mean nuclear intensity was measured both on an individual
cell and an individual tumor basis. A minimum of 5000 cells
were scored for each sample. Quantification of mean nuclear
intensity used a 3,3=-diaminobenzidine-stain specific layer,
ranging from 0 –255 (RGB-scale).

Bisulfite conversion and pyrosequencing
DNA methylation was quantified for the ESR1 and ESR2

promoters essentially as previously described (24). Genomic
DNA from all samples, including four normal reference para-
thyroids, was bisulfite treated using EpiTect Bisulfite conversion
kit and amplified using PyroMark PCR kit (both from QIAGEN
AB) and specific PyroMark CpG assays for ESR1 (ER", catalog
no. PM00024619) and ESR2 (ER!, catalog no. PM00166117).

Whole transcriptome shotgun sequencing
Sequencing was carried out at the SciLifeLab core facility,

Karolinska Institutet, Stockholm, Sweden, using previously de-
scribed methodology (25). cDNA was prepared for sequencing
using the TruSeq cDNA preparation kit, and paired-end se-
quencing to 100 bp was performed on an Illumina HiSeq2000
instrument (Illumina, San Diego, CA) using version 3 flow cells.
Sequences were mapped to the hg19 build of the human reference
genome using TopHat (version. 1.0.14). Mapping rates for the
samples were between 69 and 74%. Putative PCR duplicates
were removed from the aligned sequences using the MarkDu-
plicates subcommand of PicardTools (version 1.29). Fragments
per kilobase of exon per million fragments mapped values were
then calculated with respect to ENSEMBL (release 62) genes and
transcripts using Cufflinks (version 1.0.3). Read counts per gene
were calculated using HTSeq (version 0.5.1), and differential
expression analysis was performed using the edgeR package,
(26) employing treatment type, time point, and sample ID as
factors in the model. Four different comparisons between sample
groups were done: DPN 24 h vs. control 24 h, DPN 48 h vs.
control 48 h, OHT 24 h vs. control 24 h, and OHT 48 h vs.
control 48 h. All raw data are accessible through NCBI GEO
Series accession no. GSE37211 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc!GSE37211).

Gene expression profiling and transcriptome
analysis

To visualize differentially expressed genes and sample vari-
ation, we used Qlucore (Qlucore AB, Lund, Sweden) bioinfor-
matics tool to create principal component analysis (PCA) plots.

Postprocessed data were adjusted for individual variance, and P
value cutoff was set to "0.05.

EdgeR analysis rendered 185 (DPN 24 h), 245 (DPN 48 h), 90
(OHT 24 h), and 231 (OHT 48 h) significantly altered genes.
Because we observed large interpatient differences in expression
values, we adopted a stringent filtering approach. Genes con-
sidered significant from EdgeR analysis (adjusted P " 0.05), but
whose fold change was not in the same direction in all patients,
were excluded. After applying additional filtering of very low
expressed transcripts (mean expression "10), 41 (DPN 24 h),
223 (DPN 48 h), 20 (OHT 24 h), and 69 (OHT 48 h) genes
remained (Supplemental Table 2). Significant genes were sub-
jected to analysis in Nextbio (27) (from all comparisons), Inge-
nuity Pathway analysis (from all comparisons) and Ingenuity
iReport (DPN 48 and OHT 48) bioinformatic tools. The Mat-
Inspector application (Genomatix Software GmbH, Munich,
Germany) was used to screen for ERE sequences 5-kb upstream
of each significant gene. Using an optimized matrix similarity
with core similarity of 0.75, matrices V$ER.01-4 were analyzed,
and the gene list generated by V$ER.01-3 (V$ER.04 FDR
#0.20) was used for further analysis. In total, 25 of 41 (DPN 24),
162 of 223 (DPN 48), 16 of 20 (OHT 24), and 53 of 69 (OHT
48) genes demonstrated ERE sequences. Of the 17 genes al-
tered in both the 24-h and 48-h DPN treatment groups, 15
have previously been reported to bind ER! upstream of the
promoter (28).

qRT-PCR analysis
For validation of the transcriptome results, we applied com-

mercially available Taqman probes (Applied Biosystems). 60S
acidic ribosomal protein P0 (RPLP0 ) was used as a housekeeping
gene for normalization purposes. Relative expression was cal-
culated using the $$ cycle threshold method. Correlation be-
tween RNA sequencing and qRT-PCR data by Spearman’s Rho
considered four of five assays significant (P " 0.05) (Supple-
mental Table 3).

Statistical analysis
All statistical calculations were performed using IBM SPSS

software (Statistical Software Package for Windows, version 20;
SPSS Inc., Chicago, IL). Bivariate correlations were assessed with
Spearman’s rank or Kendall’s #. Data were analyzed with Pear-
son $2 for qualitative variables. For continuous variables, we
used Mann-Whitney U test for unpaired data, Kruskal-Wallis H
test for analysis of multiple independent variables, and Wilcoxon
test for related samples. P values "0.05 were taken as statistically
significant.

Results

Association between ESR2 expression levels and
PHPT patient gender

Results from quantification of ESR1 and ESR2 levels
are detailed in Supplemental Table 4 for each parathyroid
tumor case. MCF-7 cells expressed high levels and MDA-
231 cells low levels of the ESR1 gene. The expression levels
in the parathyroid tumor samples were comparable to that
of MDA-231 cells, whereas MCF-7 cells had 300- to
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Figure 3: Figure: Another paragraph from the Methods section.

The authors write that they are “employing treatment type, time point and sample ID as factors in the
model”. Concerning experimental variables, this suggests they have added covariates defining the treatment
and time point for each sample. The sample ID in the text refers to the original tissue sample and therefore
corresponds to the donor patient. While there is also a variable called sample in the colData, this is not
what the authors refer to. Note the ambiguity here and since the authors didn’t share their code, this is
hard to check! But, more on reproducibility later…

Question. What are the authors assuming when using this structure for the mean model? Do you think
that there are extensions or simplifications of the mean model that would be relevant?

Answer.

The authors are acknowledging the relatedness of samples derived from the same donor patient by adding
it as a fixed effect to the model, which is great. This blocking strategy has been extensively discussed in
the proteomics part of this course. However, by only adding a main effect for treatment and time, they are
assuming that the effect of time is identical for all treatments, i.e., the average gene expression in-/decrease
at 48h versus 24h is identical for the DPN, OHT or the control samples, which seems like a quite stringent
assumption. We can make the model more flexible by allowing for a treatment * time interaction.

4.2 Parameter estimation and empirical Bayes

• Even in limited sample size settings, the parameters 𝛽 of the mean model may be estimated reasonably
efficiently, and we have previously discussed the IRLS algorithm to do so.

• However, estimating parameters for the variance (this is, the dispersion parameter 𝜙 from the negative
binomial or the variance parameter 𝜎 from the Gaussian) is typically quite a bit harder.
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• In genomics, we often take advantage of the parallel structure of the thousands of regression models
(one for each gene) to borrow information across genes in a procedure called empirical Bayes,
as also seen in the proteomics part of this course.

• In the Bayesian setting, we use not only the data, but also a prior distribution, to derive our parameter
estimates. In a traditional Bayesian analysis, one assumes an a priori known prior distribution, which
reflects our prior belief into all possible values of the parameter. This prior distribution is completely
independent of the observed data and the idea is that one specifies the prior distribution before observ-
ing the data. One can then use the data and prior distribution to derive a posterior distribution
for the parameter(s) 𝜃 of interest through Bayes rule

𝑝(𝜃|Y) = 𝑝(Y|𝜃)𝑝(𝜃)
∫𝜃∈Θ 𝑝(Y|𝜃)𝑝(𝜃)𝑑𝜃 .

Here, the posterior distribution 𝑝(𝜃|Y) is calculated using the data likelihood 𝑝(Y|𝜃), prior distribution
𝑝(𝜃) and the ‘marginal likelihood’ ∫𝜃∈Θ 𝑝(Y|𝜃)𝑝(𝜃)𝑑𝜃, where Θ denotes the parameter space of 𝜃. We
can see that the posterior probability for a specific value of the parameter 𝜃 will be high if both the
data likelihood as well as prior probability are high.

• In empirical Bayes, we basically take a semi-Bayesian approach to parameter estimation. Indeed, we
do not assume a known prior distribution, but estimate it empirically using the data. This empirically
estimated prior ̂𝑝(𝜃) is then used to calculate the posterior distribution.

• While in some settings one can easily calculate the posterior distribution, sometimes it can be a hard
problem. In such cases, it may be useful to restrict ourselves to calculating the maximum a posteriori
(MAP) estimate, which corresponds to the mode of the posterior distribution. This can be considered
to be analogous to point estimation in the frequentist setting.

• In our setting, we use genes with a similar average expression to moderate the dispersion estimate for
a particular gene. The basic assumption for this to make sense is that genes with similar means might
have similar dispersion parameters (or variances), owing to the mean-variance trend.

• Once initial estimates for the gene-wise dispersions have been derived (Φ̂𝑀𝐿
𝑔 in the figure), we use a

parametric model to estimate its distribution (typically as a function of the mean) across genes. This
distribution is the prior distribution.

• Then, each initial estimate is shrunken towards that empirically estimated prior distribution. The
amount of shrinkage being performed is data-driven, and depends on the data, taking into account the
precision of our initial estimate (i.e., shape of the likelihood) and the variability of the prior distribution.

• These strategies result in impressive performance gains in terms of differential expression analysis and
are implemented in all popular differential expression analysis software packages (though in slightly
differing ways) like limma, edgeR and DESeq2.

The blog post on understanding empirical Bayes estimation using baseball statistics is a great primer for
further reading, as well as the accompanying book by David Robinson.

4.3 In practice

Let’s fit the model using edgeR.
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Figure 4: Figure 8 from Van den Berge *et al.* (2019).
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design <- model.matrix(~ treatment*time + patient, data=colData(se))

dge <- calcNormFactors(se)
dge <- estimateDisp(dge, design) # estimate dispersion estimates
plotBCV(dge)
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fit <- glmFit(dge, design)
head(fit$coefficients)

## (Intercept) treatmentDPN treatmentOHT time48h patient2
## ENSG00000000003 -9.332660 0.11215980 0.08617711 0.13277338 -0.5185631
## ENSG00000000419 -10.374585 -0.05233370 -0.03544105 -0.09301681 0.1376257
## ENSG00000000457 -10.935441 -0.12815863 -0.13380545 -0.07347351 0.4574027
## ENSG00000000460 -10.098383 0.08875322 0.13754925 -0.89357390 0.5407554
## ENSG00000000971 -13.689209 0.29526136 0.26736723 0.49224506 -0.1468142
## ENSG00000001036 -8.280283 0.02211192 -0.02416563 -0.08638397 -0.4676508
## patient3 patient4 treatmentDPN:time48h
## ENSG00000000003 -0.82994270 -0.6245673 -0.12278804
## ENSG00000000419 0.10515134 0.1023421 0.04810092
## ENSG00000000457 -0.05731193 0.2089687 0.06405330
## ENSG00000000460 -0.33459640 -0.1321134 0.15904868
## ENSG00000000971 0.93857349 -0.2676066 -0.60487781
## ENSG00000001036 -1.52141542 -1.0046446 0.04238597
## treatmentOHT:time48h
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## ENSG00000000003 -0.11955914
## ENSG00000000419 0.11561301
## ENSG00000000457 0.13101511
## ENSG00000000460 0.18156925
## ENSG00000000971 -0.71520710
## ENSG00000001036 0.08331487

5 Challenge IV: Statistical inference across many genes

5.1 Contrasts on the treatment effects

We will first derive all contrasts that are also investigated in the original manuscript, using our extended
model where we are allowing for an interaction effect between treatment and time.

The mean model is

log(𝜇𝑔𝑖) = 𝛽𝑔0 +𝛽𝑔1𝑥𝐷𝑃𝑁 +𝛽𝑔2𝑥𝑂𝐻𝑇 +𝛽𝑔3𝑥48ℎ +𝛽𝑔4𝑥𝑝𝑎𝑡2 +𝛽𝑔5𝑥𝑝𝑎𝑡3 +𝛽𝑔6𝑥𝑝𝑎𝑡4 +𝛽𝑔7𝑥𝐷𝑃𝑁∶48ℎ +𝛽𝑔8𝑥𝑂𝐻𝑇 ∶48ℎ.

The intercept corresponds to the log average gene expression in the control group at 24h for patient 1.

DPN 24h vs control 24h. The respective means are

log𝜇𝑔,𝐷𝑃𝑁,24ℎ = 𝛽𝑔0 + 𝛽𝑔1,

log𝜇𝑔,𝑐𝑜𝑛,24ℎ = 𝛽𝑔0.
And their difference is

𝛿𝑔 = 𝛽𝑔1.

DPN 48h vs control 48h. The respective means are

log𝜇𝑔,𝐷𝑃𝑁,48ℎ = 𝛽𝑔0 + 𝛽𝑔1 + 𝛽𝑔3 + 𝛽𝑔7,

log𝜇𝑔,𝑐𝑜𝑛,48ℎ = 𝛽𝑔0 + 𝛽𝑔3.
And their difference is

𝛿𝑔 = 𝛽𝑔1 + 𝛽𝑔7.

OHT 24h vs control 24h. The respective means are

log𝜇𝑔,𝑂𝐻𝑇 ,24ℎ = 𝛽𝑔0 + 𝛽𝑔2,

log𝜇𝑔,𝑐𝑜𝑛,24ℎ = 𝛽𝑔0.
And their difference is

𝛿𝑔 = 𝛽𝑔2.

OHT 48h vs control 48h. The respective means are

log𝜇𝑔,𝑂𝐻𝑇 ,48ℎ = 𝛽𝑔0 + 𝛽𝑔2 + 𝛽𝑔3 + 𝛽𝑔8,

log𝜇𝑔,𝑐𝑜𝑛,48ℎ = 𝛽𝑔0 + 𝛽𝑔3.
And their difference is

𝛿𝑔 = 𝛽𝑔2 + 𝛽𝑔8.

However, we can also assess the interaction effects: is the time effect different between DPN and OHT
treatment versus the control? And how about the DPN vs OHT treatments?
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DPN vs control interaction. The time effect for each condition is

𝛿𝐷𝑃𝑁 = log𝜇𝑔,𝐷𝑃𝑁,48ℎ − log𝜇𝑔,𝐷𝑃𝑁,24ℎ = 𝛽𝑔3 + 𝛽𝑔7,

𝛿𝑐𝑜𝑛 = log𝜇𝑔,𝑐𝑜𝑛,48ℎ − log𝜇𝑔,𝑐𝑜𝑛,24ℎ = 𝛽𝑔3.
So the interaction effect is

𝛿𝐷𝑃𝑁−𝑐𝑜𝑛 = 𝛽𝑔7.

OHT vs control interaction. The time effect for each condition is

𝛿𝑂𝐻𝑇 = log𝜇𝑔,𝑂𝐻𝑇 ,48ℎ − log𝜇𝑔,𝑂𝐻𝑇 ,24ℎ = 𝛽𝑔3 + 𝛽𝑔8,

𝛿𝑐𝑜𝑛 = log𝜇𝑔,𝑐𝑜𝑛,48ℎ − log𝜇𝑔,𝑐𝑜𝑛,24ℎ = 𝛽𝑔3.
So the interaction effect is

𝛿𝐷𝑃𝑁−𝑐𝑜𝑛 = 𝛽𝑔8.

OHT vs DPN interaction. The time effect for each condition is

𝛿𝑂𝐻𝑇 = log𝜇𝑔,𝑂𝐻𝑇 ,48ℎ − log𝜇𝑔,𝑂𝐻𝑇 ,24ℎ = 𝛽𝑔3 + 𝛽𝑔8,

𝛿𝐷𝑃𝑁 = log𝜇𝑔,𝐷𝑃𝑁,48ℎ − log𝜇𝑔,𝐷𝑃𝑁,24ℎ = 𝛽𝑔3 + 𝛽𝑔7,
So the interaction effect is

𝛿𝑂𝐻𝑇 −𝐷𝑃𝑁 = 𝛽𝑔8 − 𝛽𝑔7.

Let’s implement all of these in a contrast matrix.

L <- matrix(0, nrow = ncol(fit$coefficients), ncol = 7)
rownames(L) <- colnames(fit$coefficients)
colnames(L) <- c("DPNvsCON24", "DPNvsCON48",

"OHTvsCON24", "OHTvsCON48",
"DPNvsCONInt", "OHTvsCONInt",
"OHTvsDPNInt")

# DPN vs control at 24h
L[2,"DPNvsCON24"] <- 1
# DPN vs control at 48h
L[c(2,8),"DPNvsCON48"] <- 1
# OHT vs control at 24h
L[3,"OHTvsCON24"] <- 1
# OHT vs control at 48h
L[c(3,9),"OHTvsCON48"] <- 1
# DPN control interaction
L[8,"DPNvsCONInt"] <- 1
# OHT control interaction
L[9,"OHTvsCONInt"] <- 1
# OHT DPN interaction
L[c(9,8),"OHTvsDPNInt"] <- c(1, -1)

L

## DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt
## (Intercept) 0 0 0 0 0
## treatmentDPN 1 1 0 0 0
## treatmentOHT 0 0 1 1 0
## time48h 0 0 0 0 0
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## patient2 0 0 0 0 0
## patient3 0 0 0 0 0
## patient4 0 0 0 0 0
## treatmentDPN:time48h 0 1 0 0 1
## treatmentOHT:time48h 0 0 0 1 0
## OHTvsCONInt OHTvsDPNInt
## (Intercept) 0 0
## treatmentDPN 0 0
## treatmentOHT 0 0
## time48h 0 0
## patient2 0 0
## patient3 0 0
## patient4 0 0
## treatmentDPN:time48h 0 -1
## treatmentOHT:time48h 1 1

And, finally, we can assess each hypothesis using the glmLRT function implemented in edgeR. We can assess
each hypothesis separately by looping over the contrasts.

lrtList <- list() #list of results
for(cc in 1:ncol(L)) lrtList[[cc]] <- glmLRT(fit, contrast = L[,cc])

# p-value histograms
pvalList <- lapply(lrtList, function(x) x$table$PValue)
pvalMat <- do.call(cbind, pvalList)
colnames(pvalMat) <- colnames(L)
par(mfrow=c(3,3))
sapply(1:ncol(pvalMat), function(ii) hist(pvalMat[,ii],

main = colnames(pvalMat)[ii],
xlab = "p-value"))

## [,1] [,2] [,3] [,4]
## breaks numeric,21 numeric,21 numeric,21 numeric,21
## counts integer,20 integer,20 integer,20 integer,20
## density numeric,20 numeric,20 numeric,20 numeric,20
## mids numeric,20 numeric,20 numeric,20 numeric,20
## xname "pvalMat[, ii]" "pvalMat[, ii]" "pvalMat[, ii]" "pvalMat[, ii]"
## equidist TRUE TRUE TRUE TRUE
## [,5] [,6] [,7]
## breaks numeric,21 numeric,21 numeric,21
## counts integer,20 integer,20 integer,20
## density numeric,20 numeric,20 numeric,20
## mids numeric,20 numeric,20 numeric,20
## xname "pvalMat[, ii]" "pvalMat[, ii]" "pvalMat[, ii]"
## equidist TRUE TRUE TRUE
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5.1.1 Multiple testing

# number of DE genes
padjMat <- apply(pvalMat, 2, p.adjust, method="fdr")
colSums(padjMat <= 0.05 )

## DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt OHTvsCONInt
## 2 62 0 22 0 0
## OHTvsDPNInt
## 0

We are finding low numbers of DE genes between treatments at a 5% FDR level. This was already reflected
in the the MDS plots.

5.1.2 Visualization

Let’s visualize some results for the DPN vs control at 48h contrast.

library(scales) # for scales::alpha()
deGenes <- p.adjust(lrtList[[2]]$table$PValue, "fdr") <= 0.05

## volcano plot
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plot(x = lrtList[[2]]$table$logFC,
y = -log10(lrtList[[2]]$table$PValue),
xlab = "log Fold-change",
ylab = "-log10 P-value",
pch = 16, col = alpha(deGenes+1, .4),
cex=2/3, bty='l')

legend("topright", c("DE", "not DE"),
col = 2:1, pch=16, bty='n')
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## MD-plot
plot(x = lrtList[[2]]$table$logCPM,

y = lrtList[[2]]$table$logFC,
xlab = "Average log CPM",
ylab = "Log fold-change",
pch = 16, col = alpha(deGenes+1, .4),
cex=2/3, bty='l')

legend("topright", c("DE", "not DE"),
col = 2:1, pch=16, bty='n')

abline(h=0, col="orange", lwd=2, lty=2)
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# extract all DE genes
deGenes <- rownames(lrtList[[2]]$table)[p.adjust(lrtList[[2]]$table$PValue, "fdr") <= 0.05]
deGenes

## [1] "ENSG00000035928" "ENSG00000044574" "ENSG00000070882" "ENSG00000075790"
## [5] "ENSG00000091137" "ENSG00000092621" "ENSG00000099864" "ENSG00000099875"
## [9] "ENSG00000100219" "ENSG00000100867" "ENSG00000101255" "ENSG00000101974"
## [13] "ENSG00000102547" "ENSG00000103064" "ENSG00000103257" "ENSG00000103449"
## [17] "ENSG00000107796" "ENSG00000111181" "ENSG00000111790" "ENSG00000119242"
## [21] "ENSG00000120129" "ENSG00000120217" "ENSG00000133935" "ENSG00000135473"
## [25] "ENSG00000135541" "ENSG00000138685" "ENSG00000143127" "ENSG00000145050"
## [29] "ENSG00000145244" "ENSG00000149428" "ENSG00000149485" "ENSG00000152952"
## [33] "ENSG00000155111" "ENSG00000155330" "ENSG00000155660" "ENSG00000164597"
## [37] "ENSG00000166813" "ENSG00000167608" "ENSG00000167703" "ENSG00000168014"
## [41] "ENSG00000169174" "ENSG00000169239" "ENSG00000169762" "ENSG00000170122"
## [45] "ENSG00000170837" "ENSG00000171798" "ENSG00000173210" "ENSG00000175198"
## [49] "ENSG00000181790" "ENSG00000182704" "ENSG00000182836" "ENSG00000183401"
## [53] "ENSG00000185818" "ENSG00000187908" "ENSG00000188783" "ENSG00000197976"
## [57] "ENSG00000219481" "ENSG00000226887" "ENSG00000233705" "ENSG00000234431"
## [61] "ENSG00000236044" "ENSG00000243927"
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# order according to absolute fold-change
orderedDEGenes <- deGenes[order(abs(lrtList[[2]]$table[deGenes, "logFC"]), decreasing = TRUE)]

par(mfrow=c(3,3))
for(kk in 1:9){
boxplot(log1p(assays(se)$counts[orderedDEGenes[kk],]) ~ interaction(treatment, time))
boxplot(fit$fitted.values[orderedDEGenes[kk],] ~ interaction(treatment, time))

}
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5.2 Contrast on the time effect

Based on the MDS plot, we can expect comparatively more DE genes for the time effect. For didactic
purposes, here we assess an average time effect across the three treatments. The analysis shows how
flexible one can be when using contrasts.
Mean of time 24h:

log𝜇𝑔,24ℎ = 1
3

⎧{
⎨{⎩

(𝛽𝑔0)⏟
Control, 24h

+ (𝛽𝑔0 + 𝛽𝑔1)⏟⏟⏟⏟⏟
DPN, 24h

+ (𝛽𝑔0 + 𝛽𝑔2)⏟⏟⏟⏟⏟
OHT, 24h

⎫}
⎬}⎭

Mean of time 48h:

log𝜇𝑔,48ℎ = 1
3

⎧{
⎨{⎩

(𝛽𝑔0 + 𝛽𝑔3)⏟⏟⏟⏟⏟
Control, 48h

+ (𝛽𝑔0 + 𝛽𝑔1 + 𝛽𝑔3 + 𝛽𝑔7)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
DPN, 48h

+ (𝛽𝑔0 + 𝛽𝑔2 + 𝛽𝑔3 + 𝛽𝑔8)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
OHT, 48h

⎫}
⎬}⎭

Difference:
log(𝜇𝑔,48ℎ

𝜇𝑔,24ℎ
) = 𝛽𝑔3 + 1

3(𝛽𝑔7 + 𝛽𝑔8)

Ltime <- matrix(0, nrow = ncol(fit$coefficients), ncol = 1)
rownames(Ltime) <- colnames(fit$coefficients)
Ltime[c("time48h", "treatmentDPN:time48h", "treatmentOHT:time48h"),1] <- c(1, 1/3, 1/3)

lrtTime <- glmLRT(fit, contrast=Ltime)
hist(lrtTime$table$PValue) # very different p-value distribution
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Histogram of lrtTime$table$PValue
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sum(p.adjust(lrtTime$table$PValue, "fdr") <= 0.05) # many DE genes

## [1] 5938

6 Alternative parameterizations

While our design matrix here was parameterized as ~ treatment*time + patient alternative, equivalent
parameterizations are also possible. Below, we demonstrate another parameterization that could work, too,
and can be more intuitive. In this parameterization, we estimate a mean for each experimental condition,
without an intercept, which can be convenient to think about how to set up contrasts.

treatTime <- as.factor(paste0(treatment, time))
table(treatTime)

## treatTime
## Control24h Control48h DPN24h DPN48h OHT24h OHT48h
## 3 4 4 4 4 4

design2 <- model.matrix(~ 0 + treatTime + patient)

dge2 <- calcNormFactors(se)
dge2 <- estimateDisp(dge2, design2)
plotBCV(dge2)
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fit2 <- glmFit(dge2, design2)
head(fit2$coefficients)

## treatTimeControl24h treatTimeControl48h treatTimeDPN24h
## ENSG00000000003 -9.332660 -9.199887 -9.220500
## ENSG00000000419 -10.374585 -10.467601 -10.426918
## ENSG00000000457 -10.935441 -11.008915 -11.063600
## ENSG00000000460 -10.098383 -10.991957 -10.009630
## ENSG00000000971 -13.689209 -13.196964 -13.393947
## ENSG00000001036 -8.280283 -8.366667 -8.258171
## treatTimeDPN48h treatTimeOHT24h treatTimeOHT48h patient2
## ENSG00000000003 -9.210515 -9.246483 -9.233269 -0.5185631
## ENSG00000000419 -10.471834 -10.410026 -10.387429 0.1376257
## ENSG00000000457 -11.073020 -11.069247 -11.011705 0.4574027
## ENSG00000000460 -10.744155 -9.960834 -10.672839 0.5407554
## ENSG00000000971 -13.506580 -13.421841 -13.644803 -0.1468142
## ENSG00000001036 -8.302169 -8.304449 -8.307518 -0.4676508
## patient3 patient4
## ENSG00000000003 -0.82994270 -0.6245673
## ENSG00000000419 0.10515134 0.1023421
## ENSG00000000457 -0.05731193 0.2089687
## ENSG00000000460 -0.33459640 -0.1321134
## ENSG00000000971 0.93857349 -0.2676066
## ENSG00000001036 -1.52141542 -1.0046446
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## for example: the estimate for the DPN24h vs control 24h is still the same,
## but requires a different combination of parameters
plot(fit$coefficients[,"treatmentDPN"],

fit2$coefficients[,"treatTimeDPN24h"] - fit2$coefficients[,"treatTimeControl24h"],
xlab="Intercept model estimate", ylab="No intercept model estimate")
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# Let's implement the DPNvsCON48 contrast
L2 <- matrix(0, nrow = ncol(fit2$coefficients), ncol = 1)
rownames(L2) <- colnames(fit2$coefficients)
L2[c("treatTimeDPN48h", "treatTimeControl48h"),1] <- c(1, -1)
lrt2 <- glmLRT(fit2, contrast=L2[,1])
hist(lrt2$table$PValue)
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Histogram of lrt2$table$PValue
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plot(x=lrt2$table$PValue, y=lrtList[[2]]$table$PValue,
xlab="No intercept model p-value",
ylab="Intercept model p-value")
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7 Additional Challenge (Opportunity?): The importance of re-
producible analysis

Finally, it is crucial to make your analysis reproducible using tools such as RMarkdown and GitHub. Please
sit back and watch this amazing lecture from Professor Keith Baggerly on ”The Importance of Reproducible
Research in High-Throughput Biology.
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https://www.youtube.com/watch?v=8QJfNS7XXwA
https://www.youtube.com/watch?v=8QJfNS7XXwA
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