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7 Additional Challenge (Opportunity?): The importance of reproducible analysis 44

In this lecture we will start working with a real bulk RNA-seq dataset from Haglund et al. (2012). After
importing the data, we will be working our way through four major challenges which, together, will form
a full RNA-seq differential expression (DE) analysis pipeline where the result of our analysis will be a(n
ordered) list of genes that we find to be differently expressed between our conditions of interest. The four
main challenges we will look into are

o Choice of modeling assumptions (distribution).

e Normalization.

e Parameter estimation under a limited information setting.

o Statistical inference under high dimensionality (many genes).

1 Experimental design, data import and data exploration

1.1 Experimental design

Let’s try to work out the experimental design using the following paragraph from the Methods section of
the paper.

Tissue for cell culturing was obtained from four chief cell
parathyroid adenomas collected directly at surgery from female
postmenopausal patients. Isolation of cells and culturing were
performed essentially as previously described (22). Cells were
plated and treated with 100 nm DPN (Tocris Bioscience, Min-
neapolis, MN) or 100 nm OHT (Sigma-Aldrich, St. Louis, MO)
for 24 or 48 h, respectively. Untreated cells cultured in parallel
were used as controls. Cells were harvested in RNeasy (QIAGEN
AB, Hilden, Germany), and quality control was performed using
Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Nano-
drop (Nanodrop Technology, Wilmington, DE) for all speci-
mens. RNA samples were isolated from four different adenomas,
and one sample (case 4, control 24 h) was omitted before tran-
scriptome sequencing based on low RIN value. The entire sample
set used for sequencing consisted of the treatment groups DPN
24h(n=4),DPN48h (n = 4), OHT 24 h (n = 4), OHT 48 h
(n = 4), control 24 h (n = 3), and control 48 h (n = 4).

Figure 1: Figure: A paragraph from the Methods section.

1.2 Data import and exploration
We will be importing the dataset using the parathyroidSE data package from Bioconductor.

if (!requireNamespace("BiocManager", quietly = TRUE)){
install.packages("BiocManager")
}
if (! "SummarizedExperiment" %inj installed.packages()[,1]1){
BiocManager: :install ("SummarizedExperiment")
}
# install package if not installed.
if (!"parathyroidSE" %inJ, installed.packages()[,1]) BiocManager::install("parathyroidSE")


https://academic.oup.com/jcem/article/97/12/4631/2536573
https://www.bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
https://bioconductor.org/

suppressPackageStartupMessages ({
library(parathyroidSE)
library(SummarizedExperiment)

b

# tmport data

data("parathyroidGenesSE", package="parathyroidSE")
# rename for conventience

sel <- parathyroidGenesSE

rm(parathyroidGenesSE)

# three treatments
treatmentl <- colData(sel)$treatment
table (treatment1)

## treatmentl
## Control DPN OHT
## 7 10 10

# two timepoints
timel <- colData(sel)$time
table(timel)

## timel
## 24h 48h
## 13 14

# four domor patients
patientl <- colData(sel)$patient
table(patientl)

## patientl
## 123 4
## 6 86 7

table(patientl, treatmentl, timel)

## , , timel = 24h

##

## treatmentl

## patientl Control DPN OHT
## 1 1 1 1
## 2 1 2 2
#i# 3 1 1 1
#i# 4 o 1 1
##

## , , timel = 48h

##

## treatmentl

## patientl Control DPN OHT
## 1 1 1 1



## 2 1 1 1
## 3 1 1 1
# 4 1

e We observe that the number of samples that we are observing here is larger than what is described in
the paper. As also described in the parathyroidSE vignette, some samples were spread over multiple
sequencing runs (i.e., the same sample being sequenced repeatedly) and therefore constitute technical
replication, rather than biological replication.

o We have previously seen that technical replicates can be considered to be distributed according to a
Poisson distribution. One important property of Poisson random variables is that a sum of Poisson
random variables still follow a Poisson distribution. Indeed, if X ~ Poi(uy) and Y ~ Poi(uy ), then
X+Y =27~ Poi(uy + iy)-

e For this reason, it is often suggested to sum technical replicates rather than, for example, averaging,
which does not retain the Poisson property (try for yourself!). We’ll therefore first sum the technical
replicates.

dupExps <- as.character(colData(sel)$experiment [duplicated(colData(sel)$experiment)])
dupExps

## [1] "SRX140511" "SRX140513" "SRX140523" "SRX140525"

counts <- assays(sel)$counts

newCounts <- counts

cd <- colData(sel)

for(ss in 1:length(dupExps)){
# check which samples are duplicates
relevantId <- which(colData(sel)$experiment == dupExps[ss])
# sum counts
newCounts[,relevantId[1]] <- rowSums(counts[,relevantId])
# keep which columns / rows to remove.

if(ss == 1){

toRemove <- relevantId[2]
} else {

toRemove <- c(toRemove, relevantId[2])
}

}

# remove after summing counts (otherwise IDs get mized up)
newCounts <- newCounts[,-toRemove]
newCD <- cd[-toRemove,]

# Create new SummarizedExperiment

se <- SummarizedExperiment(assays = list("counts" = newCounts),
colData = newCD,
metadata = metadata(sel))

treatment <- colData(se)$treatment
table (treatment)

## treatment
## Control DPN OHT
#i#t 7 8 8


https://www.bioconductor.org/packages/release/data/experiment/vignettes/parathyroidSE/inst/doc/parathyroidSE.pdf

time <- colData(se)$time
table (time)

## time
## 24h 48h

##

11 12

patient <- colData(se)$patient
table(patient)

## patient
## 1234
## 6 6 65

table(patient, treatment, time) # agrees with paper.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

, , time = 24h

treatment
patient Control DPN OHT
1 1 1 1
2 1 1 1
3 1 1 1
4 0 1 1

, , time = 48h

treatment
patient Control DPN OHT
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1

o After summing the technical replicates and appropriately updating the sample information, we again

create a SummarizedExperiment object, which is essentially a data container that contains all relevant
information about your experiment. Please see the vignette for more information on how to use this
class.

o By directly matching columns (samples) and rows (genes) to their relevant metadata, the

SummarizedExperiment class avoids mistakes by mis-matching columns and rows with each
other (provided you haven’t mismatched them when you create the object).

e The SummarizedExperiment class is modular and extendable, and extensions exist for example for the

analysis of single-cell RNA-seq data, i.e., the SingleCellExperiment class.

e Due to their convenient organization and widely supported usage within Bioconductor, we will typically

work with such classes in the analysis of RNA-seq data.

1.3 Independent filtering

Independent filtering is a strategy to remove features (in this case, genes) prior to the analysis. Removal
of these features may lower the multiple testing correction for other genes that pass the filter. We try to


https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html

remove genes that have a low power to be found statistically significant, and/or that are biologically less
relevant. A common filtering strategy is to remove genes with a generally low expression, as low counts have
lower relative uncertainty (hence lower statistical power), and may be considered biologically less relevant.

suppressPackageStartupMessages ({
library(limma)
library (edgeR)

B

keep <- rowSums(cpm(se) > 2) >= 3
table (keep)

## keep
## FALSE TRUE
## 47837 15356

se <- selkeep,]

1.4 Data exploration

# library size distribution
hist(colSums (assays(se)$counts)/1e6, breaks=10)

Histogram of colSums(assays(se)$counts)/1e+06

Frequency

colSums(assays(se)$counts)/1e+06



boxplot (colSums (assays(se)$counts)/1e6 ~ treatment)
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boxplot (colSums (assays(se)$counts)/1e6 ~ time)
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boxplot (colSums (assays(se)$counts)/1le6 ~ interaction(treatment, time))
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interaction(treatment, time)

# MDS plot

plotMDS(se,
labels = treatment,
col=as.numeric(patient))
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Leading logFC dim 1 (48%)

## hard to see influence of experimental factors due to large between-patient wvariation
## we could also make an MDS plot per patient to take a look.
for(kk in 1:4){
id <- which(patient == kk)
plotMDS(sel[,id],
labels = pasteO(treatment[id]," ",time[id]),
col=as.numeric(time[id]))
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Leading logFC dim 2 (20%)
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Leading logFC dim 2 (19%)
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Leading logFC dim 2 (17%)
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Observations based on MDS plot:

e There is a very large between-patient variability, which is the major source of variation in this dataset.
The samples from each patient cluster together tightly.

o Within patient, time consistently explains more variation than the treatments.

¢ Relative to patients and time, the treatment seems to have a fairly small effect.

2 Challenge I: Choice of modeling assumptions

When working with a GLM, as part of the choices of modeling assumptions, we need to pick an appropriate
distribution for the expression counts. Below we perform some exploratory analyses to investigate.

y <- assays(se)$counts[1,]
hist(y, breaks = 40,

xlab = "Gene expression",
xaxt = "n", yaxt = "n",
main = "Data for the first gene")

axis(1, at = seq(200, 1200, by=200))
axis(2, at = 0:3)

15



Data for the first gene

o)
c @ 7 | ]
o}
=}
o
o~ 4
I

H_

o_

[ |

I I I
400 600 800 1000 1200

Gene expression

# Mean-variance trend within each experimental condition

cont24ID <- which(treatment == "Control" & time == "24h")
DPN24ID <- which(treatment == "DPN" & time == "24h")
OHT24ID <- which(treatment == "OHT" & time == "24h")
cont48ID <- which(treatment == "Control" & time == "48h")
DPN48ID <- which(treatment == "DPN" & time == "48h")
OHT48ID <- which(treatment == "OHT" & time == "48h")

idList <- list(cont24ID, DPN24ID, OHT24ID,
cont48ID, DPN48ID, OHT48ID)
names (idList) <- pasteO(rep(levels(treatment),2), rep(levels(time), each=3))

par (mfrow=c(3,2), mar=c(2,2,2,1))
for(kk in 1:length(idList)){
# extract counts for each condition
curCounts <- assays(se)$counts[,idList[[kk]]]
plot(x = rowMeans(curCounts)+1,
y = rowVars(curCounts)+1,
pch = 16, cex=1/2,

xlab = "Mean", ylab="Variance",
main = names(idList) [kk],
:I_Og:"Xy”)

abline(0,1, col="red")

lwl <- loess((rowVars(curCounts)+1) ~ (rowMeans(curCounts)+1), span=1/4, lwd=3)
0o <- order(rowMeans (curCounts)+1)

lines(rowMeans (curCounts) [oo]+1, lwi$fitted[oo], col="orange")

16



}
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1e+00
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1le+07
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smoothScatter(x =
y = loglp(rowVars(curCounts)),
pch = 16, cex=1/2,
xlab = "Mean", ylab="Variance")
abline(0,1, col="red")

loglp(rowMeans (curCounts)),

lines(log(rowMeans (curCounts) [oo]l+1), log(lwi$fitted[oo]l+1), col="orange")
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Having data on thousands of genes provides the opportunity to empirically assess the mean-variance
relationship.

It is clear that the data is overdispersed with respect to the Poisson distribution (red y = x line).
There also seems to be a quadratic trend of the variance as a function of the mean. This has motivated
the negative binomial distribution as the most popular choice to model (bulk) RNA-seq
gene expression data.

The negative binomial distribution is also referred to as the Gamma-Poisson distribution as it can be
formulated as such. Indeed, if
A ~T(a, B)Y|X ~ Poi()N),

then this is equivalent to
Y ~ NB(j = a/B,¢ = 1/a).

This can be shown analytically, but is considered out of the scope of this course. Below, we show it
empirically using simulation.

This theoretical result has got some practical consequences. The Gamma-Poisson formulation makes
it clear why we can sum technical replicates as the sum of Poisson random variables is again a Poisson
random variable.

The Poisson statement can thus be considered as capturing technical variation, while the Gamma
statement can be considered to capture biological variation, i.e., variation in the mean expression
across biological replicates.

18



alpha <- 20

beta <- 10

lambda <- rgamma(n = le5, shape = alpha, rate = beta)
yl <- rpois(n = 1leb, lambda = lambda)

# note phi = 1 / size
y2 <- rnbinom(n=1e5, mu=alpha / (beta), size=alpha)

plot(density(y1))
lines(density(y2), col="steelblue")

density.default(x = y1)
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N = 100000 Bandwidth = 0.1334

3 Challenge II: Normalization
Normalization is necessary to correct for several sources of technical variation:

o Differences in sequencing depth between samples. Some samples get sequenced deeper in the
sense that they consist of more (mapped) reads and therefore can be considered to contain a higher
amount of information, which we should be taking into account. In addition, if a sample is sequenced
deeper, it is natural that the counts for each gene will be higher, jeopardizing a direct comparison of
the expression counts.

o Differences in RNA population composition between samples. As an extreme example, suppose
that two samples have been sequenced to the exact same depth. One sample is contaminated and has

19



a very high concentration of the contaminant cDNA being sequenced, but otherwise the two samples
are identical. Since the contaminant will be taking up a significant proportion of the reads being
sequenced, the counts will not be directly comparable between the samples. Hence, we may also want
to correct for differences in the composition of the RNA population of the samples.

e Other technical variation such as sample-specific GC-content or transcript length effects may also
be accounted for.

Let’s take a look at how comparable different replicates are in the Control condition at 48h in our dataset.
We will investigate this using MD-plots (mean-difference plots as introduced by Dudoit et al. (2002)), also
sometimes referred to as MA-plots.

cont48ID # relevant samples

## [1] 2 8 14 19

colSums (assays(se)$counts[,cont48ID]) / 1leb

## [1] 10.801193 6.828259 8.038079 7.678421
combs <- combn(cont48ID, m=2) #pairwise combinations between samples

par (mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
curSamples <- combs[,cc]
M <- rowMeans(assays(se)$counts[,curSamples])
D <- assays(se)$counts[,curSamples[2]] / assays(se)$counts[,curSamples[1]]
plot(x = log(M), y = log2(D),
pch = 16, cex=1/3,
main = paste0("Sample ", curSamples[2], " vs sample ", curSamples[1]),
xlab = "Log mean", ylab = "Log2 fold-change",
bty = '1')
abline(h = 0, col="orange", lwd=2)

20


https://www.jstor.org/stable/24307038
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e We see clear bias for some pairwise comparisons. For example, in the first plot comparing sample 8
versus sample 2, the log fold-changes are biased downwards. This means that, on average, a gene is
lower expressed in sample 8 versus sample 2. Looking at the library sizes, we can indeed see that the
library size for sample 2 is about 11 x 10% while it is only about 7 x 10° for sample 8! This is a clear
library size effect that we should take into account.

3.1 Count scaling versus GLM offsets

e We have previously discussed count scaling transformations such as CPM and TPM.

e A more appropriate and natural way when working with GLMs is through the use of offsets. The
general use of an offset is to account for the ‘effort’ performed in order to gather that observation of
the response variable. Two examples:

1. A biologist studying whale migration has one fixed spot where, in the migration season, she counts
migrating whales day after day, over several years. For each day she records the number of spotted
whales. Of course, the time spent whale-watching may differ from day to day and it is natural
that you are more likely to spot more whales if you spend more time looking for them. The time
spent spotting whales can then be used as an offset.

2. In our case, a sample being sequenced deeper contains more information, i.e., more ‘effort’ has
been performed, as compared to a sample being sequenced relatively shallow. We have more
confidence of a count from a deeply sequenced sample than from a shallowly sequenced sample.
We can therefore use the sequencing depth N, = Zg Y, as offset in the model.

e Adding an offset to the model is different from adding a new variable to the model. For each new
variable we add, we will estimate its average effect 8 on the response variable. When adding an offset,
however, we are implicitly assuming that g = 1.

21



o Offsets are typically added on the scale of the linear predictor. Suppose we have a gene g and sample
1 specific offset O,;, then we can define a negative binomial GLM including the offset as

1 Ygi ~ NB(qu ¢q)
og IU/gi = ngi
ngi = XZTBQ + log(Ogl)

o Please read this page for an intuitive reasoning as to why offsets are preferred over count scaling.

g

3.2 How to normalize?

Many approaches are available for normalizing RNA-seq data, and we will review a couple of these. Most
methods calculate an offset that is used in the GLM used to model gene expression. One notable method,
full-quantile normalization, does not calculate an offset, and rather normalizes counts directly, immediately
enforcing the same sequencing depth for all samples.

3.2.1 TMM method (default of edgeR)

The trimmed mean of M-values (TMM) method introduced by Robinson & Oshlack (2010) is a normalization
procedure that calculates a single normalization factor for each sample. As the name suggests, it is based

on a trimmed mean of fold-changes (M-values) as the scaling factor. A trimmed mean is an average after

removing a set of ‘extreme’ values. Specifically, TMM calculates a normalization factor Fi(r) across genes ¢

for each sample i as compared to a reference sample r,

r T
dec* wgngi
r 7

10g2(Fi(T)>: > w
geG gt

where Mg, represents the log,-fold-change of the gene expression fraction as compared to a reference sample

r, i.e.,
Yg’l"/NT

My; = log, (
and wy, represents a precision weight calculated as
r':Ni_Ygi Nr_ytqr
gr NY, NY

it gl T gr

w

and G* represents the set of genes after trimming those with the most extreme average expression and fold-
change. The weights serve to account for the fact that fold-changes for genes with lower read counts are
more variable.

The procedure only takes genes into account where both Y ; > 0 and Y, > 0. By default, TMM trims
genes with the 30% most extreme M-values and 5% most extreme average gene expression, and chooses
as reference r the sample whose upper-quartile is closest to the across-sample average upper-quartile. The
normalization factor is then used in conjunction with the library size to calculate an effective library size

Nfiff — NF(T)
which is used as offset in the GLM. The normalized counts may be given by ffgi =Y,;/N;, with size factor

N.F")

Ny = 1 n NF(T)
Ezizl it

K3

TMM normalization may be performed from the calcNormFactors function implemented in edgeR:
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https://statomics.github.io/SGA21/sequencing_scalingNormalization.html
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25

dge <- edgeR::calcNormFactors(se)
dge$samples #normalization factors added to colData

## group lib.size norm.factors run experiment patient treatment
## Samplel 1 9079958 0.9824006 SRR479052 SRX140503 1 Control
## Sample2 1 10801193 0.9730905 SRR479053 SRX140504 1 Control
## Sample3d 1 5205034 0.9771680 SRR479054 SRX140505 1 DPN
## Sampled 1 9681399 0.9935090 SRR479055 SRX140506 1 DPN
## Sampleb 1 5685671 0.9730827 SRR479056 SRX140507 1 OHT
## Sample6 1 7835627 0.9837862 SRR479057 SRX140508 1 OHT
## Sample7 1 8590615 0.9350218 SRR479058 SRX140509 2  Control
## Sample8 1 6828259 0.9436147 SRR479059 SRX140510 2  Control
## Sample9 1 24525588 0.9445726 SRR479060 SRX140511 2 DPN
## SamplelO 1 8248985 0.9320020 SRR479062 SRX140512 2 DPN
## Samplell 1 23535205 0.9384823 SRR479063 SRX140513 2 OHT
## Samplel2 1 8228473 0.9311185 SRR479065 SRX140514 2 OHT
## Samplel3 1 7317690 1.0567909 SRR479066 SRX140515 3  Control
## Sampleld 1 8038079 1.0431594 SRR479067 SRX140516 3 Control
## Samplelb 1 12443101 1.0607802 SRR479068 SRX140517 3 DPN
## Samplel6 1 16260235 1.0407639 SRR479069 SRX140518 3 DPN
## Samplel7 1 23624835 1.0437936 SRR479070 SRX140519 3 OHT
## Samplel8 1 7619275 1.0354159 SRR479071 SRX140520 3 OHT
## Samplel9 1 7678421 1.0440457 SRR479072 SRX140521 4  Control
## Sample20 1 7114567 1.0541970 SRR479073 SRX140522 4 DPN
## Sample21 1 13777391 1.0365701 SRR479074 SRX140523 4 DPN
## Sample22 1 6081314 1.0611051 SRR479076 SRX140524 4 OHT
## Sample23 1 15778115 1.0414101 SRR479077 SRX140525 4 OHT

## time submission study sample
## Samplel  24h SRA051611 SRP012167 SRS308865
## Sample2 48h SRA051611 SRP012167 SRS308866
## Sample3  24h SRA051611 SRP012167 SRS308867
## Sample4  48h SRA051611 SRP012167 SRS308868
## Sample5  24h SRA051611 SRP012167 SRS308869
## Sample6  48h SRA051611 SRP012167 SRS308870
## Sample7  24h SRA051611 SRP012167 SRS308871
## Sample8 48h SRA051611 SRP012167 SRS308872
## Sample9  24h SRA051611 SRP012167 SRS308873
## Samplel0 48h SRA051611 SRP012167 SRS308874
## Samplell 24h SRA051611 SRP012167 SRS308875
## Samplel2 48h SRA051611 SRP012167 SRS308876
## Samplel3 24h SRA051611 SRP012167 SRS308877
## Samplel4 48h SRA051611 SRP012167 SRS308878
## Samplel5 24h SRA051611 SRP012167 SRS308879
## Samplel6 48h SRA051611 SRP012167 SRS308880
## Samplel7 24h SRA051611 SRP012167 SRS308881
## Samplel8 48h SRA051611 SRP012167 SRS308882
## Samplel9 48h SRA051611 SRP012167 SRS308883
## Sample20 24h SRA051611 SRP012167 SRS308884
## Sample21 48h SRA051611 SRP012167 SRS308885
## Sample22 24h SRA051611 SRP012167 SRS308886
## Sample23 48h SRA051611 SRP012167 SRS308887
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Let’s check how our MD-plots look like after normalization. Note that, we can rewrite the GLM as

Hgi
Ny

and so can be considered as an ‘offset-corrected average count’.

We see that all MD-plots are now nicely centered around a log-fold-change of zero!

## mormalize
effLibSize <- dge$samples$lib.size * dge$samples$norm.factors
normCountTMM <- sweep(assays(se)$counts, 2, FUN="/", effLibSize)

par (mfrow=c(3,2), mar=c(4,4,2,1))
for(cc in 1:ncol(combs)){
curSamples <- combs[,cc]
M <- rowMeans(normCountTMM[, curSamples])
D <- normCountTMM[,curSamples[2]] / normCountTMM[,curSamples[1]]
plot(x = log(M), y = log2(D),
pch = 16, cex=1/3,

main = pasteO("Sample ", curSamples[2], " vs sample ", curSamples[1]),

xlab = "Log mean", ylab = "Log2 fold-change",
bty = '1")
abline(h = 0, col="orange", lwd=2)
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3.3 Median-of-ratios method (default of DESeq?2)

The median-of-ratios method is used in DESeq2 as described in Love et al. (2014). It assumes that the
expected value p ; = E(Ygi) is proportional to the true expression of the gene, q,;, scaled by a size factor s,
for each sample,

ﬂ’gi = siqgi'

The size factor s; is then estimated using the median-of-ratios method compared to a synthetic reference
sample r defined based on geometric means of counts across samples

Y,

s, = median _gi
i {95, #0} yra
ar

" 1/n
Yy = (1_[1Y9> :

We can then use the size factors s; as offsets to the GLM.

with

Question. Do you see any issues with the procedure described as such?
Answer.

The procedure relies on genes being expressed in all samples. As sample size increases, the number of genes
with this property steadily decreases. This will become crucial in single-cell RNA-seq data analysis.

Median-of-ratios normalization is implemented in the DESeq2 package:

dds <- DESeq2::DESegDataSetFromMatrix(countData = assays(se)$counts,
colData = colData(se),
design = ~ 1) #just add intercept to showcase normalization

## converting counts to integer mode

dds <- DESeq2::estimateSizeFactors(dds)
sizeFactors(dds)

## [1] 0.9166999 1.0640199 0.5224518 0.9806075 0.5664996 0.7802413 0.8282554
## [8] 0.6592136 2.3949029 0.7898898 2.2781598 0.7858861 0.7775688 0.8399826
## [15] 1.3311498 1.6977165 2.4949218 0.7875376 0.8106158 0.7607974 1.4476678
## [22] 0.6529423 1.6653456

You may also want to check out the StatQuest video on DESeq2 normalization.

3.3.1 Comparing TMM with DESeq2 normalization

We can compare the size factors for both normalizations to verify if they agree on the normalization factors.
Note we need to scale the effective library sizes from edgeR to enforce a similar scale as the size factors from
DESeq2. While below we are using an arithmetic mean, a geometric mean may be used as well, which will
be more robust to outlying effective library sizes.

plot(effLibSize / mean(effLibSize), sizeFactors(dds),

xlab = "edgeR size factor",
ylab = "DESeq2 size factor")
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Full-quantile (FQ) normalization

In full-quantile normalization, originally introduced in the context of microarrays by Bolstad et al. (2003),
the samples are forced to each have a distribution identical to the distribution of the median/average of
the quantiles across samples. In practice, we can implement full-quantile normalization using the following
procedure

=N

3.5

Given a data matrix Y., for G genes (rows) and n samples (columns),
sort each column to get Y°,
replace all elements of each row by the median (or average) for that row,

obtain the normalized counts Y by re-arranging (i.e., unsorting) each column.

Uncertainty in normalization

The offsets that are being cacluated for normalization purposes are estimates.

The downstream analyses incorporates these estimates as if they are known, i.e., conditions on the

estimates.
The analysis therefore ignores the uncertainty in their estimation.
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BOX 1 GLOBAL-SCALING NORMALIZATION FOR scRNA-seq DATA SETS

RNA-seq experiments are inherently stochastic, with reads
being randomly sampled from a pool of amplified cDNA
molecules. Accordingly, let X;; denote a random variable
representing the read count of gene i in cell j. Typically, the
parameter of interest is the expression level of each gene

(see left panel), i.e., the relative abundance of mRNA
molecules for a gene within the population of mRNA molecules
in each cell. For the sake of simplicity, we consider here

the case of a homogeneous cell population.

Intuitively, a first effect captured through the scaling
factor s; is the endogenous mRNA content n;, the total
number of mRNA molecules per cell (middle panel). Indeed,
even within a homogeneous population, n; can vary across
cells. Furthermore, after cell lysis, only a fraction (F;) of these
n; molecules, are captured and reverse transcribed into cDNA.
Consequently, only n; x F; cDNA molecules can potentially be
amplified and subsequently sequenced. Critically, the capture
and reverse transcription efficiency F; varies between cells;
this introduces cell-to-cell variability that should also be
handled by s;.

Subsequently, because of the minute amount of genetic
material contained in a cell, this pool of n; x F; cDNA
molecules must be amplified before sequencing library
preparation. Variability in amplification efficiency can in-
troduce cell- and gene-specific biases in the measurement of
expression levels. We denote the cell-specific amplification
factor as 4j, such that amplification leads to a pool
of nj x F; x A; molecules.

Unlike microarray experiments, RNA-seq is inherently com-
petitive, meaning that a fixed number of reads are distributed

between genes. Given this, the amplified pools are subse-
quently diluted by a cell-specific factor D}, so that there are
n; x F; x A; x D; amplified cDNA molecules to be sequenced.
In principle, the dilution factor D; can be set so that a
library contains the same number of molecules from each
cell by carrying out a library quantification step and

setting D; = m/(n; x F; x 4;), where m is the desired number
of molecules per cell. Alternatively, each cell can contribute
the same volume of amplified cDNA solution to the library,
such that each library will contain a different number

of amplified cDNA molecules if the concentration of the
solution varies between cells. In this case, D; = d, where d
is the proportion of amplified molecules used to prepare the
sequencing library. This decision is critical for interpreting
the scaling factor s;, since it affects the number of molecules
that are available for sequencing and, consequently,

the scale of cell-specific read counts.

Finally, the number of sequenced reads per molecule from
each cell (sequencing depth), R;, also varies stochastically.
Consequently, by considering all the above factors, we expect
to observe n; x F; x A; x D; x R; reads from cell j. Hence, even
within the same sequencing lane, differences in sequencing
depth introduce cell-specific artifacts that will be incorporated
into the global scaling factor s;.

While the above discussion assumes a homogeneous popula-
tion of cells, this interpretation of scaling factors is still valid
for more realistic scenarios—with heterogeneous populations—
under specific assumptions, such as that the majority of genes
is not differentially expressed or that there are roughly equal
numbers of uprequlated and downregulated genes.

Assumption Throughout the experiment In practice
Gene-specific effect Capture and Dilution Normalized  Estimated
‘expression level RT fraction factor expression scaling factor
A A A A A
E(Xg) =% 1 s = x Fox A x D xR X = X 1§
v v v v v
Cell-specific effect Endogenous Amplification Sequencing Raw
‘scaling factor’ mRNA content factor depth read count
< = E=Ee= = s f s s ===
v > Xao = == — === v
- P = pp cOmcm P coemes P Co D f §
Ignores gene-specific ~ QQ’ = i == Uncertainty in the

biases (GC content,
transcript length)
and RT

Capture Amplification Dilution

estimation of scaling

Sequencing factors is not propagated

Figure 2: Figure: Box 1 from Vallejos et al. (2017).
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4 Challenge IIT: Parameter estimation (under limited information
setting)

There are two challenges to be overcome here:

e First, we need to get the structure of our mean model right, this is, which covariates to include, and
how to include them, such that we are capable of capturing important sources of variation in our
experiment, in order to derive a correct interpretation of the data in terms of our research question.

e Second, we need to be able to estimate the parameters of our model in an efficient way, while having
limited information (i.e., we are often confronted with only a small number of replicates).

4.1 Defining the model for the mean

Let’s first check how the authors of the original study parameterized the mean model.

transcripts using Cufflinks (version 1.0.3). Read counts per gene
were calculated using HTSeq (version 0.5.1), and differential
expression analysis was performed using the edgeR package,
(26) employing treatment type, time point, and sample ID as
factors in the model. Four different comparisons between sample
groups were done: DPN 24 h vs. control 24 h, DPN 48 h vs.
control 48 h, OHT 24 h vs. control 24 h, and OHT 48 h vs.
control 48 h. All raw data are accessible through NCBI GEO
Series accession no. GSE37211 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgiracc=GSE37211).

Figure 3: Figure: Another paragraph from the Methods section.

The authors write that they are “employing treatment type, time point and sample ID as factors in the
model”. Concerning experimental variables, this suggests they have added covariates defining the treatment
and time point for each sample. The sample ID in the text refers to the original tissue sample and therefore
corresponds to the donor patient. While there is also a variable called sample in the colData, this is not
what the authors refer to. Note the ambiguity here and since the authors didn’t share their code, this is
hard to check! But, more on reproducibility later...

Question. What are the authors assuming when using this structure for the mean model? Do you think
that there are extensions or simplifications of the mean model that would be relevant?

Answer.

The authors are acknowledging the relatedness of samples derived from the same donor patient by adding
it as a fixed effect to the model, which is great. This blocking strategy has been extensively discussed in
the proteomics part of this course. However, by only adding a main effect for treatment and time, they are
assuming that the effect of time is identical for all treatments, i.e., the average gene expression in-/decrease
at 48h versus 24h is identical for the DPN, OHT or the control samples, which seems like a quite stringent
assumption. We can make the model more flexible by allowing for a treatment * time interaction.

4.2 Parameter estimation and empirical Bayes

e Even in limited sample size settings, the parameters 8 of the mean model may be estimated reasonably
efficiently, and we have previously discussed the IRLS algorithm to do so.

« However, estimating parameters for the variance (this is, the dispersion parameter ¢ from the negative
binomial or the variance parameter o from the Gaussian) is typically quite a bit harder.
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e In genomics, we often take advantage of the parallel structure of the thousands of regression models
(one for each gene) to borrow information across genes in a procedure called empirical Bayes,
as also seen in the proteomics part of this course.

e In the Bayesian setting, we use not only the data, but also a prior distribution, to derive our parameter
estimates. In a traditional Bayesian analysis, one assumes an a priori known prior distribution, which
reflects our prior belief into all possible values of the parameter. This prior distribution is completely
independent of the observed data and the idea is that one specifies the prior distribution before observ-
ing the data. One can then use the data and prior distribution to derive a posterior distribution
for the parameter(s) 6 of interest through Bayes rule

~ p(Y[0)p(0)
PO ) = B p(6)d

Here, the posterior distribution p(8|Y) is calculated using the data likelihood p(Y|6), prior distribution
p(0) and the ‘marginal likelihood’ feee p(Y|0)p(0)dl, where © denotes the parameter space of 6. We
can see that the posterior probability for a specific value of the parameter 6 will be high if both the
data likelihood as well as prior probability are high.

e In empirical Bayes, we basically take a semi-Bayesian approach to parameter estimation. Indeed, we
do not assume a known prior distribution, but estimate it empirically using the data. This empirically
estimated prior p(6) is then used to calculate the posterior distribution.

e While in some settings one can easily calculate the posterior distribution, sometimes it can be a hard
problem. In such cases, it may be useful to restrict ourselves to calculating the maximum a posteriori
(MAP) estimate, which corresponds to the mode of the posterior distribution. This can be considered
to be analogous to point estimation in the frequentist setting.

e In our setting, we use genes with a similar average expression to moderate the dispersion estimate for
a particular gene. The basic assumption for this to make sense is that genes with similar means might
have similar dispersion parameters (or variances), owing to the mean-variance trend.

e Once initial estimates for the gene-wise dispersions have been derived (&)2‘[ L in the figure), we use a
parametric model to estimate its distribution (typically as a function of the mean) across genes. This
distribution is the prior distribution.

e Then, each initial estimate is shrunken towards that empirically estimated prior distribution. The
amount of shrinkage being performed is data-driven, and depends on the data, taking into account the
precision of our initial estimate (i.e., shape of the likelihood) and the variability of the prior distribution.

e These strategies result in impressive performance gains in terms of differential expression analysis and
are implemented in all popular differential expression analysis software packages (though in slightly
differing ways) like 1imma, edgeR and DESeq?2.

The blog post on understanding empirical Bayes estimation using baseball statistics is a great primer for
further reading, as well as the accompanying book by David Robinson.

4.3 In practice

Let’s fit the model using edgeR.
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Figure 8

Steps in an empirical Bayes model. In an RNA sequencing experiment, one assesses the observed differences
in gene expression across groups of samples with respect to within-group variance. (#) The unobserved
population distribution for the true within-group variance of each gene. (b) Variances are estimated from
limited sample size experiments, and so there is sampling variance in our estimate of the variance. A
maximum likelihood estimate (MLE) or a bias-corrected estimator for expression variance can be used.

(¢) Thousands of genes are typically observed and estimates are made for each, providing an empirical
distribution of MLEs across all genes. This empirical distribution of MLEs can be used to determine a prior
distribution for empirical Bayes analysis; the posterior distribution for the variance of each gene is calculated
using Bayes’ formula. (d) Distribution of the maximum a posteriori (MAP), or posterior mode, estimates of
variance over all genes. The posterior modes represent shrunken estimates, where the amount of shrinkage is
determined by the shape of the likelihood and the width of the prior distribution.

Figure 4: Figure 8 from Van den Berge *et al.* (2019).
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design <- model.matrix(~ treatment*time + patient, data=colData(se))

dge <- calcNormFactors(se)
dge <- estimateDisp(dge, design) # estimate dispersion estimates

plo

Biological coefficient of variation

tBCV (dge)

0.8

0.6

Tagwise
Common
Trend

fit <- glmFit(dge, design)
head(fit$coefficients)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ENSGO0000000003
ENSG00000000419
ENSG0O0000000457
ENSG00000000460
ENSG0O0000000971
ENSG0O0000001036

ENSG00000000003
ENSG0O0000000419
ENSG0O0000000457
ENSG0O0000000460
ENSGO0000000971
ENSG00000001036

Average log CPM

(Intercept) treatmentDPN treatmentOHT time48h
-9.332660 0.11215980 0.08617711 0.13277338
-10.374585 -0.05233370 -0.03544105 -0.09301681
-10.935441 -0.12815863 -0.13380545 -0.07347351
-10.098383 0.08875322 0.13754925 -0.89357390
-13.689209 0.29526136 0.26736723 0.49224506
-8.280283 0.02211192 -0.02416563 -0.08638397
patient3 patient4 treatmentDPN:time48h
-0.82994270 -0.6245673 -0.12278804
0.10515134 0.1023421 0.04810092
-0.05731193 0.2089687 0.06405330
-0.33459640 -0.1321134 0.15904868
0.93857349 -0.2676066 -0.60487781
-1.52141542 -1.0046446 0.04238597

treatmentOHT :time48h
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patient?2
.5185631
.1376257
.4574027
.5407554
.1468142
.4676508



## ENSGO0000000003 -0.11955914

## ENSG0O0000000419 0.11561301
## ENSG0O0000000457 0.13101511
## ENSGO0000000460 0.18156925
## ENSGO0000000971 -0.71520710
## ENSGO0000001036 0.08331487

5 Challenge 1V: Statistical inference across many genes

5.1 Contrasts on the treatment effects

We will first derive all contrasts that are also investigated in the original manuscript, using our extended
model where we are allowing for an interaction effect between treatment and time.

The mean model is
log(tty;) = Byo+ B ppn +BeeTont +ByzTash + BeaTpata + BysTpars + ByeTpata + ByrT ppnaash T BesTonTash-

The intercept corresponds to the log average gene expression in the control group at 24h for patient 1.

DPN 24h vs control 24h. The respective means are
log tty ppN,2an = Bgo + Bg1s

log /J’g700n724h = ﬁgO'

And their difference is
6g = ﬁgl.

DPN 48h vs control 48h. The respective means are
log 11y ppN,ash = Bgo + Bg1 + Bgs + Bgr

10g ﬂg,con,48h = ﬂg() + BQB‘

And their difference is
Oy = By + Byr-

OHT 24h vs control 24h. The respective means are
log 11y o 241 = Bgo + Byas

log ,u‘g,con,24h = 6_(;0'

And their difference is
(59 = ﬁgz.

OHT 48h vs control 48h. The respective means are
log kg o asn = Bgo + Bya + Bgs + Bys:

log Mg,con,48h = BgO + ﬂgS'

And their difference is
59 = BgQ + ﬁgS'

However, we can also assess the interaction effects: is the time effect different between DPN and OHT
treatment versus the control? And how about the DPN vs OHT treatments?
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DPN vs control interaction. The time effect for each condition is
dppn =108 1y ppN ash — 108 1y ppN 2an = Bgs + Byrs

60071 = 1Og lug,con,48h - IOg /j’g,con,24h = Bg?)‘
So the interaction effect is
6DPN7con = Bg?'

OHT vs control interaction. The time effect for each condition is
dour = log Hg OHT 48h — log Hg 0HT 24h = /6g3 + 59&

60071 = 1Og lug,con,48h - log Mg,con,24h = ﬁg?)‘
So the interaction effect is
6DPN—con = 698'

OHT vs DPN interaction. The time effect for each condition is
Sorr =108ty opr asn — 108 Ly 0T 2an = By + Byss

dppn =108 1y ppN ash — 108 kg ppN 2an = By + Byrs
So the interaction effect is
6OHT—DPN = 5_(;8 - ﬂg7'

Let’s implement all of these in a contrast matrix.

L <- matrix(0, nrow = ncol(fit$coefficients), ncol = 7)

rownames (L) <- colnames(fit$coefficients)

colnames(L) <- c("DPNvsCON24", "DPNvsCON48",
"OHTvsCON24", "OHTvsCON48",
"DPNvsCONInt", "OHTvsCONInt",
"OHTvsDPNInt")

# DPN wvs control at 24h

L[2,"DPNvsCON24"] <- 1

# DPN vs control at 48h

L[c(2,8),"DPNvsCON48"] <- 1

# OHT wvs control at 24h

L[3,"OHTvsCON24"] <- 1

# OHT vs control at 48h

L[c(3,9),"0OHTvsCON48"] <- 1

# DPN control imteraction

L[8,"DPNvsCONInt"] <- 1

# OHT control interaction

L[9,"OHTvsCONInt"] <- 1

# OHT DPN interaction

L[c(9,8),"OHTvsDPNInt"] <- c(1, -1)

1L

#t DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt
## (Intercept) 0 0 0 0 0
## treatmentDPN 1 1 0 0 0
## treatmentOHT 0 0 1 1 0
## time48h 0 0 0 0 0



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

And, finally, we can assess each hypothesis using the glmLRT function implemented in edgeR. We can assess

patient?2
patient3
patient4
treatmentDPN:time48h
treatmentOHT:time48h

(Intercept)
treatmentDPN
treatmentOHT

time48h

patient?2

patient3

patient4
treatmentDPN:time48h
treatmentOHT :time48h

O O O O

0

= O O O

0

OHTvsCONInt OHTvsDPNInt

o

= O O OO O OO

B P, O O O OO OO

each hypothesis separately by looping over the contrasts.

lrtlist <- list() #list of results
for(cc in 1:ncol(L)) 1rtList[[cc]] <- glmLRT(fit, contrast = L[,cc])

O O O O O

= O O O O

O~ O O O

# p-value histograms

pvallist <- lapply(lrtList, function(x) x$table$PValue)
pvalMat <- do.call(cbind, pvallList)

colnames(pvalMat) <- colnames(L)

par (mfrow=c(3,3))

sapply(l:ncol(pvalMat), function(ii) hist(pvalMat[,ii],

main = colnames(pvalMat) [ii],
xlab = "p-value"))
## [,1] [,2] [,3] [,4]
## breaks numeric,21 numeric,21 numeric,?21 numeric,21
## counts  integer,20 integer, 20 integer, 20 integer,20
## density numeric,20 numeric,20 numeric,20 numeric,20
## mids numeric,20 numeric,20 numeric, 20 numeric,20
## xname "pvalMat[, iil" "pvalMat[, iil" "pvalMat[, iil" "pvalMat[, iil"
## equidist TRUE TRUE TRUE TRUE
#it [,5] [,6] [,7]
## breaks numeric,21 numeric,21 numeric,?21
## counts integer, 20 integer, 20 integer, 20
## density numeric,20 numeric,20 numeric,20
## mids numeric,20 numeric,20 numeric,20
## xname "pvalMat[, iil" "pvalMat[, iil" "pvalMat[, iil"
## equidist TRUE TRUE TRUE
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5.1.1 Multiple testing

# number of DE genes
padjMat <- apply(pvalMat, 2, p.adjust, method="fdr")
colSums(padjMat <= 0.05 )

## DPNvsCON24 DPNvsCON48 OHTvsCON24 OHTvsCON48 DPNvsCONInt OHTvsCONInt

## 2 62 0 22 0 0
## OHTvsDPNInt
## 0

We are finding low numbers of DE genes between treatments at a 5% FDR level. This was already reflected
in the the MDS plots.

5.1.2 Visualization
Let’s visualize some results for the DPN vs control at 48h contrast.

library(scales) # for scales::alpha()
deGenes <- p.adjust(lrtList[[2]]$table$PValue, "fdr") <= 0.05

## wvolcano plot
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plot(x = lrtList[[2]]$table$logFC,
y = -logl0(lrtList [[2]]$table$PValue),
xlab = "log Fold-change",
ylab = "-logl0 P-value",
pch = 16, col = alpha(deGenes+1, .4),
cex=2/3, bty='1")
legend("topright", c("DE", "not DE"),
col = 2:1, pch=16, bty='n')
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## MD-plot

plot(x = lrtList[[2]]$table$logCPM,

y = 1lrtList[[2]]$table$logFC,

xlab = "Average log CPM",

ylab = "Log fold-change",

pch = 16, col = alpha(deGenes+1, .4),

cex=2/3, bty='1")
legend("topright", c("DE", "not DE"),

col = 2:1, pch=16, bty='n')

abline(h=0, col="orange", lwd=2, 1lty=2)
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# extract all DE genes

deGenes <- rownames(lrtList[[2]]$table) [p.adjust(lrtList[[2]]$table$PValue, "fdr") <= 0.05]

deGenes

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1]

[5]

[9]
[13]
[17]
[21]
[25]
[29]
[33]
[37]
[41]
[45]
[49]
[53]
[57]
[61]

"ENSG00000035928"
"ENSG00000091137"
"ENSG00000100219"
"ENSG00000102547"
"ENSG00000107796"
"ENSG00000120129"
"ENSG00000135541"
"ENSG00000145244"
"ENSG00000155111"
"ENSG00000166813"
"ENSG00000169174"
"ENSG00000170837"
"ENSG00000181790"
"ENSG00000185818"
"ENSG00000219481"
"ENSG00000236044"

"ENSG00000044574"
"ENSG00000092621"
"ENSG00000100867"
"ENSG00000103064"
"ENSG00000111181"
"ENSG00000120217"
"ENSG00000138685"
"ENSG00000149428"
"ENSG00000155330"
"ENSG00000167608"
"ENSG00000169239"
"ENSG00000171798"
"ENSG00000182704"
"ENSG00000187908"
"ENSG00000226887"
"ENSG00000243927"

"ENSG00000070882"
"ENSG00000099864"
"ENSG00000101255"
"ENSG00000103257"
"ENSG00000111790"
"ENSG00000133935"
"ENSG00000143127"
"ENSG00000149485"
"ENSG00000155660"
"ENSG00000167703"
"ENSG00000169762"
"ENSG00000173210"
"ENSG00000182836"
"ENSG00000188783"
"ENSG00000233705"
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"ENSGO0000075790"
"ENSG00000099875"
"ENSG00000101974"
"ENSG00000103449"
"ENSG00000119242"
"ENSG00000135473"
"ENSG00000145050"
"ENSG00000152952"
"ENSG00000164597"
"ENSG00000168014"
"ENSG00000170122"
"ENSG00000175198"
"ENSG00000183401"
"ENSG00000197976"
"ENSG00000234431"



# order according to absolute fold-change
orderedDEGenes <- deGenes[order(abs(lrtList[[2]]$table[deGenes, "logFC"]), decreasing = TRUE)]

par (mfrow=c(3,3))

for(kk in 1:9){
boxplot(loglp(assays(se)$counts[orderedDEGenes [kk],]) ~ interaction(treatment, time))
boxplot(fit$fitted.values[orderedDEGenes[kk],] ~ interaction(treatment, time))

}
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5.2 Contrast on the time effect

Based on the MDS plot, we can expect comparatively more DE genes for the time effect. For didactic
purposes, here we assess an average time effect across the three treatments. The analysis shows how
flexible one can be when using contrasts.

Mean of time 24h:

1
log iy 04, = 3 (Byo)  + (Bgo + By1) + (Bgo + Byz)
Control, 24h DPN, 24h OHT, 24h
Mean of time 48h:
1
log /J/g,48h = g (BgO + ﬁg?,) + (ﬁgo + Bgl + 6_(]3 + 697) + (ﬁgo + ﬁg2 + BgS + 698)

Control, 48h DPN, 48h OHT, 48h

Difference:

log (MgAgh) = ﬁgB + %(ﬂg? + BgS)

Hg 24n

Ltime <- matrix(0, nrow = ncol(fit$coefficients), ncol = 1)
rownames (Ltime) <- colnames(fit$coefficients)
Ltime[c("time48h", "treatmentDPN:time48h", "treatmentOHT:time48h"),1] <- c(1, 1/3, 1/3)

lrtTime <- glmLRT(fit, contrast=Ltime)
hist(lrtTime$table$PValue) # very different p-value distribution
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Histogram of IrtTimeS$table$PValue
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sum(p.adjust (lrtTime$table$PValue, "fdr") <= 0.05) # many DE genes

## [1] 5938

6 Alternative parameterizations

While our design matrix here was parameterized as ~ treatment*time + patient alternative, equivalent
parameterizations are also possible. Below, we demonstrate another parameterization that could work, too,
and can be more intuitive. In this parameterization, we estimate a mean for each experimental condition,
without an intercept, which can be convenient to think about how to set up contrasts.

treatTime <- as.factor(pasteO(treatment, time))
table (treatTime)

## treatTime
## Control24h Control48h DPN24h DPN48h 0OHT24h
## 3 4 4 4 4

design2 <- model.matrix(~ 0 + treatTime + patient)
dge2 <- calcNormFactors(se)

dge2 <- estimateDisp(dge2, design2)
plotBCV(dge2)
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fit2 <- glmFit(dge2, design2)
head(fit2$coefficients)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ENSG00000000003
ENSG0O0000000419
ENSG0O0000000457
ENSG0O0000000460
ENSG0O0000000971
ENSG00000001036

ENSGO0000000003
ENSG0O0000000419
ENSG0O0000000457
ENSG00000000460
ENSGO0000000971
ENSG00000001036

ENSGO0000000003
ENSG00000000419
ENSG00000000457
ENSG00000000460
ENSG00000000971
ENSG0O0000001036

Average log CPM

treatTimeControl24h treatTimeControl48h treatTimeDPN24h

-9.332660 -9.199887 -9
-10.374585 -10.467601 -10
-10.935441 -11.008915 -11
-10.098383 -10.991957 -10
-13.689209 -13.196964 -13

-8.280283 -8.366667 -8

treatTimeDPN48h treatTimeOHT24h treatTimeOHT48h
-9.210515 -9.246483 -9.233269
-10.471834 -10.410026 -10.387429
-11.073020 -11.069247 -11.011705
-10.744155 -9.960834 -10.672839
-13.506580 -13.421841 -13.644803
-8.302169 -8.304449 -8.307518
patient3  patient4d
-0.82994270 -0.6245673
0.10515134 0.1023421
-0.05731193 0.2089687
-0.33459640 -0.1321134
0.93857349 -0.2676066
-1.52141542 -1.0046446
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.220500
.426918
.063600
.009630
.393947
.258171
patient2
-0.5185631
0.1376257
0.4574027
0.5407554
.1468142
.4676508



## for example: the estimate for the DPN24h vs control 24h is still the same,

## but requires a different combination of parameters

plot(fit$coefficients[, "treatmentDPN"],
fit2$coefficients[,"treatTimeDPN24h"] - fit2$coefficients[,"treatTimeControl24h"],
xlab="Intercept model estimate", ylab="No intercept model estimate")
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# Let's implement the DPNvsCON48 contrast

L2 <- matrix(0, nrow = ncol(fit2%coefficients), ncol = 1)
rownames (L2) <- colnames(fit2$coefficients)
L2[c("treatTimeDPN48h", "treatTimeControl48h"),1] <- c(1, -1)
1rt2 <- glmLRT(fit2, contrast=L2[,1])

hist(lrt2$table$PValue)
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Histogram of Irt2$table$PValue
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plot(x=1rt2$table$PValue, y=1lrtList[[2]]$table$PValue,
xlab="No intercept model p-value",
ylab="Intercept model p-value")
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7 Additional Challenge (Opportunity?): The importance of re-
producible analysis

Finally, it is crucial to make your analysis reproducible using tools such as RMarkdown and GitHub. Please
sit back and watch this amazing lecture from Professor Keith Baggerly on "The Importance of Reproducible
Research in High-Throughput Biology.
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https://www.youtube.com/watch?v=8QJfNS7XXwA
https://www.youtube.com/watch?v=8QJfNS7XXwA

	Experimental design, data import and data exploration
	Experimental design
	Data import and exploration
	Independent filtering
	Data exploration

	Challenge I: Choice of modeling assumptions
	Challenge II: Normalization
	Count scaling versus GLM offsets
	How to normalize?
	Median-of-ratios method (default of DESeq2)
	Full-quantile (FQ) normalization
	Uncertainty in normalization

	Challenge III: Parameter estimation (under limited information setting)
	Defining the model for the mean
	Parameter estimation and empirical Bayes
	In practice

	Challenge IV: Statistical inference across many genes
	Contrasts on the treatment effects
	Contrast on the time effect

	Alternative parameterizations
	Additional Challenge (Opportunity?): The importance of reproducible analysis

