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In this lecture we will introduce the main principles of working with count data, and how to model these
using generalized linear models (GLMs). We focus on introducing the concept of generalized linear models,
and how to interpret its results. We touch briefly upon statistical inference, providing the main results rather
than the theory behind it, such that they can be applied to genomics data analysis.

1 The Poisson distribution

• The Poisson distribution is a typical count distribution that is generally popular and fairly easy to
work with. It is defined by a single parameter: its mean 𝜇. For a Poisson distributed random variable
𝑌𝑖 with observations 𝑖 ∈ {1, … , 𝑛}, its variance is equal to its mean. That is, if 𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇), then
𝐸(𝑌𝑖) = 𝑉 𝑎𝑟(𝑌𝑖) = 𝜇.

• This immediately shows an important feature of count data: the mean-variance relationship. In-
deed, in count data, the variance will always be a function of the mean.

• This is quite intuitive. Consider the following example. You have two bird cages, where in one bird
cage there are 10 birds, while in the other there are 100 birds. You let a sample of people count the
number of birds in either one of the cages. It seems unlikely that a person in front of the 10-bird cage
would come up with an estimate of 5, while it seems quite likely that someone in front of the 100-bird
cage would come up with an estimate of 95. Even though the difference from the true value is the
same, the exact value has an impact on the plausible deviation around it.
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set.seed(11)
y1 <- rpois(n=500, lambda=10)
y2 <- rpois(n=500, lambda=100)

par(mfrow = c(1,2))
hist(y1, main="Poisson(10)", breaks=40)
hist(y2, main="Poisson(100)", breaks=40)
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1.1 The Poisson distribution in RNA-seq

• In RNA-seq, technical replicates represent different aliquots of the same sample being sequenced re-
peatedly. The underlying true expression of a gene can hence safely be assumed to be equal across
these technical replicates.

• Marioni et al. (2008) have shown that, for most genes, the distribution of observed gene expression
counts across technical replicates follow a Poisson distribution. A small proportion of genes (∼ 0.5%)
do not follow this Poisson model, however, and actually show evidence for ‘extra-Poisson variation’.

1.2 Relative uncertainty for Poisson distributed random variables

Take a minute to consider the following question:

• Suppose that we have a solid tumor sample from a cancer patient, as well as a sample of surrounding
healthy tissue. For each sample, we have three technical replicates at our disposal. Let 𝑌𝑔𝑟𝑡 denote the
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greater than other sequencing technologies, making it particu-
larly attractive for expression studies. Our study also differs from
previous reports in its assessment of variability across technical rep-
licates for a single sample, and direct comparison of the sequence-
based results with those from a state-of-the-art array platform.

We find that the sequencing data are highly reproducible,
with few systematic differences among technical replicates. Sta-
tistically, we find that the variation across technical replicates
can be captured using a Poisson model, with only a small pro-
portion (∼0.5%) of genes showing clear deviations from this
model. This Poisson model can be used to identify differentially
expressed genes, and using this approach, the sequence data
identified 30% more differentially expressed genes than were ob-
tained from a standard analysis of the array data at the same false
discovery rate. We also illustrate the potential for sequence-based
approaches to identify alternative-spliced forms.

Results

Experimental design

Illumina’s sequencing technology uses massively parallel Sanger
sequencing to simultaneously sequence millions of short frag-
ments of DNA. Each time a machine is run, DNA samples can be
independently sequenced in one of eight lanes, although one
lane is normally used to sequence a control sample. Typically,
each lane generates many millions of short reads (e.g., 32 bp in
the data considered here). To assess the ability of Illumina se-
quencing to measure gene expression differences between
samples, we used the following study design (Fig. 1A): We ex-
tracted total RNA from liver and kidney samples of a single hu-
man male, purified the poly(A) mRNA, and sheared it prior to
cDNA synthesis. The cDNA was then processed into a library of
template molecules suitable for sequencing on the Illumina Ge-
nome Analyzer (see Methods). To assess technical variance

within and between runs, we sequenced each sample seven
times, split across two runs of the machine (Fig. 1B). To investi-
gate the effects of cDNA concentration, two different cDNA con-
centrations were used: 3 pM (five lanes per sample) and 1.5 pM
(two lanes per sample).

To allow comparisons with an array-based technology, we
hybridized the same RNA samples to Affymetrix U133 Plus 2
arrays (www.affymetrix.com/products/arrays/specific/
hgu133plus.affx). We used three arrays (technical replicates) for
each RNA sample, and the sample preparation and data analysis
were designed to be as similar to the sequence-based approach as
possible (Methods). To facilitate a direct comparison between the
sequence and array data, we mapped the array probe sets to an-
notated genes in the Ensembl database v.48 (Flicek et al. 2008). In
total, 70% of probe sets mapped to an Ensembl gene, and, after
accounting for multiple probe sets mapping to the same gene
and probe sets that did not map uniquely, we identified a set of
17,708 probe sets, mapping uniquely to 17,708 genes, which
were used in subsequent analyses (see Methods).

Illumina sequencing data processing

Each RNA sample was sequenced in seven lanes, producing 12.9–
14.7 million reads per lane at the 3 pM concentration and 8.4–9.3
million reads at the 1.5 pM concentration (Supplemental Table
1). We aligned all reads against the whole genome using the
Illumina-supplied algorithm ELAND, which is designed to be par-
ticularly efficient for 32-bp reads. Tolerances were set to allow at
most two mismatches in each alignment, and reads that aligned
to multiple genomic locations were ignored. By these criteria,
40% of reads mapped uniquely to a genomic location, and of
these, 65% mapped to autosomal or sex chromosomes (the re-
mainder mapped almost exclusively to mitochondrial DNA).
These percentages were similar for 3 pM and 1.5 pM concentra-
tions and are comparable to results from other studies that have

used Illumina sequencing (Nagalakshmi
et al. 2008). Possible reasons for reads
not mapping uniquely to the genome
include the presence of sequencing er-
rors or polymorphisms, reads that come
from repetitive sequence, and reads from
exon–exon junctions (which can poten-
tially be recovered by a more sophisti-
cated alignment strategy; see below).

As expected, the distribution of the
locations of mapped reads showed a
strong bias toward annotated genic re-
gions based on the Ensembl database:
83% of mapped reads fell in such re-
gions; of these, 68% fell in annotated ex-
ons. Furthermore, reads mapping to in-
tergenic locations (i.e., reads mapping
outside the furthest 5! and 3! exons for
every gene) tended to fall near an anno-
tated gene (Supplemental Fig. 1), sug-
gesting that many genes in the Ensembl
annotation may require extension or re-
vision. Nonetheless, a sizable minority
(10.6%) of intergenic reads was mapped
to locations at least 100 kb from a
known gene, supporting other pub-
lished data (The ENCODE Project Con-

Figure 1. Graphical representation of the study design. (A) Summary of the experimental design. (B)
The lanes in which each sample was sequenced across the two runs. In each run, the control sample
was sequenced in lane 5. Samples were sequenced at two concentrations: 1.5 pM (indicated by an
asterisk) and 3 pM (no asterisk).

Marioni et al.
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sortium 2007), suggesting that many
transcriptionally active regions (TARs)
are currently unannotated.

We obtained, for each lane, a mea-
sure of the “overall” expression of each
gene in the Ensembl database by sum-
ming the number of reads mapping to
exons within each gene (Supplemental
Table 2). For genes with multiple tran-
scripts, we took the median across tran-
scripts. Within each lane, under ideal-
ized assumptions (e.g., no alignment
errors, and no sequence-context se-
quencing bias), these “gene counts”
would, in expectation, be proportional
to the transcript length times the mRNA
expression level. Of the genes in the En-
sembl database, 22,925 (72%) were
mapped to by at least one read. Among
these, the distribution of the number of
reads was very skewed across genes
(Supplemental Fig. 2), with many genes
having relatively few reads (median = 46
for liver, 101 for kidney).

A first (albeit rather rough) indica-
tion that sequence data are highly repli-
cable is that, for each sample, the gene
counts are highly correlated across lanes
(average Spearman correlation = 0.96)
(Supplemental Fig. 3).

An issue of particular importance is
to what extent the data exhibit a “lane
effect,” by which we mean systematic
differences between results for the same
sample, sequenced at the same concen-
tration in different lanes, over and above
those expected from sampling error. We
examined this issue in two ways, first by
considering each pair of lanes in turn
(which allows any outlying lanes to be
identified), and then by considering
multiple lanes simultaneously (which should increase the
power to detect lane effects if they consistently affect the same
genes).

When comparing a pair of lanes, we computed, for each
gene, a P-value testing the null hypothesis that the gene counts
in one lane resembled a random sample from the reads in both
lanes (this is done using the fact that, in the absence of a lane
effect, after accounting for the different total gene counts in each
lane, the individual gene counts in each lane should follow a
hypergeometric distribution). In the absence of a lane effect, the
distribution of these P-values across genes should be uniform,
whereas deviations from uniformity (which we assessed using a
qq-plot) indicate a lane effect. Among the 22 total two-way com-
parisons between lanes in which the same sample was sequenced
at the same concentration, we found that only a small propor-
tion of genes (consistently <0.5%) had very small P-values that
indicated clear evidence for a lane effect (Fig. 2A; Supplemental
Fig. 4). This was true for comparisons both within and across the
two different runs, although comparisons across different runs
seemed to show slightly larger proportions of genes with small
P-values (larger experiments will be required to assess compre-

hensively run-to-run variability). In contrast, using the same pro-
cedure to compare results from the same sample sequenced at
different concentrations produced P-values that showed much
greater deviations from uniformity (Fig. 2B; Supplemental Fig. 5).

To compare multiple lanes for a lane effect, we took a closely
related approach based on the following Poisson model. If xijk

represents the number of reads mapped to gene j for the kth lane
of data from sample i, xijk can be modeled as independent Poisson
random variables with mean µijk = cik!ijk, where the !ijk are con-
strained to sum to 1 across genes j. The parameter cik represents
the total rate at which lane k of sample i produces reads, and the
parameter !ijk represents the rate at which reads map to gene j (in
lane k of sample i) relative to other genes. The hypothesis of no
lane effect corresponds to !ijk being constant across lanes k. For
each gene, we compute a goodness-of-fit statistic across L lanes to
test this hypothesis: if there is no lane effect, then this statistic
should be "2 distributed on L ! 1 degrees of freedom. A qq-plot
of these values (Fig. 2C,D; Supplemental Fig. 6) shows that, in
each case, only a small proportion of genes (∼0.5%) show strong
evidence for a lane effect (i.e., extra-Poisson variation).

In summary, for lanes sequencing the same sample at the

Figure 2. Plots to assess lane effects. Each panel shows a qq-plot comparing the distribution of a
statistic (Y-axis) against its theoretical distribution in the absence of a lane effect (X-axis). Deviations
from the line y = x indicate the presence of a lane effect. (Points in red) Those above the 95th
percentile; (points in blue) those above the 99.5th percentile. (A) A typical result when using P-values
derived from a hypergeometric test statistic to compare two lanes used to sequence the same sample
at the same concentration. (In this panel, data generated when the kidney sample was sequenced in
Run 1, lane 1 and Run 2, lane 2 were used; see Supplemental Fig. 4 for all pairwise comparisons.) (B)
Analogous results when comparing two lanes used to sequence the same sample at different concen-
trations. (In this panel, data generated when the kidney sample was sequenced in Run 1, lane 1 and
Run 2, lane 4 were used; see Supplemental Fig. 5 for all pairwise comparisons.) (C,D) Results (on two
different scales) when the goodness-of-fit statistic is used to assess the fit of the Poisson model to the
kidney data sequenced at a concentration of 3 pM. The liver sample showed a similar pattern (Supple-
mental Fig. 6).
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Figure 1: Figure: Technical replication in RNA-seq. Figures from Marioni et al. (2008).
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observed gene expression values of gene 𝑔 in replicate 𝑟 ∈ {1, 2, 3} from tissue 𝑡 ∈ {0, 1}, where 𝑡 = 0
denotes healthy tissue and 𝑡 = 1 denotes tumoral tissue.

• We then know that the random variables 𝑌𝑔𝑟0 and 𝑌𝑔𝑟1 follow a Poisson distribution, and we would
estimate its mean as ̄𝑌𝑔0 = 1

3 ∑3
𝑟=1 𝑌𝑔𝑟0 and ̄𝑌𝑔1 = 1

3 ∑3
𝑟=1 𝑌𝑔𝑟1, respectively.

• Similar, for another gene 𝑘, we observe 𝑌𝑘𝑟𝑡, and estimate ̄𝑌𝑘0 and ̄𝑌𝑘1 correspondingly.
• Now suppose that 𝛽𝑘 = ̄𝑌𝑘1/ ̄𝑌𝑘0 = 5, but also 𝛽𝑔 = ̄𝑌𝑔1/ ̄𝑌𝑔0 = 5, i.e., the two genes have the same

average expression ratio (also often called a fold-change) across samples. However, they are differently
expressed as ̄𝑌𝑘1 = 100, and ̄𝑌𝑔1 = 10 (making ̄𝑌𝑘0 = 20, and ̄𝑌𝑔0 = 2).

• For which of the two genes is the uncertainty on the expression ratio the highest? In other words, do
we trust 𝛽𝑘 more or do we trust 𝛽𝑔 more?

Let’s approximate the uncertainty in 𝛽𝑔 and 𝛽𝑘 using simulation:

N <- 1e3
beta_g <- beta_k <- vector(length=N)
for(ii in 1:N){
ygr1 <- rpois(n=3, lambda=10)
ygr0 <- rpois(n=3, lambda=2)
ykr1 <- rpois(n=3, lambda=100)
ykr0 <- rpois(n=3, lambda=20)
beta_g[ii] <- mean(ygr1) / mean(ygr0)
beta_k[ii] <- mean(ykr1) / mean(ykr0)

}

par(mfrow=c(1,2), mar=c(4,2,3,1))
hist(beta_g, breaks=seq(0,50,by=1), xlim=c(0,50))
hist(beta_k, breaks=seq(0,50,by=1), xlim=c(0,50))

4



Histogram of beta_g

beta_g

F
re

qu
en

cy

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Histogram of beta_k

beta_k

F
re

qu
en

cy

0 10 20 30 40 50

0
10

0
20

0
30

0
40

0

We clearly see that the uncertainty on 𝛽𝑘 is much lower than on 𝛽𝑔. Even though the variance on the counts
of gene 𝑘 is higher, since its mean is higher and it is distributed as a Poisson variable. How do we explain
this?

• We may explain this by considering the relative uncertainty on the mean. Relative uncertainty may be
defined as the coefficient of variation 𝐶𝑉 = 𝜎

𝜇 (this is, the standard deviation divided by the mean).
Indeed, the CV describes the relative deviation of the distribution relative to its mean, where a low
CV indicates low dispersion with respect to the mean.

• Calculating the CV shows that the relative uncertainty for gene 𝑘 than for gene 𝑔, even though
the variance on the raw counts is higher for gene 𝑘 than for gene 𝑔.

• This lower relative uncertainty on the mean then propagates further to a lower uncertainty on the
fold-change. This basic result will be essential for understanding the results of a differential expression
analysis!

sqrt(100)/100 #CV for gene k

## [1] 0.1

sqrt(10)/10 #CV for gene g

## [1] 0.3162278
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2 Modeling count data: Generalized linear models

Just like we have modeled protein abundances in the proteomics module of this course in order to assess
differential protein abundance, we can model gene expression counts to identify genes with differences in
average expression between groups of samples.

2.1 Why we can(’t) use linear models to model count data

• If we’re using a linear model to model a response 𝑌𝑖, with 𝑖 ∈ {1, … , 𝑛} in function of a single covariate
𝑋𝑖, the linear model can be defined as follows:

{ 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖
𝑌𝑖|𝑋𝑖 ∼ 𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2I).

• Or, equivalently, we’ve seen we can write it in matrix form as

{ 𝑌𝑖 = X𝑇
𝑖 𝛽 + 𝜖𝑖

𝑌𝑖|X𝑖 ∼ 𝑁(X𝑇
𝑖 𝛽, 𝜎2I),

where X now represents our 𝑛 × 𝑝 design matrix, with row 𝑖 corresponding to observation 𝑖.

• The variance-covariance matrix of Y is assumed a diagonal matrix with 𝜎2 on the diagonal elements
and zero everywhere else. This means that the data points are uncorrelated, and that every observation
has the same variance 𝜎2, also referred to as homoscedasticity.

• The latter doesn’t hold for count data, due to the mean-variance relationship. This makes linear
models, in its basic form, unsuitable to model count data.

• In addition, count data are non-negative, while there are no such constraints in the standard linear
model to make sure that our estimates will be non-negative. Indeed, ̂𝑌𝑖 = X𝑇

𝑖 ̂𝛽 ∈] − ∞, ∞[.

2.2 Generalized linear models

• As the name suggests, generalized linear models (GLMs) extend linear models. In GLMs, we extend
two things with respect to the linear model:

– The conditional distribution of the response variable 𝑌𝑖|𝑋𝑖 can be assumed to follow
any distribution that belongs to the exponential family of distributions, which includes the
Gaussian but also other commonly known distributions, such as the Binomial, Gamma and Poisson
distribution.

– The linear model assumed a linear relationship between 𝑌𝑖 and 𝑋𝑖, since we assumed that
𝐸(𝑌𝑖|𝑋𝑖) = X𝑇

𝑖 𝛽. In GLMs, we will allow a link function 𝑔() that links the conditional mean
to the covariates. Hence, in GLMs we have that 𝑔(𝐸(𝑌𝑖|𝑋𝑖)) = X𝑇

𝑖 𝛽. Note that each family has
got a canonical link function, which is the identity link function 𝑔(𝜇) = 𝜇 for Gaussian, the log
link function 𝑔(𝜇) = log 𝜇 for Poisson, or the logit link function 𝑔(𝜇) = log( 𝜇

1−𝜇 ) for Binomial.
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2.2.1 A Poisson GLM

• We can define a Poisson GLM as follows

⎧{
⎨{⎩

𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇𝑖)
log 𝜇𝑖 = 𝜂𝑖

𝜂𝑖 = X𝑇
𝑖 𝛽

where 𝑌𝑖 is the response variable, with mean 𝜇𝑖, 𝜂𝑖 is the linear predictor, X is the 𝑛 × 𝑝 model matrix
and 𝛽 is the 𝑝 × 1 matrix of regression coefficients, where 𝑛 is the number of data points and 𝑝 the
total number of parameters to be estimated.

• It is insightful to compare this model to a linear model where 𝑌𝑖 is log-transformed. Indeed, in the
linear model case, we would be modeling 𝐸(log 𝑌𝑖), while in the GLM we are modeling log 𝐸(𝑌𝑖).

• This shows that in the GLM setting we are modeling a transformed version of the expected value, and
after retransforming we can interpret the fit in terms of the mean of our response variable. In the
transformed linear model, however, we are working with the expected value of a transformed version
of our response variable, and we will not be able to interpret the fit in terms of the mean, because
𝐸(log 𝑌𝑖) ≠ log 𝐸(𝑌𝑖). In this specific case, we would have to resort to interpreting changes in terms
of a geometric mean.

• Also note that X𝑇
𝑖 𝛽 ∈] − ∞, ∞[, while 𝑌𝑖 must be non-negative [0, ∞[. The link function helps

with this, since the exponential function transforms any real number to a non-negative number, i.e.,
exp(X𝑇

𝑖 𝛽) ∈ [0, ∞[.

2.2.2 Parameter estimation using maximum likelihood

• In maximum likelihood, we attempt to maximize the likelihood function of the data, under
the posited assumptions. The likelihood function is typically parametrized by a limited number of
parameters, hence we can find the values of the parameters that maximize the likelihood function.

• We do this by finding the point on the likelihood function where its first derivative equals zero, as
this must be a maximum of the function. For non-convex likelihood functions, this may be a local
maximum, but for GLMs the likelihood function is convex and therefore the obtained maximum must
be the global maximum.

2.2.2.1 Maximum likelihood for a linear model For linear models, we can derive an equivalent
estimator for 𝛽 using maximum likelihood estimation as we had derived in our recap lecture using least
squares estimation. We can define a linear model as

𝑌𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2I)𝜇𝑖 = X𝑖�

The likelihood function of the data is the product of the likelihoods of each datum. Since we are assuming
a Gaussian distribution, we use the Gaussian probability density function:

𝐿(Y; 𝛽, 𝜎) =
𝑛

∏
𝑖=1

1√
2𝜋𝜎2 exp {−(𝑌𝑖 − X𝑖𝛽)2

2𝜎2 }

Log-likelihood function

ℓ(Y; 𝛽, 𝜎) =
𝑛

∑
𝑖=1

{−1
2 log(2𝜋𝜎2) − 1

2𝜎2 (𝑌𝑖 − X𝑖𝛽)2}

Score function is the derivative of the log-likelihood
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𝑆(�) = 𝜕ℓ(Y; 𝛽, 𝜎)
𝜕𝛽 =

𝑛
∑
𝑖=1

1
𝜎2 X𝑖(𝑌𝑖 − X𝑖𝛽)

Set to zero and solve

X𝑇 Y − X𝑇 X� = 0 → ̂� = (X𝑇 X)−1X𝑇 Y

which gives us exactly the same estimator as we had derived using least squares!

2.2.2.2 Maximum likelihood for a generalized linear model Now that we know how to use maxi-
mum likelihood for parameter estimation, we can also apply it to estimate the parameters of a generalized
linear model. Let’s try it for the Poisson GLM we have just introduced:

⎧{
⎨{⎩

𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇𝑖)
log 𝜇𝑖 = 𝜂𝑖

𝜂𝑖 = X𝑇
𝑖 𝛽

Likelihood function of the Poisson distribution

𝐿(𝑌𝑖; 𝜇) =
𝑛

∏
𝑖=1

𝑒−𝜇𝜇𝑌𝑖

𝑌𝑖!

Log-likelihood function

ℓ(𝑌𝑖; 𝜇) =
𝑛

∑
𝑖=1

−𝜇 + 𝑌𝑖 log(𝜇) − log(𝑌𝑖!)

Note that the score function is the derivative of the log-likelihood with respect to our parameter of interest,
𝛽. So let’s first rewrite our log-likelihood as a function of our parameter of interest. We know from the
model that 𝜇𝑖 = exp(X𝑖�).

ℓ(𝑌𝑖; 𝛽) =
𝑛

∑
𝑖=1

− exp(X𝑖�) + 𝑌𝑖(X𝑖�) − log(𝑌𝑖!)

The score function then equals

𝑆(�) = 𝜕ℓ(Y; 𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

−X𝑇
𝑖 exp(X𝑖�) + X𝑇

𝑖 𝑌𝑖 = −X𝑇 exp(X�) + X𝑇 Y

Set to zero and solve

X𝑇 Y = X𝑇 exp(X�)

However, since this is a non-linear equation in 𝛽, we cannot find a closed-form solution! You may see this
more clearly when writing out in non-matrix form

∑
𝑖

∑
𝑝

𝑥𝑖𝑝 exp(𝑥𝑖𝑝𝛽𝑝) = ∑
𝑖

∑
𝑝

𝑥𝑖𝑝𝑌𝑖.
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• The above derivations show that estimating the parameters of a GLM is much harder as compared to
a linear model.

• The iterative reweighted least squares (IRLS) algorithm is usually adopted for fitting GLMs
using maximum likelihood. As the name suggests, it is an iterative algorithm, where each data point is
reweighted in each iteration according to the assumed mean-variance relationship, which is a function
of its estimated mean of the previous iteration. Indeed, observations with high variance will be down-
weighted and vice versa. IRLS uses the derivative of the score function (i.e., the second derivative of
the log-likelihood function) to move into the direction where the first derivative is zero.

with

W = A
@µi

@⌘i

Since we know that the Fisher information matrix is the negative of the Hessian, it equals

X
T
WX.

1.1 Optimisation techniques
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Figure 1: Newton Raphson optimisation technique in action. The figure shows estimation

of a single � parameter. The black solid line is the Score function evaluated at �. An

initial estimate of � is 2.25, which is represented by the dotted line. The value of the

score function of this initial value is S(�k
). The first derivative of the score function at

that point, evaluated at � = 2.25 is represented by the solid blue line and is given by
@S(�)
@� . The value of � where the solid blue line touches the zero line is the new estimate

for �, namely �k+1
which has a value of 1.4. The di↵erence between �k+1

and �k
is given

by

n
@S(�)
@�

o�1

S(�k
). This procedure is iterated until a convergence in the � estimate is

met.

We want to find the values of � for which S(�) equals zero. We can use the Newton-

Raphson optimisation algorithm for this (Figure 1). The algorithm requires an initial

estimate �k
and uses the score function and Hessian matrix to converge to an optimal �

estimate. The procedure works as follows:

• Calculate the score function from the initial estimate �k
.

• Calculate the first derivative of the score function
@S(�)
@� with respect to �, evaluated

at �k

• The point where
@S(�)
@� is zero is the updated estimate �k+1

• The di↵erence between �k+1
and �k

is given by

n
@S(�)
@�

o�1

S(�k
)

3

Figure: Finding the root of the score function using Newton-Raphson optimization. The Figure shows
estimation of a single 𝛽 parameter. The black solid line is the Score function evaluated at 𝛽. An initial
estimate of 𝛽 is 2.25, which is represented by the dotted line. The value of the score function of this initial
value is 𝑆(𝛽𝑘). The first derivative of the score function at that point, evaluated at 𝛽 = 2.25, is represented
by the solid blue line and is given by 𝜕𝑆(𝛽)

𝜕𝛽 . The value of 𝛽 where the solid blue line crosses zero is the
new estimate for 𝛽, namely 𝛽𝑘+1 which has a value of 1.4. The difference between 𝛽𝑘+1 and 𝛽𝑘 is given by
{ 𝜕𝑆(𝛽)

𝜕𝛽 }
−1

𝑆(𝛽𝑘). This procedure is iterated until a convergence in the 𝛽 estimate is met.

2.2.3 Generalized linear models in R

• In order to get familiar with GLMs, we will fit a Poisson GLM in R, using the Bikeshare dataset as
part of the ISLR2 package. This dataset records how many bikes were being used from a bike-sharing
service, every hour of the day over a full year (365 days).

• Full information of the dataset is provided here. Variables of interest for us are:

– bikers: Discrete count variable; the number of bikes being used that hour.
– hum: Continuous variable ranging between 0 and 1; normalized humidity.
– hr: Categorical variable between 0 and 23; the hour of the day. One could also consider this

variable to be numeric and model it as such, but the data exploration will show that’s not appro-
priate.

– weathersit: Categorical variable; the weather condition of that hour, with

9
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1. Clear, Few clouds, Partly cloudy.
2. Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist.
3. Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds.
4. Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog.

# if ISLR2 isn't installed, install it:
if(!"ISLR2" %in% installed.packages()[,1]){
install.packages("ISLR2")

}
# load and preview the dataset:
data("Bikeshare", package="ISLR2")
head(Bikeshare)

## season mnth day hr holiday weekday workingday weathersit temp atemp hum
## 1 1 Jan 1 0 0 6 0 clear 0.24 0.2879 0.81
## 2 1 Jan 1 1 0 6 0 clear 0.22 0.2727 0.80
## 3 1 Jan 1 2 0 6 0 clear 0.22 0.2727 0.80
## 4 1 Jan 1 3 0 6 0 clear 0.24 0.2879 0.75
## 5 1 Jan 1 4 0 6 0 clear 0.24 0.2879 0.75
## 6 1 Jan 1 5 0 6 0 cloudy/misty 0.24 0.2576 0.75
## windspeed casual registered bikers
## 1 0.0000 3 13 16
## 2 0.0000 8 32 40
## 3 0.0000 5 27 32
## 4 0.0000 3 10 13
## 5 0.0000 0 1 1
## 6 0.0896 0 1 1

# association with weather on count and log scale
barplot(table(Bikeshare$weathersit))
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boxplot(bikers ~ weathersit, data=Bikeshare,
xlab = "Weather", ylab = "Bikers")
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boxplot(log1p(bikers) ~ weathersit, data=Bikeshare,
xlab = "Weather", ylab = "Log (bikers +1)")

12



clear cloudy/misty light rain/snow

1
2

3
4

5
6

Weather

Lo
g 

(b
ik

er
s 

+
1)

# association with humidity on count and log scale
hist(Bikeshare$hum, breaks=40)
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Histogram of Bikeshare$hum
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plot(bikers ~ hum, data=Bikeshare, pch=16, cex=1/2,
xlab = "Humidity", ylab = "Bikers")

loHum <- loess(bikers ~ hum, data=Bikeshare)
xGrid <- seq(0, 1, length=50)
yhat <- predict(loHum, data.frame(hum = xGrid))
lines(x=xGrid, y=yhat, col="red", lwd=3)
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plot(log1p(bikers) ~ hum, data=Bikeshare, pch=16, cex=1/2,
xlab = "Humidity", ylab = "Log (bikers +1)")

loHum <- loess(log1p(bikers) ~ hum, data=Bikeshare)
xGrid <- seq(0, 1, length=50)
yhat <- predict(loHum, data.frame(hum = xGrid))
lines(x=xGrid, y=yhat, col="red", lwd=3)
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# association with hour on count and log scale
barplot(table(Bikeshare$hr), xlab="Hour of day", ylab="Number of observations")
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plot(bikers ~ hr, data=Bikeshare, pch=16, cex=1/2,
xlab = "Hour of day", ylab = "Bikers")
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plot(log1p(bikers) ~ hr, data=Bikeshare, pch=16, cex=1/2,
xlab = "Hour of day", ylab = "Log (bikers +1)")
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The data exploration shows that

• More bikes are being used in better weather.
• There seems to be a non-linear association between bicycle rentals and humidity, where in both low

and high humidity conditions relatively few bikes are used, possibly reflecting very hot and very wet
days respectively, while most bikes are being used at moderate humidity.

• Bicycle rental is associated with the hour of the day, however, in a non-linear way, with clear peaks in
usage at typical commute hours (6h-8h and 17h-19h). Here, we will add hr as a categorical variable to
the model, estimating one parameter for each hour. Note that alternative strategies are possible that
may be more efficient, such as incorporating hr as a numerical variable and modeling the non-linearity
using a lower number of parameters.

• Disclaimer: Note that there are likely interactions between the variables, which here we will not
evaluate as our goal is to introduce a Poisson GLM rather than a full analysis of the Bikeshare
dataset. For example, it seems likely that more people commute by bike in good weather, while fewer
people will commute by bike in terrible weather. This would motivate an interaction between the
variables weathersit and hr.

• Below, we fit a Poisson GLM using the glm function. The number of bikers is used as a response
variable, which is modeled as a function of weathersit, hum and hr.

• Note that there seems to be a non-linear, though fairly simple, association between our response
variable and the humidity. We will therefore add a quadratic and cubic term for humidity to the
model. In order to avoid multicollinearity between the linear, quadratic and cubic humidity effects, we
will first center the humidity variable and store this in a new variable called humc. This means that
when humc=0, this corresponds to the average humidity in the dataset.

19



• The argument family = "poisson" specifies the Poisson distribution for the response variable and by
default the canonical link function, which is the log link, will be used.

Bikeshare$humc <- Bikeshare$hum - mean(Bikeshare$hum)
m <- glm(bikers ~ weathersit + humc + I(humc^2) + I(humc^3) + hr,

data = Bikeshare,
family = "poisson")

summary(m)

##
## Call:
## glm(formula = bikers ~ weathersit + humc + I(humc^2) + I(humc^3) +
## hr, family = "poisson", data = Bikeshare)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -23.3408 -4.6201 -0.9922 3.4605 27.4153
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.893651 0.008083 481.708 <2e-16 ***
## weathersitcloudy/misty -0.146618 0.002277 -64.401 <2e-16 ***
## weathersitlight rain/snow -0.556153 0.004585 -121.292 <2e-16 ***
## weathersitheavy rain/snow -1.855194 0.166742 -11.126 <2e-16 ***
## humc 0.091751 0.009233 9.938 <2e-16 ***
## I(humc^2) -2.233919 0.029421 -75.929 <2e-16 ***
## I(humc^3) -1.823066 0.091428 -19.940 <2e-16 ***
## hr1 -0.476470 0.012999 -36.654 <2e-16 ***
## hr2 -0.806959 0.014646 -55.099 <2e-16 ***
## hr3 -1.433648 0.018842 -76.090 <2e-16 ***
## hr4 -2.058714 0.024796 -83.027 <2e-16 ***
## hr5 -1.061695 0.016074 -66.051 <2e-16 ***
## hr6 0.315691 0.010607 29.761 <2e-16 ***
## hr7 1.317856 0.009052 145.586 <2e-16 ***
## hr8 1.830026 0.008653 211.480 <2e-16 ***
## hr9 1.352135 0.009022 149.871 <2e-16 ***
## hr10 1.129497 0.009271 121.831 <2e-16 ***
## hr11 1.308554 0.009102 143.766 <2e-16 ***
## hr12 1.522234 0.008947 170.131 <2e-16 ***
## hr13 1.536827 0.008959 171.542 <2e-16 ***
## hr14 1.499506 0.008999 166.633 <2e-16 ***
## hr15 1.535043 0.008974 171.062 <2e-16 ***
## hr16 1.745128 0.008800 198.318 <2e-16 ***
## hr17 2.140488 0.008565 249.925 <2e-16 ***
## hr18 2.037740 0.008588 237.279 <2e-16 ***
## hr19 1.711545 0.008747 195.667 <2e-16 ***
## hr20 1.393901 0.008976 155.284 <2e-16 ***
## hr21 1.132543 0.009216 122.895 <2e-16 ***
## hr22 0.882534 0.009537 92.539 <2e-16 ***
## hr23 0.481354 0.010207 47.157 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
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##
## Null deviance: 1052921 on 8644 degrees of freedom
## Residual deviance: 375265 on 8615 degrees of freedom
## AIC: 428362
##
## Number of Fisher Scoring iterations: 5

2.2.3.1 Interpretation of estimated model parameters

• Remember that the Poisson GLM can be defined as

⎧{
⎨{⎩

𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇𝑖)
log 𝜇𝑖 = 𝜂𝑖

𝜂𝑖 = X𝑇
𝑖 𝛽

Interpretation of the intercept.

• We will first interpret the intercept, in terms of the average number of bikes being used. Note that
the intercept corresponds to hour 0, at good weather (weathersit level 1), and average humidity
(humc=0). We will denote the intercept as 𝛽0 and its estimate as ̂𝛽0. All other coefficients will thus
denote a relative change with respect to that reference level.

• The model definition shows that log 𝜇𝑖 = X𝑇
𝑖 �, with 𝜇 the average number of bikes being used. Since

we’re only working with the intercept here, we may write log 𝜇𝑖 = 𝛽0, and thus 𝜇𝑖 = exp 𝛽0.
• Plugging in the estimated intercept ̂𝛽0, we have exp ̂𝛽0 = 49.09. In other words, in clear weather with

few clouds, at average humidity and at hour 0, an average of 49.09 bikes are being used.

Interpretation of weathersitcloudy/misty.

• We will denote this coefficient as 𝛽1 and its estimate as ̂𝛽1.
• Note that this coefficient defines the difference in linear predictor between weathersit=2 and

weathersit=1, all other variables being equal (say, at their reference level). Indeed, define 𝜂𝑤2
and 𝜂𝑤1 to denote the linear predictor at weathersit=2, and weathersit=1, respectively. Then,
𝜂𝑤2 − 𝜂𝑤1 = (𝛽0 + 𝛽1) − 𝛽0 = 𝛽1.

• This also means that 𝛽1 = log 𝜇𝑤2 − log 𝜇𝑤1 = log 𝜇𝑤2
𝜇21

, and thus exp 𝛽1 = 𝜇𝑤2
𝜇21

.
• In our case, exp ̂𝛽1 = 0.86. In words: All other variables being equal, the average number of bikes

being used in cloudy/misty weather is 0.85 times (or, also, 85% of) the number of bikes being used in
good weather.

• This exercise has shown us that, due to the log link function, the parameters in a Poisson GLM
cannot be interpreted in terms of absolute differences in averages of the response variable but instead
must be interpreted in terms of multiplicative differences!

• If you’re in a meeting and you need a quick way to interpret these parameters, remember that 𝑒𝑥𝑝(1) =
2.72 ≈ 3 and thus a difference of 1 (−1) means the average of the response variable is about three
times higher (lower).

Interpretation of the humidity effect.

• The humidity effect is a bit more involved to interpret. Due to the quadratic and cubic terms, it is
not straight forward to interpret the linear term separately (and the same applies to the quadratic or
cubic term); we must interpret both the linear, quadratic and cubic term simultaneously.
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• Also due to the higher-order terms, the rate of change in average bikers will not be constant across the
range of humidity. We can therefore not interpret the humidity effect using a single number as we’ve
done previously.

• We can, however, provide some examples for specific humidity values, along with a visualization of its
global effect.

• For example, let’s derive the change in average bikes being used at a humidity that is 0.2 above average,
versus average humidity.
For average humidity +0.2 the linear predictor 𝜂0.2 = 𝛽0 + 𝛽4𝑥ℎ𝑢𝑚 + 𝛽5𝑥2

ℎ𝑢𝑚 + 𝛽6𝑥3
ℎ𝑢𝑚 = 𝛽0 + 𝛽40.2 +

𝛽50.22 + 𝛽60.23.
For average humidity, the linear predictor 𝜂0 = 𝛽0 + 𝛽4𝑥ℎ𝑢𝑚 + 𝛽5𝑥2

ℎ𝑢𝑚 + 𝛽6𝑥3
ℎ𝑢𝑚 = 𝛽0 + 𝛽40 + 𝛽502 +

𝛽603 = 𝛽0.
We thus have log 𝜇0.2

𝜇0
= 𝛽40.2+𝛽50.22 +𝛽60.23. In our case, log 𝜇̂0.2

𝜇̂0
= 0.091751∗0.2−2.233919∗0.22 −

1.823066 ∗ 0.23 = −0.0856 and thus 𝜇̂0.2
𝜇̂0

= 0.92. Therefore, at humidity that is 0.2 above average,
the average number of bikes being used are 0.92 times the average number of bikes used at average
humidity.

• Just like with linear models, the predict function is extremely helpful when trying to visualize and
understand a fitted GLM. In GLMs, the type argument becomes essential when using the predict
function. Indeed, by default, estimates are provided on the linear predictor scale: in our case, on the log
scale. If we’d like predictions on the scale of the response variable, we need to set type="response".
You can find more information in the help file using ?predict.glm.

• The visualization shows that the highest number of bikes are being used at around average humidity,
with a decreased usage at higher and lower humidities.

humidityGrid <- seq(min(Bikeshare$humc), max(Bikeshare$humc),
length.out = 50)

newDf <- data.frame(weathersit = factor("clear"),
hr = factor(8),
humc = humidityGrid,
"I(humc^2)" = humidityGrid^2,
"I(humc^3)" = humidityGrid^3)

yhat <- predict(m,
newdata = newDf,
type = "response")

plot(x = humidityGrid,
y = yhat,
type = 'l', lwd=2,
xlab = "Centered humidity",
ylab = "Average number of bikers")
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Setting up a contrast.

• Suppose we’re interested in whether there are more bikers at (A) maximum humidity (centered humidity
value of 0.357), hour 17, in the light rain/snow weather category, versus (B) average humidity, hour
8, in the clear weather category. This requires us to set up a contrast in terms of a linear combination
of the model parameters.

• Manually by hand:

log 𝜇𝐴 = 𝛽0+𝛽2𝑥𝑟𝑎𝑖𝑛𝑆𝑛𝑜𝑤+𝛽4𝑥ℎ𝑢𝑚+𝛽5𝑥2
ℎ𝑢𝑚+𝛽6𝑥3

ℎ𝑢𝑚+𝛽23𝑥ℎ𝑟17 = 3.894−0.556+0.092∗0.357−2.234∗0.3572−1.823∗0.3573+2.140 = 5.143. log 𝜇𝐵 = 𝛽0+𝛽14𝑥ℎ𝑟8 = 3.894+1.830 = 5.724.𝜇𝐴
𝜇𝐵

= exp(5.143−5.724) = 0.559.

Thus, at maximum humidity, hour 17, in the light rain/snow weather category the average number
of bikers is 56% times the average number of bikers in the average humidity, hour 8, in the clear
weather category.

• Manually in R: We can also use matrix multiplication to derive the estimates. We know from our
manual calculations above, that the contrast of interest is (𝛽0+𝛽2𝑥𝑟𝑎𝑖𝑛𝑆𝑛𝑜𝑤+𝛽4𝑥ℎ𝑢𝑚+𝛽5𝑥+

ℎ𝑢𝑚𝛽6𝑥3
ℎ𝑢𝑚+

𝛽23𝑥ℎ𝑟17) − (𝛽0 + 𝛽14𝑥ℎ𝑟8). We can store this in a contrast matrix, and then multiply it with the
coefficients of our model:

L <- matrix(0,
nrow = length(coef(m)),
ncol = 1)

rownames(L) <- names(coef(m))
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L["weathersitlight rain/snow",1] <- 1
L["humc",1] <- 0.357
L["I(humc^2)", 1] <- 0.357^2
L["I(humc^3)", 1] <- 0.357^3
L["hr17", 1] <- 1
L["hr8",1] <- -1
L

## [,1]
## (Intercept) 0.00000000
## weathersitcloudy/misty 0.00000000
## weathersitlight rain/snow 1.00000000
## weathersitheavy rain/snow 0.00000000
## humc 0.35700000
## I(humc^2) 0.12744900
## I(humc^3) 0.04549929
## hr1 0.00000000
## hr2 0.00000000
## hr3 0.00000000
## hr4 0.00000000
## hr5 0.00000000
## hr6 0.00000000
## hr7 0.00000000
## hr8 -1.00000000
## hr9 0.00000000
## hr10 0.00000000
## hr11 0.00000000
## hr12 0.00000000
## hr13 0.00000000
## hr14 0.00000000
## hr15 0.00000000
## hr16 0.00000000
## hr17 1.00000000
## hr18 0.00000000
## hr19 0.00000000
## hr20 0.00000000
## hr21 0.00000000
## hr22 0.00000000
## hr23 0.00000000

beta <- matrix(coef(m), ncol=1)
exp(t(L) %*% beta) # equals our manual calculation.

## [,1]
## [1,] 0.5595652

• Using predict in R:

# set up data frames with relevant predictor variables' values.
dfA <- data.frame(weathersit = factor("light rain/snow"),

hr = factor(17),
humc = 0.357)
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dfB <- data.frame(weathersit = factor("clear"),
hr = factor(8),
humc = 0)

# calculate estimated average number of bikers
yhatA <- predict(m,

newdata = dfA,
type = "response")

yhatB <- predict(m,
newdata = dfB,
type = "response")

yhatA / yhatB # also equal to above.

## 1
## 0.5595652

Exercise: try to derive the change in average number of bikers between (a) humidity of 0.1 above av-
erage, clear weather (weathersit=1), at hour 10 and (b) humidity of 0.1 below average, cloudy weather
(weathersit=2), at hour 20, using all three methods.

2.3 Statistical inference in GLMs

2.3.1 Wald test and likelihood ratio test

• In our interpretation above we have focussed on deriving changes in the average number of bikers
between groups of interest. However, we have not yet tested whether these changes are statistically
significant.

• In genomics applications, statistical inference in GLMs is often adopted to test for differential expression
between conditions for each gene (e.g., is gene A differently expressed in healthy versus tumoral tissue?),
which amounts to testing the null hypothesis of whether a (linear combination of) coefficient(s) equals
zero.

• In this course, we will mainly work with two types of statistical tests for GLMs:
– Wald test: The Wald test may be viewed as being anaologous to the 𝑡-test we are using in linear

models. The Wald test relies on the following asymptotic result

̂𝛽|𝛽 ∼ 𝑁(𝛽, 𝑉 𝑎𝑟( ̂𝛽))

. The Wald test statistic for testing a single parameter ̂𝛽

𝑊 =
̂𝛽

̂𝑆𝐸( ̂𝛽)
∼ 𝑁(0, 1)|𝐻0

or, equivalently, letting C denote the 1 × 𝑝 contrast matrix denoting the contrast for the single
parameter 𝛽 we would like to test, and Σ̂ ̂𝛽 the 𝑝×𝑝 variance-covariance matrix of the parameters,

𝑊 = C ̂𝛽(CΣ̂ ̂𝛽C𝑇 )−1 ̂𝛽𝑇 C𝑇 ∼ 𝜒2
1|𝐻0.

The null and alternative hypothesis can therefore in general be written as

𝐻0 ∶ C𝛽 = 0
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𝐻1 ∶ C𝛽 ≠ 0
If 𝑐 ≥ 1 contrasts are tested, then the test statistic 𝑊 ∼ 𝜒2

𝑐 |𝐻0, provided that the 𝑐 contrasts are
linearly independent (i.e., the contrast matrix is full rank).

– Likelihood ratio test: The likelihood ratio test (LRT) measures the discrepancy in log-likelihood
between our current model (sometimes also referred to as full model) and a reduced model (some-
times also referred to as null or alternative model). The reduced model must be nested in (and
therefore of lower dimension as compared to) the full model. While adding more covariates will
always explain more variability in our response variable, the LRT tests whether this is actually
significant. For example, in the example of gene differential expression between healthy versus
tumoral tissue, the full model could be a GLM where the mean is modeled according to an in-
tercept and a tissue indicator variable (healthy / tumoral), while the alternative model could be
a GLM with just an intercept. Indeed, if the gene is similarly expressed between healthy and
tumoral tissue, the log-likelihood of the alternative model will decrease only a little as compared
to the full model. As the name suggests, the likelihood ratio test assesses whether the ratio of the
log-likelihoods provides sufficient evidence for a worse fit of the alternative versus full model

𝐿 = 2 {ℓ( ̂𝛽𝑓𝑢𝑙𝑙) − ℓ( ̂𝛽𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)} .

Asymptotically, under the null hypothesis it can be shown that

𝐿 ∼ 𝜒2
𝑐 |𝐻0,

with 𝑐 the number of parameters dropped in the alternative model versus the full model. If we
again let C denote the 𝑐 × 𝑝 contrast matrix denoting the contrast for the parameters being
dropped, the null and alternative hypothesis are as in the Wald test setting:

𝐻0 ∶ C𝛽 = 0

𝐻1 ∶ C𝛽 ≠ 0
Finally, note that while, in this explanation, I have focussed on reducing a more complex model,
but of course the LRT can also be adopted to check whether adding a covariate significantly
improves the fit.

• It is important to keep in mind that standard statistical inference theory in GLMs works asymptoti-
cally in terms of the sample size. Thus we need many data points in order for the theory to hold
in practice. In order for the 𝑝-values to be correct, our parametric (distributional) assumptions as well
as the independence assumption, must also hold.

• In bulk RNA-seq, we are often working with a limited number of samples and so we typically do not
expect asymptotic theory to hold yet. In single-cell RNA-seq, we often perform several preprocessing
steps before calculating 𝑝-values for each gene and so we may be ‘using the data multiple times’. Rather
than attaching strong probabilistic interpretations to the 𝑝-values, we therefore advice to view the 𝑝-
values simply as useful numerical summaries for ranking the genes for further inspection in genomics
applications.

2.3.2 Wald test and likelihood ratio test in R

Let’s use a Wald test and a likelihood ratio test to test whether the average number of bikers differs between
a working day or a weekend day, using a simple GLM with only that variable as a covariate. This amounts
to testing

𝐻0 ∶ 𝛽𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑑𝑎𝑦 = 0
𝐻1 ∶ 𝛽𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑑𝑎𝑦 ≠ 0
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mSimple <- glm(bikers ~ workingday,
family = "poisson",
data = Bikeshare)

summSimple <- summary(mSimple)
summSimple$coefficients["workingday",]

## Estimate Std. Error z value Pr(>|z|)
## 2.352087e-02 1.937241e-03 1.214143e+01 6.370326e-34

# Wald test manually
W <- summSimple$coefficients["workingday", "Estimate"] / summSimple$coefficients["workingday", "Std. Error"]
pval <- 2*(1 - pnorm(W))
W

## [1] 12.14143

pval

## [1] 0

# Wald test through a contrast
C <- matrix(0, nrow=1, ncol=length(coef(mSimple)))
colnames(C) <- names(coef(mSimple))
C[, "workingday"] <- 1
C

## (Intercept) workingday
## [1,] 0 1

beta <- matrix(coef(mSimple), ncol=1)
Sigma <- vcov(mSimple)

W2 <- C %*% beta %*% solve(C %*% Sigma %*% t(C)) %*% t(beta) %*% t(C)
W2

## [,1]
## [1,] 147.4143

# note this being equal to
W^2

## [1] 147.4143

pval <- 1-pchisq(W2, df=1)
pval

## [,1]
## [1,] 0
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# finally, we can also read the Wald test result from the summary of the model
summSimple

##
## Call:
## glm(formula = bikers ~ workingday, family = "poisson", data = Bikeshare)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.666 -11.361 -3.026 5.214 30.729
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.952243 0.001608 3080.12 <2e-16 ***
## workingday 0.023521 0.001937 12.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1052921 on 8644 degrees of freedom
## Residual deviance: 1052773 on 8643 degrees of freedom
## AIC: 1105815
##
## Number of Fisher Scoring iterations: 5

mFull <- glm(bikers ~ workingday,
family = "poisson",
data = Bikeshare)

mReduced <- glm(bikers ~ 1,
family = "poisson",
data = Bikeshare)

# manual LRT
llFull <- logLik(mFull)
llReduced <- logLik(mReduced)

lrt <- as.numeric(2 * (llFull - llReduced))
lrt

## [1] 147.8481

pval <- 1 - pchisq(lrt, df=1)
pval

## [1] 0

# using anova function
anova(mReduced, mFull, test = "Chisq") # note test statistic is identical
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## Analysis of Deviance Table
##
## Model 1: bikers ~ 1
## Model 2: bikers ~ workingday
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 8644 1052921
## 2 8643 1052773 1 147.85 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3.3 Linearly dependent contrasts

Below, we show how one may be able to derive independent contrasts from their contrast matrix for statistical
inference. We also show that attempting to use linearly dependent contrasts results in an issue, since the
variance-covariance matrix of our contrasts will be singular and therefore non-invertible.

C <- matrix(0, nrow=3, ncol=length(coef(mSimple)))
colnames(C) <- names(coef(mSimple))
C[1, "(Intercept)"] <- 1
C[2, "workingday"] <- 1
C[3,c("(Intercept)", "workingday")] <- c(1,1)
C

## (Intercept) workingday
## [1,] 1 0
## [2,] 0 1
## [3,] 1 1

# doesn't work because we have a singular matrix
W2 <- try(t(C %*% beta) %*% solve(C %*% Sigma %*% t(C)) %*% C %*% beta)

## Error in solve.default(C %*% Sigma %*% t(C)) :
## system is computationally singular: reciprocal condition number = 1.88084e-17

W2 # errrors

## [1] "Error in solve.default(C %*% Sigma %*% t(C)) : \n system is computationally singular: reciprocal condition number = 1.88084e-17\n"
## attr(,"class")
## [1] "try-error"
## attr(,"condition")
## <simpleError in solve.default(C %*% Sigma %*% t(C)): system is computationally singular: reciprocal condition number = 1.88084e-17>

# identify the linearly independent contrasts
Ct <- t(C)
CtIndep <- Ct[,qr(Ct)$pivot[1:qr(Ct)$rank]]
CIndep <- t(CtIndep)

# try again
W2 <- t(CIndep %*% beta) %*% solve(CIndep %*% Sigma %*% t(CIndep)) %*% CIndep %*% beta
W2

## [,1]
## [1,] 30686825
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2.4 Model deviance, residuals and goodness-of-fit

• In linear models, we often use residuals 𝑒𝑖 = 𝑦𝑖 − ̂𝜇𝑖 to check model assumptions (linearity, homoscedas-
ticity). However, in a GLM setting, we know that the variance of our residuals will depend on the
mean, i.e., 𝑉 𝑎𝑟(𝜖𝑖) = 𝑓(𝜇𝑖). Using ordinary residuals such as 𝑒𝑖 therefore is no longer appropriate.

• We have seen that the objective function that is used to fit a GLM is the log-likelihood of the data
under the posited model. For example, the log likelihood of a Poisson GLM with response variable Y,
with elements 𝑌𝑖, 𝑖 ∈ {1, … , 𝑛} and model matrix X is

ℓ(Y; 𝛽) = log
𝑛

∏
𝑖=1

(exp(X𝑇
𝑖 𝛽)𝑌𝑖 exp(− exp(X𝑇

𝑖 𝛽))
𝑌𝑖!

) =
𝑛

∑
𝑖=1

log (exp(X𝑇
𝑖 𝛽)𝑌𝑖 exp(− exp(X𝑇

𝑖 𝛽))
𝑌𝑖!

) =
𝑛

∑
𝑖=1

𝑌𝑖(X𝑇
𝑖 𝛽)−exp(X𝑇

𝑖 𝛽)−log 𝑌𝑖!.

The estimates ̂𝛽 are then found by maximizing ℓ(𝛽|Y, X) with respect to 𝛽. This is analogous to
maximizing a Gaussian likelihood in the linear model setting.

• A goodness-of-fit measure used in the GLM setting is the residual deviance 𝐷 (sometimes referred
to simply as ‘deviance’), that is twice the difference in log-likelihood between a ‘saturated model’ and
the current model. Here, a saturated model, is a model where we fit one parameter per data point and
therefore fit the data perfectly, in other words ̂𝜇𝑖 = 𝑦𝑖. This is,

𝐷 = 2 ∗ {ℓ(Y; 𝛽| ̂𝜇𝑖 = 𝑦𝑖) − ℓ(Y; 𝛽| ̂𝜇𝑖 = exp(X𝑇
𝑖 𝛽))} .

• From the equation above it becomes clear that the residual deviance is actually a ratio in log-likelihoods
and therefore a likelihood ratio test statistic!

• A low residual deviance can thus be interpreted as a model that is fitting the data well, since your
current model will be close in log-likelihood to the saturated model. The deviance is a very useful
statistic that is also important in statistical inference and model selection, e.g., for testing if a smaller
model fits significantly worse than a larger model.

• Finally, a deviance residual 𝐷𝑖 can then be defined as the square root of the contribution of the 𝑖th
datum to the residual deviance

𝐷𝑖 = 𝑠𝑖𝑔𝑛(𝑌𝑖 − exp(X𝑇
𝑖 𝛽))√2 ∗ {ℓ(𝑌𝑖; 𝛽| ̂𝜇𝑖 = 𝑦𝑖) − ℓ(𝑌𝑖; 𝛽| ̂𝜇𝑖 = exp(X𝑇

𝑖 𝛽))}

• Another type of residuals commonly used in a GLM setting are Pearson residuals. A Pearson residual
is defined as

𝑒𝑖 = 𝑦𝑖 − 𝐸(𝑦𝑖)
√𝑉 𝑎𝑟(𝑦𝑖)

,

and we can see that it has the form of a regular residual such as used in liner models (numerator),
but normalized according to the variance of the observed response (denominator), to correct for the
mean-variance relationship.

• Goodness-of-fit (GOF) analyses serve to assess how well the model actually fits the observed data.
One may view the fitting of a GLM as replacing a set of observed data points y by a set of fitted values
̂� derived from a model. In general ̂� ≠ y and the question arises as to how well ̂� approximates y. This

naturally raises the question of how much of a discrepancy we believe to be tolerable. Two important
discrepancy measures are often used in a GLM setting.

• Note that the residual deviance was a likelihood ratio test statistic between a saturated and our
current model. This saturated model actually provides us with a baseline as to how well a model can
fit the observed data (even if we know that the saturated model is uninformative for summarizing the
data). This motivates a statistical test with
𝐻0: The current model provides a similar fit as the saturated model.
𝐻1: The current model fits significantly worse than a saturated model.
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• The residual deviance immediately tests this hypothesis using a likelihood ratio test and is therefore a
useful goodness-of-fit measure.

• Another measure of discrepancy is the generalized Pearson 𝜒2 statistic

𝑋2 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝜇𝑖)2

𝑉 𝑎𝑟(𝑦𝑖)
=

𝑛
∑
𝑖=1

𝑒2
𝑖 ,

with 𝑒𝑖 the Pearson residual of observation 𝑖.
• Asymptotic theory shows that both the residual deviance 𝐷 ∼ 𝜒2

𝑛−𝑝|𝐻0 and 𝑋2 ∼ 𝜒2
𝑛−𝑝|𝐻0, with 𝑛 the

number of observations in our dataset (and, hence, the number of parameters fitted in our saturated
model), and 𝑝 the number of parameters fitted in our current model.

Exercise:

• Verify the residual deviance that is reported in the summary of our model above.
• Also check if you can recover the correct deviance and Pearson residuals by calculating them your-

self. You can get the correct deviance residuals in R by resid(m, type="deviance") and resid(m,
type="pearson").

• Does your model fit significantly worse than a saturated model?

2.5 Overdispersion

• Above we have always assumed that the Poisson distribution is valid for the dataset we have been
using. However, we never checked for this.

• As a matter of fact, it often happens that the variance=mean assumption is too stringent for count
data. If the variance is larger than the mean, this is referred to as overdispersion. Though much less
common, underdispersion happens when the variance is smaller than the mean.

• We can use Pearson residuals to measure overdispersion using the following argument. The Poisson
GLM implies that

𝑌𝑖|𝑋, ̂𝛽 ∼ 𝑃𝑜𝑖( ̂𝜇𝑖),
with ̂𝜇𝑖 = exp(X𝑇

𝑖 ̂𝛽). This implies
𝑉 𝑎𝑟(𝑌𝑖|𝑋, ̂𝛽) = ̂𝜇𝑖.

Since the variance is unaffected by addition we may also write

𝑉 𝑎𝑟(𝑌𝑖 − ̂𝜇𝑖|𝑋, ̂𝛽) = ̂𝜇𝑖.
Which is also equal to

𝑉 𝑎𝑟 ( 𝑌𝑖 − ̂𝜇𝑖
√𝑉 𝑎𝑟(𝑌𝑖)

|𝑋, ̂𝛽) = ̂𝜇𝑖
𝑉 𝑎𝑟(𝑌𝑖)

.

Since we know from the Poisson distribution that 𝑉 𝑎𝑟(𝑌𝑖) = ̂𝜇𝑖, we have that

𝑉 𝑎𝑟 (𝑌𝑖 − ̂𝜇𝑖
√ ̂𝜇𝑖

|𝑋, ̂𝛽) = ̂𝜇𝑖
̂𝜇𝑖
.

Note that the formulation within the variance at left-hand side of the equation is our definition of
Pearson residuals 𝐸𝑖. Thus, if the Poisson assumption holds, we can write

𝑉 𝑎𝑟(𝐸𝑖|𝑋, ̂𝛽) = 1,
which is something we can empirically test using our fitted model. Indeed, if the variance of our
Pearson residuals is much larger than 1, we are dealing with overdispersion. As a rough
rule, I consider overdispersion to be present if this value is larger than ∼ 1.3, but this is arbitrary and
may depend on the situation (and statistician).
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• Below, we apply this to the Bikeshare dataset. We will notice that the overdispersion is huge! The
p-values and standard errors provided by the model can therefore not be trusted!

ePearson <- resid(m, type="pearson")
n <- nrow(Bikeshare)
p <- length(coef(m))
varPearson <- sum((ePearson^2)) / (n - p)
varPearson # HUGE!

## [1] 42.44815

2.5.1 Remedies to overdispersion

• The presence of overdispersion tells us that the distributional assumption we have been making does
not hold. Overdispersion is a common problem, and luckily we have a few available remedies, as in
alternative distributions, although choosing between them may not always be trival.

– The negative binomial (NB) distribution is a popular choice for modeling data that are overdis-
persed with respect to the Poisson distribution. The NB can be considered as a member of the
exponential family and therefore fitted using standard GLM fitting engines. Just like the Poisson
distribution, it is a distribution only appropriate for modeling count data. If

𝑌𝑖 ∼ 𝑁𝐵(𝜇𝑖, 𝜙),

then 𝐸(𝑌𝑖) = 𝜇𝑖 and 𝑉 𝑎𝑟(𝑌𝑖) = 𝜇𝑖 + 𝜙𝜇2
𝑖 , with 𝜙 ≥ 0 the dispersion parameter. Since 𝜙 ≥ 0

the variance of the negative binomial is always larger than that of the Poisson distribution, and
in fact is now a quadratic (rather than linear) function of the mean. When 𝜙 = 0, the NB reduces
to the Poisson distribution.

– The quasi-Poisson model is an alternative choice derived using the quasi-likelihood framework
developed by Wedderburn (1974). However, only the first two moments (mean and variance) are
specified, and all other moments are left unspecified. In particular if model 𝑌𝑖 using a quasi-Poisson
model, then 𝐸(𝑌𝑖) = 𝜇𝑖 and 𝑉 𝑎𝑟(𝑌𝑖) = 𝜙𝜇𝑖, with 𝜙 ≥ 0 the (quasi-)dispersion parameter.
Again, since 𝜙 ≥ 0 the variance of the quasi-Poisson is always larger than that of the Poisson
distribution, however, the dispersion parameter here is on the linear scale, and so the mean-
variance relationship is still linear as opposed to quadratic in the NB.

Below, we fit a negative binomial and quasi-Poisson model in R.

## negative binomial
library(MASS)
mNB <- glm.nb(bikers ~ weathersit + humc + I(humc^2) + I(humc^3) + hr,

data = Bikeshare)
summary(mNB)

##
## Call:
## glm.nb(formula = bikers ~ weathersit + humc + I(humc^2) + I(humc^3) +
## hr, data = Bikeshare, init.theta = 2.420957542, link = log)
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##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.0170 -0.9246 -0.1729 0.5008 5.4746
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.86978 0.03560 108.701 < 2e-16 ***
## weathersitcloudy/misty -0.15215 0.01753 -8.681 < 2e-16 ***
## weathersitlight rain/snow -0.62708 0.02956 -21.212 < 2e-16 ***
## weathersitheavy rain/snow -1.95785 0.66526 -2.943 0.00325 **
## humc 0.22567 0.06968 3.239 0.00120 **
## I(humc^2) -1.95867 0.20007 -9.790 < 2e-16 ***
## I(humc^3) -0.75361 0.59317 -1.270 0.20391
## hr1 -0.47370 0.04968 -9.535 < 2e-16 ***
## hr2 -0.79592 0.05041 -15.789 < 2e-16 ***
## hr3 -1.42636 0.05216 -27.346 < 2e-16 ***
## hr4 -2.04660 0.05478 -37.360 < 2e-16 ***
## hr5 -1.05264 0.05085 -20.701 < 2e-16 ***
## hr6 0.32952 0.04909 6.712 1.92e-11 ***
## hr7 1.33266 0.04868 27.375 < 2e-16 ***
## hr8 1.86123 0.04862 38.283 < 2e-16 ***
## hr9 1.38427 0.04877 28.382 < 2e-16 ***
## hr10 1.14603 0.04900 23.390 < 2e-16 ***
## hr11 1.32835 0.04913 27.035 < 2e-16 ***
## hr12 1.54916 0.04934 31.401 < 2e-16 ***
## hr13 1.56716 0.04951 31.655 < 2e-16 ***
## hr14 1.53797 0.04960 31.010 < 2e-16 ***
## hr15 1.57197 0.04961 31.689 < 2e-16 ***
## hr16 1.78550 0.04947 36.092 < 2e-16 ***
## hr17 2.19094 0.04924 44.491 < 2e-16 ***
## hr18 2.08597 0.04911 42.473 < 2e-16 ***
## hr19 1.75147 0.04890 35.816 < 2e-16 ***
## hr20 1.41815 0.04883 29.044 < 2e-16 ***
## hr21 1.14329 0.04875 23.450 < 2e-16 ***
## hr22 0.89344 0.04879 18.313 < 2e-16 ***
## hr23 0.49606 0.04891 10.142 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(2.421) family taken to be 1)
##
## Null deviance: 26632.4 on 8644 degrees of freedom
## Residual deviance: 9314.9 on 8615 degrees of freedom
## AIC: 93224
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 2.4210
## Std. Err.: 0.0374
##
## 2 x log-likelihood: -93161.6150
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mean(resid(mNB, type = "pearson")^2) # no more overdispersion!

## [1] 0.9833573

## quasi-Poisson
mQP <- glm(bikers ~ weathersit + humc + I(humc^2) + I(humc^3) + hr,

data = Bikeshare,
family="quasipoisson")

# note the dispersion parameter being estimated is equal to our overdispersion diagnostic measure.
# Indeed, this is the way the dispersion parameter is estimated for the QP!!
summary(mQP)

##
## Call:
## glm(formula = bikers ~ weathersit + humc + I(humc^2) + I(humc^3) +
## hr, family = "quasipoisson", data = Bikeshare)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -23.3408 -4.6201 -0.9922 3.4605 27.4153
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.89365 0.05266 73.936 < 2e-16 ***
## weathersitcloudy/misty -0.14662 0.01483 -9.885 < 2e-16 ***
## weathersitlight rain/snow -0.55615 0.02987 -18.617 < 2e-16 ***
## weathersitheavy rain/snow -1.85519 1.08636 -1.708 0.08773 .
## humc 0.09175 0.06015 1.525 0.12723
## I(humc^2) -2.23392 0.19169 -11.654 < 2e-16 ***
## I(humc^3) -1.82307 0.59568 -3.060 0.00222 **
## hr1 -0.47647 0.08469 -5.626 1.90e-08 ***
## hr2 -0.80696 0.09542 -8.457 < 2e-16 ***
## hr3 -1.43365 0.12276 -11.679 < 2e-16 ***
## hr4 -2.05871 0.16155 -12.744 < 2e-16 ***
## hr5 -1.06169 0.10473 -10.138 < 2e-16 ***
## hr6 0.31569 0.06911 4.568 4.99e-06 ***
## hr7 1.31786 0.05898 22.346 < 2e-16 ***
## hr8 1.83003 0.05638 32.459 < 2e-16 ***
## hr9 1.35214 0.05878 23.003 < 2e-16 ***
## hr10 1.12950 0.06040 18.699 < 2e-16 ***
## hr11 1.30855 0.05930 22.066 < 2e-16 ***
## hr12 1.52223 0.05829 26.113 < 2e-16 ***
## hr13 1.53683 0.05837 26.329 < 2e-16 ***
## hr14 1.49951 0.05863 25.576 < 2e-16 ***
## hr15 1.53504 0.05846 26.256 < 2e-16 ***
## hr16 1.74513 0.05733 30.439 < 2e-16 ***
## hr17 2.14049 0.05580 38.360 < 2e-16 ***
## hr18 2.03774 0.05595 36.419 < 2e-16 ***
## hr19 1.71154 0.05699 30.032 < 2e-16 ***
## hr20 1.39390 0.05848 23.834 < 2e-16 ***
## hr21 1.13254 0.06004 18.863 < 2e-16 ***
## hr22 0.88253 0.06214 14.203 < 2e-16 ***
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## hr23 0.48135 0.06650 7.238 4.94e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 42.44818)
##
## Null deviance: 1052921 on 8644 degrees of freedom
## Residual deviance: 375265 on 8615 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5

• ver Hoef et al. (2007) provide a useful diagnostic to empirically check whether your data is more
amenable to a quasi-Poisson versus a negative binomial distribution.

3 A final note

In this lecture, we have introduced GLMs to model data that can be assumed to follow a distribution
belonging to the exponential family. We focussed on estimation, interpretation, statistical inference and
some model goodness-of-fit diagnostics. We did not consider important topics like model selection, or even
whether a GLM is appropriate for your dataset! These are other important topics which, unfortunately, we
do not have the bandwidth for to include in this course. Therefore, a final note through an XKCD comic,
after finishing this long chapter!
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4 References

• Marioni et al. (2008) describe the distribution of gene expression counts across technical replicates, and
in addition discuss lane effects in RNA-seq, as well as a comparison between RNA-seq and array-based
platforms.

• Wedderburn (1974) introduced the (extended) quasi-likelihood framework.
• The count data chapter of Modern Statistics for Modern Biology by Wolfgang Huber and Susan Holmes

handles similar topics also in the context of RNA-seq: https://www.huber.embl.de/msmb/Chap-
CountData.html
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