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Exponential family

0; — b(6;)

f(yil0i, ¢) = exp {y; 20) + c(yi, ¢)}

with
@ 0;: canonical parameters
@ ¢: dispersion parameter

e a(.), b(.), c(.): specific functions that depend on the
distribution, e.g. for normal distribution ¢ = 02, 8 = p,

a(¢) = ¢ = 0®, b(0;) = 07/2, c(yi,¢) = —31y*/d + log(2m9)]



Components of Generalized Linear Model

[ yilxi ~ f(yilti, ¢)
Elyilxi] = i
gui) = nxi)
nxi) = x/B
with g(.) the link function, e.g.
g(.) = . : identity link for Normal distribution
g(.) =log(.) : canonical link for Poisson distribution

e g(.) =logit(.) = log [%} : canonical link for Bernouilli

distribution.



Parameter estimation: the likelihood

o We start from a sample, and consider it as fixed and known.

o In particular we do NOT consider the sample observations as
random variables.

@ Therefore we write the observed sample as y;, ..., v,

@ The theory is based on the likelihood function, which can be
interpreted as a measure for the probability that the given
sample is observed as a realisation of a sequence of random
variables Y1,...Y,.

@ The random variables Y; are characterised by a distribution or
density function which has typically unknown parameters, e.g.
a Poisson distribution 7(Y;) ~ Poisson(6;).



Parameter estimation: the likelihood

@ When the subjects are mutually independent the joint
likelihood to observe yi,...,y, equals

[T 6:,0)
i=1

@ The densities are actually also a function of the parameters
0;, ¢. To stress this, we indicated that in the density
formulation.

@ The likelihood function is a function of all parameters

L(6,6ly) = [ [ f(vi, 0. 9)

i=1

@ The log-likelihood function is often used, which is defined as

(6, ¢ly) = log L(6, ¢ly) = Zlogf Yi:0i,8)



log-likelihood

10, 0ly;) = {y iB; — b(6)

20) + c(y;,¢)}

o Elyi] = pi = b'(6))

o varly;] = b"(6i)a(¢)
Variance var[y;] depends on mean! Often there is no dispersion
parameter e.g. Bernouilli: var[y;] = pi(1 — p;), Poisson
varlyi] = pi.
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Maximum likelihood, Score function

o010, ¢lyi

when canonical link function is used:
o ui = b'(6)



Maximum likelihood, Score function

oy 0101, 8lyi) v —
Sil0h) = 0 a(o)

when canonical link function is used:
o ui = b'(6)




Maximum likelihood, Score function

5’_(01_) _ 8l(917 ¢|yl)

_ Vi T Hi
00, a(¢)
when canonical link function is used:
o pj=b'(0;)
@ Regression (chain rule and i =1,...,n i.i.d observations)

01(0;, ¢; yi) 00; Op; On;
5:(8) = (0i, ¢l yi) pi On

gyt Owi
00, Oui On; 0B X'S'(gl)b"(ei) om;

n

_ Vi Wi Ol T
5(8) = ;X: ()b (6) O X Ay — p)

@ A is a diagonal matrix: A = diag [var[y;]

877,}7
Opi !
y= [)/17"'7)/n]T1 o= [M]_,...,Mn]—r

o Optimization??



Newton Raphson

W 8: 5(B8)=0
I’ -1
g _ ﬂk_<3g([;3) ﬁk> S(8Y)

Bk+1 :IBk+ J*l(ﬁk)

k
5589

with J(B%) the observed Fisher
information matrix.

o Fisher scoring: replace observed Fisher information matrix
J(B%) by expected Fisher information matrix
1(8%) = E[J(BY).

o If you use canonical link, /(3%) = J(8%) — Fisher Scoring
and Newton Raphson are identical.



lteratively Reweighted Least Squares (IRLS)

Newton Raphson and Fisher Scoring can be recasted in an IRLS
algorithm

Bt = B 171(8Y)] 5 S(8Y)

= B+ (XTWX)IXTA(y — p)

= B+ (XTWX)IXTW G (y — p)

= (XTWX)XTW [X8" + 52(y - p)

= (XTWX)1XTWz

—1
with 1(8) = XTWX, W = Adiag [gﬂ and pseudo data
z=n+ gy - n)
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ABSTRACT

A flexible statistical framework is developed for
the analysis of read counts from RNA-Seq gene ex-
pression studies. It provides the ability to analyse
complex experiments involving mulple treatment

sequencing technologies. Novel empirical Bayes
methods allow each gene to have

implemented in the edgeR
packago of he Bioeonductor projoct. A case study
analysis of carcinoma data demonstrates the abity
of generalzed linoar modol methods (GLMs) to
Gotect diferentil oxprossion in & desian,
and even to detect tumour-spec expres
Changes. The case study demensirates tho need
to allow for gene-specific variability, rather than
assuming a common dispersion across genes or
a fi tween abundance and vari-
abllny Gonowise dispersions. de-prontize. gones
consistent results and allow the main
analysis to focus on changes that are consistent
replicates. Parallel
al approaches are developed to make non-linear
model fitting faster and more reliable, making the
application of GLMs to genomic data more conveni-
ent and practical. Simulations demonstrate the
abity of adjusted profile ikelihood estimators to
return accurate estimators of biol

in complex situations. When variation is gene-

specific, empirical Bayes estimators provide an

advantageous compromise between the extremes
o °

DNA-Seq applications, including ChiP-Seq for epi-
genetic marks and DNA methylation analyses.

INTRODUCTION

The cost of DNA sequencing continues to decrease at a
staggering rate (1). As it does. sequencing technol
become taore and more. atmacive. 83 platforms For
studying gene expression. Current ‘next-generation’
sequencing technologies measure gene expression by
gencrating short reads or sequence tags, that is, sequences.
of 35-300 base pairs that correspond to fragments of the
original RNA. There are a number of technologies and

man dilisn protocls. Poular approsches e i
tag ma methods includin ). deepSAGE (3).
G Which. seguence ﬁom one_or more

A
anchored postions n cach aene, or RNA-Seq (5 9
hich Sequenees andom mgnem mm the entite tran-
seriptome. Both approaches
investigating gene expression i
this article. we will use the term RNA-Seq g
10 include any of the tag-based or RNA-Seq variants in
which very high-throughput sequencing is applied to RNA
fragments

For the purposes of evaluating differential expression
between conditions, read counts are summarized at the
genomic level of interest, such as genes or exons,
Although RNA-Seq can be used to search for novel
exons or for splice-variants and isoform-specific
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MATERIALS AND METHODS
Biological coefficient of va
RNA-Seq profiles are formed from # RNA samples. Let

Ty be the fraction of all cDNA fragments in the i-th
simple that origirate from gene 5. Let G denote
s I for cach

et Gl of varation (CV)
{tandard devialion divided by meam) of my between the
replicates i. We denote the total number of mapped reads
inlibrary i by N; and the number that map to the g-th gene
Y i

E(ra) = g1 = Nty

Assuming that the count y,; follows a Poisson distribution
for repeated sequencing runs of the same RNA sample, a
well known formula for the variance of a mixture distri-
bution implies:
Var(vg) = Exlvar(1m)] + Var [ EG1m] = s + et
Dividing both sides by jz2, gives
CV3 ) = 1/ + b

first term 1/ is the squared CV for the Poisson
dbtrbation and 2 second < e squared CV of the un-
observed expresion values. The ol CV? therefore is the
technical GV

v’

hion befween rplicates, ncluding perhaps contrbtions
from technical causes such as library preparation as well
as true biological variation between sampl

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42.43). GLMs
specify probability distributions according to their
mean-variance relationship, for example the quadratic
mean-variance_relationship_specified above for read
counts. Assuming that an estimate is available for ¢, so
the variance can be evaluated for any value of i, GLM
theory can be used to fit a log-linear model

log s = x] s + log Ni

for each gene (32.41). Here x; is a vector of covariates
that specifies the treatment conditions applied to RNA

uadkesioarinne fucrion species the nepative binorial

LM utional family. The use of the negative
Finomil ditribtion i equivalent to treating the T,; as
gamma distributed

Fitting the GLMs
The derivative of the log-likelihood with respect to the
coefficients i is X'z, where X is the design matrix with
columns X; and zg; = (v~ Hg)/(1 + Gultz). The Fisher

information matrix for the coeficents can be written as
1, X, where ¥, is the diagonal matrix of working
Weights o Wamard GIN theory (43). The Fisher
scoring iteration 1o find the maximum likelihood
:snmme of is _thercfore I3 with
&= (X'W,X)"" X"z, This iteration usually produces an
fnercase i heTikelhood fancion. bt he ikehood con
also decrease representing divergence from the required
solution. On the other hand, there always exists a
siepsize modifier @ with  D<a<1 such

B = B 4 ad produces an increase in the likelihood.
Choosing a so that this is so at each iteration is known
as a line search strategy (44.43)

Fisher's scoring iteration can be viewed as an approxi-
mate Newton-Raphson aigoit, wih the Fiset nfor-
mation matrix approximating the secon ative
matrix. The line scarch strategy may be used it any
approximation 1o, the second derivative mairx that &

convenient approximation. Without loss of genealy he
fincar model can be parametrized so that

if the py also happen to bel.mm.ml o o
glvl.n gene g, then the information matrix simpifies consid-
erably 101/(1+ ) times the identity matrix 1. Taking
this as the ‘approximation 1o the information matrix. the
Fisher scoring step with line search modification becomes
simply & = aX"z,, where the multiplier /(1 + dite) has
been absorbed into the stepsize factor . In this formula-
tion, x is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize o that is
increased o decreased as the iteration proceeds.

Cox-Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for ¢, is the
penalized log-Tikelihood

APLL(9) = €53y, o)~ ylogdeZ,

where 3 s the vector of counts for gene £, f is the
stimaied cocficent vecor, €0 s ikelihood
function and 7, is the Fisher tormaton s The
Cholesky decomp 48) provides & numerially
stable and efficient algorithm for computing the determin-
ant of the information matrix. Specifically, logdet Z, s the
sum of the logarithms of the diagonal clements of the
Cholesky factor R, where T, = R' R and R is upper tri-
angular. The matrix R can be obtained as a by product of
the QR-decomposition used in standard linear model
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel,

mulations

Al data scts wers gnerated with negaiv binonil
disributed counts for tal number of 10

e expected count e varcd between senes al:cordmk_k
o gamna distibution with shape parasicice 0.5, an ad hoc
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
= 04). In one simulation, all genes had the same
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MATERIALS AND METHODS
Biological coefficient of va
RNA-Seq profiles are formed from # RNA samples. Let

Ty be the fraction of all cDNA fragments in the i-th
simple that origirate from gene 5. Let G denote
s I for cach

cample. Let </, denote the coufiient of ariation (CV)

(standard deviation divided by mean) of ., between the
replicates i. We denote the total number of mapped reads
inlibrary i by N; and the number that map to the g-th gene
Y i

E(ra) = g1 = Nty

Assuming that the count y,, follows a Poisson distribution
for repeated sequencing runs of the same RNA sample, a
well known formula for the variance of a mixture distri-
bution implies:
var(rg) = Exlvar(yim)] 4 vara EG1m) = prei + detc’
Dividing both sides by jz2, gives
CV3 ) = 1/ + b

first term 1/ is the squared CV for the Poisson
dbtrbation and 2 second < e squared CV of the un-
observed expression values. The total CV? therefore s the
technical CV wih which 7 is messurd pls the bio-

he irie 1o In this article, we call o,
dupemon and ' the iological OV alihough, m.cny
speaking, it captures. " sourees af she mer-or

hion befween rplicates, ncluding perhaps contrbtions
from technical causes such as library preparation as well
as true biological variation between sampl

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42.43). GLMs
specify  probability distributions according o their
mean-variance relationship, for example the quadratic
mean-variance relationship specified above for read
counts. Assuming that an estimate is available for ., so
the variance can be evaluated for any value of i, GLM
theory can be used to fit a log-linear model

log s = x] s + log Ni
fo sch gt @21, Here 3,128 vestor of ovuiles
that specifies the treatment conditions applied to RNA
sample 4, and B s o vector of regr
which the covariate effects are mediated for gene g. The
quadratic variance function specifies he negative binomial
u i nhuuoml family. The use of the negative
tribution is cqm\:\lem to treating the my; as
g«mma dlsmbmcd

Fitting the GLMs
The derivative of the log-likelihood with respect to the
coefficients i is X'z, where X is the design matrix with
columns x; and zg = (g g/ (1 + Guitz). The Fisher

information matrix for the coefficients can be written as
T, = XWX, where ¥, is the diagonal matrix of working
Weights o Wamard GIN theory (43). The Fisher
scoring iteration to find the maximum likelihood
estimate o B, is thercfore % with
= (X'W.0)" Xz, This iteration usually produces an
increase in the likelifood function, but the likelihood can

nd, there always exists a
modifier « with 0<z<l such that
B = B 4 ad produces an increase in the likelihood.
Choosing a so that this is so at each iteration is known
as a line search strategy (44.43)

Fisher's scoring iteration can be viewed as an approxi-
mats NowonRaphson sgorihm, ith the Fiser nfr-

mation matrix approximating the second derivative
matri. The line scarch strategy may be used with any
Spproximation 1o.the sccond.dervative matrix that &

a
convenient approximation. Without [oss of genealy. the
linear model ean be parametizedso hat XX
if the p also happen to be constant over i o

glvl.n gene g, then the information matrix simpifics consid-
erably 101/(1+ ) times the identity matrix 1. Taking
this as the ‘approximation 1o the information matrix. the
Fisher sorig tep withlne search moifcation becotes
simply § = X'z, where the multiplier we/(1 + dh,) has
e Smorbed o the stepsize factor . In this formula-
tion, x is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize o that is
increased o decreased as the iteration proceeds.

Cox-Reid adjusted profile likelihood
The adjusted profile likelihood (APL) for ¢, is the
penalized log-Tikelihood

APLL(9) = €53y, o)~ ylogdeZ,

s the vector of counts or gene £, e s the
c L 0

Sable and effien, algonthm fo computing the determin.
ant of the information matrix. Specifically, logdet Z, s the
sum of the logarithms of the diagonal clements of the
Cholesky factor R, where T, = R
angular. The matrix R can be obtained as a by product of
the QR-decomposition used in standard linear model
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel,

mulations
Al data scts wers gnerated with negaiv binonil
disributed counts for ufied total number of 10000 genes
The expected count size vari n genes according to

o gamna distibution with shape parasicice 0.5, an ad hoc
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
(BCV = 0.4). In one simulation, all genes had the same
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MATERIALS AND METHODS
Biological coefficient of va

RNA-Seq profiles are formed from # RNA samples. Let
T/ be the fraction of all cDNA fragments in the i-th
maie from gese . Let G denote

I for cach

'

sample. Let /g, denot the coefheidn of sariation (CV)
(andard devifion divkiod by mese) of 1 between the
replcates 1 We denote the ot mumber of mapped reads
inlibrary 1 by N, and the number that map 0 the ¢ gene
¥ vy Then

E(ra) = g1 = Nty

Assuming that the count y,, follows a Poisson distribution
for repeated sequencing runs of the same RNA sample. a
well known formula for the variance of a mixture distri-
bution implies:

ar(rg) = ExVar(v)] + var[EQ1m] = seei + deitl
Dividing both sides by jz2, gives

V) = 11 +
first term 1/, is the squared CV for the Poisson

d)smblmon and the second is the squared CV of the un-

eerved xpression valuss, The total CV? therefore is the
|=ch ical CV- with w s it messured pus the bio-
logi aricle, we call b
though, ﬂrluly
Speaking. i caplares all sources of he iter-Fbriry
ation between replicates, including perhaps contributions
from technical causes such as library preparation as well
as true biological variation between samples.

GLMs

GLMs are an extension of classical linear models to
non-normally distributed response data (42.43). GLMs
specify probability distributions according to their
mean-variance relationship, for example the quadratic
mean-variance_relationship_specified above for read
counts. Assuming that an estimate is available for &, s
the variance can be evaluated for any value of i, GLM
theory can be used to fit a log-linear model

log gs = 7By + log Ns
for each gene (32.41). Here x is a vector of covariates
that specifies the treatment conditions applied to RNA
sample | and B, s @ vecto of regression coeficnts by
Which the covariate oflets are medinted for gone g. T
quadratic variance function specifies the negative ot
GLM distrbutional famiy, The use of the neptive
tribution is equivalent to treating the ,; as
gamma Ldisuibued

Fitting the GLMs

The derivative of the log-likelihood with respect to the
coefficients i is X'z, where X is the design matrix with
columns x; and zg = (g g/ (1 + Guitz). The Fisher

information matrx for the coeicnts can be wrien 15

= XTI, where I, is the diagonal matrix of working
Vgt o tandard GUM theors (05 The Fioher
scoring iteration 1o find the maximum likelihood
estimate of B, s therefore A = # +5 with
8= (X"W,X)"" X"z,. This iteration usually produces an
increase in the likelifood function, but the likelihood can

nd, there always exists a
sipsizemodificr 2 with  0<z<1 such = that
A = 2 +as produces an increase in the likelihood.
C‘hoosmg o so that this is so at each iteration is known
as a line search strategy (44.43)

Fisher's scoring iteration can be viewed as an approxi-
mate Newton-Raphson algorithm, with the Fisher infor-

maion matvix approvimating ihe second derhvaive
matrix. The line scarch strategy may be used with any
approvimalion o. the sccond.dervative matrix that &

a
convenient approximation. Without loss of geerslity, the
linear model ean be parametizedso hat XX
if the p also happen to be constant over i o

g,.m gene g, then the information matrix simpifies consid-
erably 101/(1+ ) times the identity matrix 1. Taking
this as the ‘approximation 1o the information matrix. the
Fisher sorig tep withlne search moifcation becotes
simply & = aX"z,, where the multiplier /(1 + has
been absorbed inio the stepsize Factor o. In this formula-
tion, x is no longer constrained to be less than one. In our
implementation, each gene has its own stepsize o that is
increased o decreased as the iteration proceeds.

Cox-Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for ¢, is the
penalized log-Tikelihood

APLL(¢) = (i, .B,v)fllogduil

s the vector of counts or gene £, f is the
0 i

stable and effciens algorithm or Computiag the deterenin.
ant of the information matrix. Specifically, logdet Z, s the

the QR-decomposition used in
fitting. In our implementation, the Cholesky calculations
are carried out in a vectorized fashion, computed for all
genes in parallel,

mulations

Anifial data sets wers generaed with negatve inomial
disributed counts for ufied total number of 10000 genes

The expected count size vari n genes aumdmk_ to
a gamma distribution with amn parametes 0.5, an ad hoe
choice that happened to mimic the size distribution of the
carcinoma data. The average dispersion was set to 0.16
(BCV = 0.4). In one simulation, all genes had the same
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1 P 2 1 T
— —logdet/ = — logo” + — log | X" X
2 2 2 ! !

1
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Although the pseudo-Newton algorithm requires slightly
more iterations on average than true Newton-Raphson or
the customary Fisher scoring algorithm for GLMs, the
pseudo-Newton algorithm remains competitive in con-
junction with our line-search strategy, and the computa-
tional gains that arise from the simplification are
enormous. The algorithm is implemented in R in such a
way that the iteration is progressed for all genes in parallel
 than for one gene at a time. Our pure R implemen-
tation fits GLMs to most RNA-Seq data sets in a few
seconds, whereas genewise calls to the glm() function in
R typically require minutes at least, and indeed may fail
entirely due to iterative divergence for one or more genes,

Hypothesis tests

Our software allows users o test the significance of any
coefficient in the linear model, or of any contrast or linear
combination of the coefficients in the linear model,
Genewise tests are conducted by computing likelihood-
ratio statistics to compare the null hypothesis that the
coefficient or contrast is equal to zero against the
two-sided_alternative that it is different from zero.
The log-likelihood-ratio statistics are asymptotically chi
square distributed under the null hypothesis that the co-
efficient or contrast is zero. Simulations show that the
likelihood ratio tests hold their size relatively well and
generally give a good approximation to the exact test
3) When'the latier s available (data not ;hown) Any
mliple testing adjistment method provde

e e By def, Palues
ol the fale dicovery rate by the
method of Benjamini and Hochbere (47

Estimation of biological CV

The remaining issue is to obtain a reliable estimate of the
BCV for each gene. An estimator that is approximately
unbiased and performs well in small samples is required.
Maximum likelihood estimation of the BCV would under-
estimate the BCV, becaus © 10 ¢
cocflcients in the Tog-inear model from the Same dat
Our earlier work used exact conditional likeliho
pre

";

performance, but does not exslly generalze
oproximate conditonal Tkeihood
dppm.m Known a0 APL (49) APL i form of penalzed
likelihood. Again. we have implemented the APL compu-
tation in 4 vectorized and computationally _efficient
manner, rather than computing quantities gene by gene.

Estimating common dispersion
Extimating the BCY foresch gne idividually shod sot
be considered unless a large number of
cates are available. When low replcation I+ vailabl,
sharing _information between genes is essential _for

bl nferene. Regardiesofthe amount of repition,
approprise information sharing methods should el
some ben

Loy denote the squared BCY for gene g, which
we call the dispersion of that gene. The dispersion is the
coefficient of the quadratic term in the variance function.

The simplest method of sharing informationbetween
s s t0 assume that all genes share the same dispersion,
that b, = ¢ (23). The common dispersion may

Setimated by maximising the shared lkelihood funeton

where APL, is the adjusted profile likelihood for gene ¢
(‘Materials and Methods' section). This maximization can
be accomplished numerically in @ number of ways, for
example by a derivative-free approximate Newton algo-
rithm (49).

Estimating trended dispersion
A generalization of the common dispersion is to model the
dispersion ¢, as a smooth function of the average read
count of each gene (25). Our software offers a number
of methods (o o this, A simple non -paranetic method
€ o diide the genes into bins by mverage rad count,
stimate ll\e common disperson in sach b, hen 10 it
a loess or spline curve through these bin-wise dispersions.
A more sopnisicated method islocally weighied AP
this approach, cach  is cstimated by making & ol

shared log-likelihood, which is a weighted average of the
PL for sene £ nd its neighhouring senes by average
read count

Estimating genewise disper

In real scientific applications, it is more likely that indi-
vidual genes have individual BCVs depending on their
‘genomic sequence. genomic length. expression level or bio-
Togical function. We seek a compromise between entirely
individual genewise dispersions &, and entirely shared
values by extending the weighted likelihood empirical
Bayes approach proposed by Robinson and Smyth (22)
In this approach, , is estimated by maximizing

APL(,) + Go APLs(90).

where Go s the weght givn Lo the shared ikelood and
) local shared log-likeliho
weighied Hkelihaod approach can be nterpreted in empur
ical Bayes terms, with the shared likelihood as the prior
disrbution fo 6 and the weghted lkelihood s the por
terior. The prior distribution can be thougl arising
from prior observations on a set of Gy Senes The number
of prior genes Gy therefore represents the
to the prior relative to the actual observed e tor et g
for Gy depends on the variability of

tween genes. Smaller values are optimal
when the BCVs vary considerably between genes. We
have found that Gy = 20/df gives good results over a
wide range of real data sets. where df is the residual
degrees of freedom for estimating the BCV. For
multigroup experiments, df is the number of libraries
minus the_number of distinct treatment  groups. The
default setting implies that the prior has the weight of 20
degrees of freedom for estimating the BCV, regardless of

s
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_E| &%

g = 228

Do APL with Gaussian for explaining rationale

1 P 2 1 T
— —logdet/ = — logo” + — log | X" X
2 2 2 ! !

1

~2APL~ (N = p)log o® + — [|¥ — X33
o

Tagwise: Weighted dispersion estimation

(1 — @)APLg(¢g) + aAPLs(¢g)

@ Dispersion: common ALPs(),
trended, gene wise APLg(dg),
tagwise
(1 — a)APLg(¢g) + aAPLs(g)
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Although the pseudo-Newton algorithm requires slightly
more iterations on average than true Newton-Raphson or
the customary Fisher scoring algorithm for GLMs, the
pseudo-Newton algorithm remains competitive in con-
junction with our line-search strategy, and the computa-
tional gains that arise from the simplification are
enormous. The algorithm is implemented in R in such a
way that the iteration is progressed for all genes in parallel
 than for one gene at a time. Our pure R implemen-
tation fits GLMs to most RNA-Seq data sets in a few
seconds, whereas genewise calls to the glm() function in
R typically require minutes at least, and indeed may fail
entirely due to iterative divergence for one or more genes,

Hypothesis tests

Our software allows users o test the significance of any
coefficient in the linear model, or of any contrast or linear
combination of the coefficients in the linear model,
Genewise tests are conducted by computing likelihood-
ratio statistics to compare the null hypothesis that the
coefficient or contrast is equal to zero against the
two-sided_alternative that it is different from zero.
The log-likelihood-ratio statistics are asymptotically chi
square distributed under the null hypothesis that the co-
efficient or contrast is zero. Simulations show that the
likelihood ratio tests hold their size relatively well and
generally give a good approximation to the exact test
3) When'the latier s available (data not ;hown) Any
mliple testing adjistment method provde

e e By def, Palues
ol the fale dicovery rate by the
method of Benjamini and Hochbere (47

Estimation of biological CV

The remaining issue is to obtain a reliable estimate of the
BCV for each gene. An estimator that is approximately
unbiased and performs well in small samples is required.
Maximum likelihood estimation of the BCV would under-
estimate the BCV, becaus © 10 ¢
cocflcients in the Tog-inear model from the Same dat
Our earlier work used exact conditional likeliho
pre

";

performance, but does not exslly generalze
oproximate conditonal Tkeihood
dppm.m Known a0 APL (49) APL i form of penalzed
likelihood. Again. we have implemented the APL compu-
tation in 4 vectorized and computationally _efficient
manner, rather than computing quantities gene by gene.

Estimating common dispersion
Extimating the BCY foresch gne idividually shod sot
be considered unless a large number of
cates are available. When low replcation I+ vailabl,
sharing _information between genes is essential _for

bl nferene. Regardiesofthe amount of repition,
approprise information sharing methods should el
some ben

Loy denote the squared BCY for gene g, which
we call the dispersion of that gene. The dispersion is the
coefficient of the quadratic term in the variance function.

The simplest method of sharing informationbetween
s s t0 assume that all genes share the same dispersion,
that b, = ¢ (23). The common dispersion may

Setimated by maximising the shared lkelihood funeton

where APL, is the adjusted profile likelihood for gene ¢
(‘Materials and Methods' section). This maximization can
be accomplished numerically in @ number of ways, for
example by a derivative-free approximate Newton algo-
rithm (49).

Estimating trended dispersion
A generalization of the common dispersion is to model the
dispersion ¢, as a smooth function of the average read
count of each gene (25). Our software offers a number
of methods (o o this, A simple non -paranetic method
€ o diide the genes into bins by mverage rad count,
stimate ll\e common disperson in sach b, hen 10 it
a loess or spline curve through these bin-wise dispersions.
A more sopnisicated method islocally weighied AP
this approach, cach  is cstimated by making & ol

shared log-likelihood, which is a weighted average of the
PL for sene £ nd its neighhouring senes by average
read count

Estimating genewise disper

In real scientific applications, it is more likely that indi-
vidual genes have individual BCVs depending on their
‘genomic sequence. genomic length. expression level or bio-
Togical function. We seek a compromise between entirely
individual genewise dispersions &, and entirely shared
values by extending the weighted likelihood empirical
Bayes approach proposed by Robinson and Smyth (22)
In this approach, , is estimated by maximizing

APL(,) + Go APLs(90).

where Go s the weght givn Lo the shared ikelood and
) local shared log-likeliho
weighied Hkelihaod approach can be nterpreted in empur
ical Bayes terms, with the shared likelihood as the prior
disrbution fo 6 and the weghted lkelihood s the por
terior. The prior distribution can be thougl arising
from prior observations on a set of Gy Senes The number
of prior genes Gy therefore represents the
to the prior relative to the actual observed e tor et g
for Gy depends on the variability of

tween genes. Smaller values are optimal
when the BCVs vary considerably between genes. We
have found that Gy = 20/df gives good results over a
wide range of real data sets. where df is the residual
degrees of freedom for estimating the BCV. For
multigroup experiments, df is the number of libraries
minus the_number of distinct treatment  groups. The
default setting implies that the prior has the weight of 20
degrees of freedom for estimating the BCV, regardless of

s

Defining model
@ bv'(O)=pn
® a(¢)=1+0u

Estimation dispersion: profiling

_E| &%

g = 228

Do APL with Gaussian for explaining rationale

1 P 2 1 T
— —logdet/ = — logo” + — log | X" X
2 2 2 ! !

1

~2APL~ (N = p)log o® + — [|¥ — X33
o

Tagwise: Weighted dispersion estimation

(1 — @)APLg(¢g) + aAPLs(¢g)

@ Dispersion: common ALPs(),
trended, gene wise APLg(dg),
tagwise
(1 — a)APLg(¢g) + aAPLs(g)
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Biological coefficient of variation

Score (1%t derivative of LL)

Defining model
® v(0)=n
® a(¢)=1+0u

Estimation dispersion: profiling

221
° i ——e[5t]

Do APL with Gaussian for explaining rationale

1 P 2 1 T
— —logdetl = — logo” + — log | X' X
2 2 2 ! !

1

—2APL ~ (N —p)log a® + — ||IY — X8|}
o

Tagwise: Weighted dispersion estimation

(1 — @)APLg(¢g) + aAPLs(¢g)

@ Dispersion: common ALPs(¢),
trended, gene wise APLg(¢g),
tagwise
(1 — a)APLg(dg) + aAPLs(dg)
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dispersion
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Defining model
® () =p
@ a(¢)=1+¢u
Estimation dispersion: profiling
_ 22L
° i ——e[5t]

Do APL with Gaussian for explaining rationale

1 P 2 1 T
— —logdetl = — logo” + — log | X' X
2 2 2 ! !

1

—2APL ~ (N —p)log a® + — ||IY — X8|}
o

Tagwise: Weighted dispersion estimation

(1 — @)APLg(¢g) + aAPLs(¢g)

@ Dispersion: common ALPs(¢),
trended, gene wise APLg(¢g),
tagwise
(1 — a)APLg(¢g) + aAPLs(¢g)

@ DESeq: maximum trended vs tagwise

@ DESeq 2: Tagwise but outliers are
not shrunken
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Hypothesis testing: Large sample theory
o LRT-test
A=2l— 2l

for nested models (extended model (e) and null model (0))
follows an asymptotic y>-distribution with df = pe. — po
degrees of freedom and pe (pp) the number of parameters in
the extended (null) model.

o Wald test follows immediately from the information matrix
for generalized linear models

1(8) = XTWX

so large sample distribution of the maximum likelihood
estimator (3 is multivariate normal

BN [B, (XTWX)_I]
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Limma-voom

@ Count models vs transformation: Poisson counts, \/(y)
stabilises the variance, insufficient for negative binomial. Log
transformation: the transformed data are still
heteroscedastic.— limma-voom

@ Use normalized log-cpm Limma pipeline for sequencing

12



Limma-voom

@ Problem: counts have a mean variance relationship:
heteroscedastic

o How do we deal with heteroscedasticity in traditional linear
models?

13



Limma-voom

(]

Problem: counts have a mean variance relationship:
heteroscedastic

(4]

How do we deal with heteroscedasticity in traditional linear
models?

(]

Two stage approach:

Q Stage |
o OLS
o Estimate variances at each data point
o Use variances as weights: W = diag[1/57]

@ Stage Il WLS argming{(y — XB8)"W(y — X3)}
o Port this idea to RNA-seq pipeline
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Log-counts per million

We assume that an experiment has been conducted to generate a set of n RNA samples.
Bach RNA sample has been sequenced, and the sequence reads have been summarized
by recording the number mapping to each gene. The RNA-seq data consist therefore of a
matrix of read counts r,;, for RNA samples i = 1 ton, and genes g = 1to G. Wite R, for
the total mumber of mapped reads for sample i, R = 0., r,;. We define the log-counts
per million (log-cpm) value for each count as

Ty +05
v = oty (o < 10°)

The counts are offset away from zero by 0.5 to avoid taking the log of zero, and to reduce
the variability of log-cpm for low expression genes. The library size is offset by 1 to ensure
that (rgs +0.5)/(R, + 1) is strictly less than 1 has well as strictly greater than zero.

Voom variance modelling

The above linear model is fitted, by ordinary least s
each gene. This yields regression coefficient estimates (3, fitted values jiy; = o7, and
residual standard deviations s,.

Also computed is the average log-cpm g, for each gene. The average log-cpm is con-
verted to an average log-count value by

quares, to the log-cpm values

3y + loga(R) — logy (10°)

where R is the geometric mean of the library sizes plus one.

To obtain a smooth mean-variance trend, a loess curve is fitted to square-root standard
deviations s}/? as a function of mean log-counts 7 (Figure 2ab). Square-root standard
deviations are used because they are roughly symmetrically distributed. The lowess curve
[44] is statistically robust [45] and provides a trend line through the majority of the
standard deviations. The lowess curve is used to define a piecewise linear function lo() by
interpolating the curve between ordered values of -

Next the fitted log-cpm values ji,; are converted to fitted counts by

Agi = ftgi + logy(R; + 1) — log,(10°).

The function value 1o(Ay,) is then the predicted square-root standard deviation of y,;.
Finally, the voom precision weights are the inverse variances wy; = lo(A,;)~* (Fig-

ure 2c). The log-cpm values y,; and associated weights w; are then input into the stan-

dard limma linear modeling and empirical Bayes differential expression analysis pipeline

voom: Mean-varancs rand

Figure 2: Voom mean-variance modelling. Panel (a), gene-wise square-root residual standard
deviations are plotted against average log-count. Panel (b), a functional relationship between
& robust lowess fit to the points. Panel (c), the

gene-wise means and variances is given
mean-variance trend enables each observation to map to a square-root standard deviation value
using its fitted value for log-count.

Law et al. (2013). Genome Biology
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