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SUMMARY 

Proteins are very diverse biomolecules that facilitate nearly all cellular processes of life. They 
interact with each other in complex networks in which disruption of a single protein can severely 
impact an organism. Therefore, quantitative information of a proteome (i.e. the entire set of 
proteins present in an organism) is extremely important to gain insights in the functioning of an 
organism in both healthy and diseased states. 

Mass spectrometry (MS)-based proteomics is the method of choice for the high-throughput 
identification and quantification of thousands of proteins in a single analysis. When deep 
proteome coverage on many samples is needed, the analysis is often performed without any 
stable isotope labels, label-free. Here, proteins are extracted and digested into peptides that 
are subsequently loaded onto a reverse-phase high-performance liquid chromatography 
column (HPLC) coupled to a mass spectrometer, by which they are separated, ionized and 
have their MS spectra recorded. The intensity peaks in these MS spectra are proxies for 
peptide abundance. Subsequently, (some) peptides are targeted for fragmentation and the 
resulting MS² spectra enable their identification. As a result, label-free proteomics data are 
hierarchical: the data are at the peptide ion level, while inference typically happens at the 
protein level. Important to note is that signal intensities are strongly peptide-dependent as 
some peptides ionize more efficiently than others. Furthermore, missing values are very 
common and a large fraction of this missingness is not at random. Indeed, intensities of low-
abundant and poorly ionizing peptides are more likely to go missing and competition for 
ionization makes missingness also context-dependent.  

Many ad hoc data analysis workflows for differential protein quantification do not handle label-
free proteomics data in a statistically rigorous way, which leads to suboptimal ranking of 
differentially abundant proteins. Consequently, many biologically relevant proteins remain 
unnoticed and valuable resources are wasted by needlessly trying to validate false positive 
hits. 

In chapter 8, we demonstrate the necessity of properly taking peptide-specific effects into 
account in differential protein quantification analyses. Peptide-based models, which naturally 
account for these effects, perform better than methods that summarize peptide intensities to 
the protein level prior to the statistical analysis. We further illustrate that controlling the false 
discovery rate becomes problematic when highly-abundant proteins are differentially abundant 
due to suppression of the intensity of the background proteome. Finally, we show that missing 
values should be handled with care as imputing these under wrong assumptions leads to worse 
results compared to not imputing missing values at all. 

Most peptide-based models suffer from overfitting, unstable estimations of residual variances 
and a disproportionate impact of outlying peptide intensities. To address these issues, I 
developed the versatile R package MSqRob, which adds three modular improvements to 
existing peptide-based models: ridge regression stabilizes fold change estimates, empirical 
Bayes variance estimations stabilize the variances of the test statistics and M-estimation with 
Huber weights reduces the impact of outliers. MSqRob’s algorithm has been described in detail 
in section 9.1 and it not only improves the fold change estimates in terms of precision and 
accuracy, but also the protein ranking, leading to a better discrimination between true and false 
positives. MSqRob is freely available on GitHub (https://github.com/statOmics/MSqRob) and 
has a user-friendly graphical interface that is made in "Shiny", an R package developed by 
RStudio that allows smooth integration of the R programming language with an HTML 
interface. 

https://github.com/statOmics/MSqRob
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In section 9.2, I pinpoint important aspects of both experimental design and data analysis. 
Furthermore, I provide a step-by-step guide on how to use the MSqRob graphical user 
interface for both simple as well as more complex experimental designs. I also provide well-
documented scripts to run analyses in bash mode, enabling the integration of MSqRob in 
automated pipelines on cluster environments. 

In my latest, unpublished work (chapter 10), I focus on the missing value problem. Indeed, 
missingness in label-free proteomics is a mix of missingness completely at random and 
missingness not at random. However, the exact contributions of both mechanisms are 
unknown and dataset-specific, and imputing under the wrong assumptions is detrimental for 
the downstream protein quantifications. Therefore, I developed a hurdle model that combines 
the power of MSqRob with the complementary information that is available in peptide counts 
without having to rely on undeterminable assumptions. This enables MSqRob to quantify 
proteins that are completely missing in one condition in a statistically rigorous manner. 
Moreover, it opens new possibilities to detect the sudden appearance of post-translationally 
modified peptides in addition to traditional protein fold change estimation. 

With the development of MSqRob, I have made an important contribution to enabling 
experimenters to get the most out of their proteomics data. And, even though MSqRob is 
already one of the most versatile differential proteomics quantification tools, there are ample 
opportunities to broaden MSqRob’s scope, both towards new types of (prote)omics data and 
towards more complicated experimental designs. 
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ABBREVIATIONS 

AUC   area under the curve 

CID   collision-induced dissociation 

CPTAC  Clinical Proteomic Technology Assessment for Cancer Network 

DA   differential abundance 
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FC   fold change 
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HCD   higher-energy collisional dissociation 

HILIC   hydrophilic interaction liquid chromatography 

HPLC   high-performance liquid chromatography 
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MALDI   matrix-assisted laser desorption 

MCAR   missingness completely at random 

MCMC   Markov Chain Monte Carlo 

MDS   multidimensional scaling 
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UPS   Universal Proteomics Standard  
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During the five years of my PhD, I thoroughly investigated different statistical approaches to 
quantify proteins in label-free mass spectrometry (MS)-based shotgun proteomics. 
Furthermore, I developed MSqRob, an R package with graphical user interface for the 
statistically sound analysis of label-free proteomics data. Since I have worked on the interface 
of protein biology and statistics, it is important to understand both the biological and the 
statistical aspects of my work. 

Hence, in order to place my work in its proper context, this introduction is divided into four 
chapters. The first chapter aims to give an overview of the biology of proteins and the wide 
variety of applications of present-day mass spectrometry-based proteomics. In the second 
chapter, I will describe the technical context of bottom-up quantitative proteomics: the different 
quantification strategies and the specific peculiarities of the label-free proteomics workflow. In 
chapter three, I will explain how the spectra are processed into interpretable data. Finally, 
chapter four will give an overview of how this data can be used to quantify proteins. 
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1. BIOLOGICAL CONTEXT 

Chapter 1 mainly aims at introducing proteomics to data analysists who are new to the field. 
In this chapter, I will first cover the very basics of protein biology (section 1.1). Then, I will give 
an overview of a generalized mass spectrometry-based proteomics workflow and the 
relationship of proteomics to other omics (section 1.2), followed by a more profound review of 
the possibilities of mass spectrometry-based proteomics in present-day life sciences research 
(section 1.3). 

1.1. Proteins as the central effectors of life 
Before discussing the need for proteomics, I will first introduce the biology of proteins. Proteins 
are an extremely diverse class of biomolecules that are essential for nearly all functions of life. 
In this section, I will give an overview of the molecular structure of proteins and how their 
structures are linked to the essential roles proteins play in health and disease. 

1.1.1. The molecular structure and origin of proteins 

Proteins are composed of amino acids and the general chemical structure of an amino acid 
and a protein is given in Fig. 1.1. 

 

 
Figure 1.1. Chemical structures of a proteinogenic1 amino acid (A) and a protein (B). All amino acids 
share the same base structure. They all contain an α-amino group (-NH2) and an α-carboxyl group (-
COOH) along with a rest group/side-chain (R). The part of the protein ending with the amino group is 
called the amino- or N-terminus, while the side ending in the carboxyl group is called the carboxyl- or C-
terminus. Amino acids differ only in their rest group. In proteins, amino acids are joined together by 
peptide bonds (-CO-NH-, indicated in red). 

                                                
1 Proteinogenic amino acids are amino acids that are translationally incorporated into proteins. All proteinogenic 

amino acids, except glycine, have an L-stereoisomeric configuration. This means that, when the amino acid is 
oriented from its N-terminus to its C-terminus as in (A), the rest group (R) will be in front of the plane while the 
hydrogen atom (H) will be behind the plane. Glycine has no chiral center because its rest group is a hydrogen 
atom, so the central carbon (α-carbon) is only linked to three different atoms. 
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There are only 20 different standard amino acids2 that can be incorporated in proteins. The 
actual sequence by which amino acids are joined together is encoded by the corresponding 
gene found in the genomic DNA (deoxyribonucleic acid). Indeed, in all living organisms, genes 
are transcribed to RNA (ribonucleic acid) molecules. RNA molecules are composed of only 
four different nucleotide building blocks holding the nucleobases guanine (G), uracil (U), 
adenine (A) or cytosine (C). In eukaryotic3 cells, protein-coding RNA, or messenger RNA 
(mRNA), is then transported from the nucleus (where the grand majority of the DNA resides) 
to the cytoplasm, where it can be translated into proteins by ribosomes (Fig. 1.2). This 
unidirectional transfer of information takes place in every living organism: from DNA to mRNA 
to proteins and has come to be known as the central dogma of molecular biology. Even though 
some viruses violate this dogma by directly replicating RNA using an RNA template4, or even 
generate DNA based on an RNA template5, the translation of mRNA to proteins remains a 
one-way process. RNA is however not always translated into protein. Indeed, RNA itself can 
have regulatory functions (e.g. micro RNA (miRNA) and long non-coding lncNRA6 can induce 
gene silencing [7, 8]), structural functions (e.g. ribosomal rNA (rRNA) is an important 
component of the ribosome [9]) and even catalytic functions (e.g. peptidyl transfer by rRNA, 
mRNA splicing, self-splicing [10, 11]). 

 

Figure 1.2. The grand majority of transcription occurs in the nucleus of a eukaryotic cell by a protein (or 
rather, enzyme) called RNA polymerase. Translation occurs in the cytoplasm where ribosomes, 
specialized cellular structures that are composed of ribosomal RNA and proteins, translate the mRNA 
into proteins. Both transcription and translation occur from the 5’ to the 3’ end of the oligonucleotides. 5’ 

                                                
2 There are two additional very rare non-standard amino acids that are translationally incorporated into proteins. 

Selenocysteine (Sec, U) is present in all domains of life [1], while pyrrolysine (Pyl, O) is only present in 9 
methanogenic Archaea of the Methanosarcina family and 15 Bacteria [2]. Both amino acids are present in only a 
few dozens of proteins. 

3 Eukaryotes are cells that, unlike Bacteria and Archaea, have a nucleus. All multicellular organisms (e.g. humans) 
are eukaryotic, though some eukaryotes are also unicellular. 

4 RNA viruses such as rhinoviruses (the most common causes of the common cold) and hepatitis C virus use a 
protein called RNA-dependent RNA polymerase to make new copies of their RNA genomes. 

5 HIV uses the protein reverse transcriptase to convert its RNA genome into DNA and subsequently integrates this 
DNA into its host’s genome. 

6 Note that some short open reading frames in long “non-coding” RNA were shown to generate very small proteins 
[3-6]. 
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and 3’ refer to the conventional chemical names of the carbon atoms in the (deoxy)ribose rings. Proteins 
are always synthesized from their N- to their C-termini. 

Transcription and translation are also unidirectional in space: they always occur from the 5’ to 
the 3’ terminus of the DNA and mRNA molecules respectively. Each group of three consecutive 
nucleotides (triplet) in the mRNA represents a codon and each codon represents one unique 
amino acid or encodes a stop codon. A general overview of the codons that translate into each 
of the 20 amino acids or are used as stop codons is given in Fig. 1.3. This genetic code is 
near-universal across the whole tree of life. Some minor exceptions include: yeasts from the 
CTG clade encode CUG partially or completely as serine instead of leucine [12] and UGA is 
sometimes translated into tryptophan or arginine instead of being used as a stop codon for 
some transcripts and some species [13, 14]. Note that all codons, except those for methionine 
and tryptophan, are redundant: e.g. UUA, UUG, CUU, CUC, CUA and CUG all code for 
leucine. This property is also called the “degeneracy” of the genetic code. 

 

 
Figure 1.3. The genetic code. The four mRNA ribonucleosides are guanosine (G), uridine (U), 
adenosine (A), and cytidine (C). The 20 amino acids are phenylalanine (Phe, F), leucine (Leu, L), 
isoleucine (Ile, I), methionine (Met, M), valine (Val, V), serine (Ser, S), proline (Pro, P), threonine (Thr, 
T), alanine (Ala, A), tyrosine (Tyr, Y), histidine (His, H), glutamine (Gln, Q), asparagine (Asn, N), lysine 
(Lys, K), aspartic acid (Asp, D), glutamic acid (Glu, E), cysteine (Cys, C), tryptophan (Trp, W), arginine 
(Arg, R) and glycine (Gly, G). Note that each amino acid has both a three-letter abbreviation and a one-
letter abbreviation. The AUG codon is the most common start codon and also codes for methionine. 
Hence, all nascent eukaryotic proteins start with a methionine at their N-terminus when being 
synthesized7. The three different stop codons (UAA, UAG and UGA) signal translation termination. 

However, knowing the mRNA sequence sometimes does not suffice to predict the protein 
sequence. Indeed, in all domains of life, besides AUG, which is used in more than 80% of the 

                                                
7 In Bacteria, the start codon codes for N-formylmethionine, but this formyl group is cotranslationally removed [15]. 

In all domains of life, the N-terminal methionine is often cleaved off, causing more than 50% of the proteins not to 
have a methionine at the N-terminus [16-18]. 
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cases, other codons are also used as start codons [19]. Such so-called near-cognate start 
codons include CUG, GUG, UUG, ACG, AUC, AUU, AAG, AUA and AGG [20]. In the bacterium 
Escherichia coli for example, up to 40 out of the 64 codons can be used as start codons, albeit 
in less than 0.1% of the cases [21]. Such alternative start codons also encode for methionine 
or N-formylmethionine (in the case of bacteria). If translation is initiated from a downstream8 
(near-cognate or canonical) start codon, a shorter protein is produced from the same mRNA 
template. Similarly, when translation is initiated from an upstream start codon, a longer protein 
is produced. More rarely, a stop codon can be replaced with another amino acid in a process 
called translational read-through [22]. 

Further, in both prokaryotes and eukaryotes, certain “slippery” mRNA sequences, such as 
AAAAAA, might, under certain circumstances, cause a frameshift, which means that 
translation continues in another reading frame [23] (Fig. 1.4). 

 
Figure 1.4. Example of a translational frameshift in the dnaX gene of the bacterium Escherichia coli. 
The dnaX gene encodes both the τ and the γ subunit of the DNA polymerase III protein. dnaX contains 
a slippery AAAAAA sequence (blue, italics). When the ribosome passes normally over this sequence 
(top), translation remains in frame and the τ subunit is produced. However, when the ribosome “slips” 
(bottom), a -1 frameshift occurs. Hereby, a premature stop codon (red, bold) is introduced resulting in 
the production of the shorter γ subunit. In the dnaX example, ribosome slipping is stimulated by the 
presence of a downstream stem loop structure in the mRNA that stalls the ribosome. An upstream 
Shine-Dalgarno like sequence helps repositioning the ribosome in its new reading frame. Example 
adapted from Dinman (2006) [24]. 

This ribosomal frameshift is rather rare in most organisms, but very common amongst viruses 
as it allows them to translate many proteins from a small genome that is limited by the size of 
the viral particles [24]. Similarly, slippage can already occur at the level of transcription, when 
the RNA polymerase introduces a variable number of nucleotides in long homopolymeric 
stretches [25]. Further, it is now also known that amino acids in bacterial proteins can be 
converted into their D-stereoisomeric form and recent work demonstrates that even a protein’s 
backbone can be changed by introducing an α-keto-β-amino acid [26, 27]. 

Besides these rather infrequent phenomena discussed above, alternative RNA splicing is very 
common as more than 95% of all mammalian genes express alternatively spliced transcripts 
[28]. Splicing involves the removal of certain parts of an RNA molecule and, dependent on 
which parts are being spliced out from an mRNA molecule, different protein products can be 

                                                
8 Downstream means “in the 3’ direction”, upstream is “in the 5’ direction”. 
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generated. Similarly, certain protein sequences, called inteins, are able to post-translationally 
cut themselves out of a protein [29]. Moreover, proteins are known to carry, often transiently, 
a plethora of modifications (see also 1.1.3). 

Because of these phenomena, many chemically different protein molecules can result from a 
single gene hence, the term “proteoform” was coined. Proteoforms are defined as “Highly 
related protein molecules arising from all combinatorial sources of variation giving rise to 
products arising from a single gene. These include products differing due to genetic variations, 
alternatively spliced RNA transcripts, and post-translational modifications” [30].  

The side-chain of an amino acid determines its physicochemical properties. The nature of a 
protein will thus not only be determined by the amino acids it contains, but also by the sequence 
in which they are connected to each other. The specific chemical structures for selected amino 
acids are given in Fig. 1.5. 

 
Figure 1.5. Examples of the diversity in chemical structures of amino acids: the structures of 6 different 
amino acids are given. The side-chains of lysine and arginine are long aliphatic chains that are positively 
charged at physiological pH9. Aspartic acid has a net negative charge at this pH. Tyrosine is a very bulky 
amino acid that is rather hydrophobic due to the benzene ring in its structure. It is however rather polar 
due to its hydroxyl (-OH) group. Glycine is the smallest amino acid and the only one that lacks a chiral 
center as its side-chain itself is a hydrogen atom. 

1.1.2. Protein folding 

Proteins arrange themselves into three dimensional structures. They are rather flexible, and it 
is mainly their sequence of amino acids that determines their final 3D structure. The complex 
interplay of the different chemical properties of the different amino acids will determine a 
protein’s thermodynamically most favorable 3D conformation. Known physicochemical forces 
that play a role in protein folding include the hydrophobic effect10, H-bridges, n→π* 

                                                
9 The average pH inside a cell, which is approximately 7.4 and thus close to the neutral pH 7. 
10 Since water is a polar solvent, apolar molecules do not mix well with water. Hence, apolar amino acid residues 

will often be found on the inside of a folded protein chain, away from the water that surrounds it. This property is 
called hydrophobicity (“being afraid of water”). 
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interactions, van der Waals forces, formation of disulfide bridges, the gain of conformational 
entropy of water on protein folding and electrostatic interactions [31]. Hydrophilic, polar amino 
acids will mainly be found on the surface of a folded protein, while hydrophobic, apolar amino 
acids will typically be present on the inside. So-called chaperones are proteins that often aid 
nascent proteins during the folding process11 to avoid aberrant folding [33]. Sometimes, 
multiple proteins cluster together to form a functional protein complex (Fig. 1.6). 

 
Figure 1.6. Three-dimensional structure of the protein hemoglobin. Hemoglobin consists of four folded 
proteins (two α subunits, red, and two β subunits, blue) that are held together by hydrogen bonds. Each 
subunit is folded such that it creates a pocket that strongly binds an iron-containing heme group (green). 
Image by Richard Wheeler (Zephyris) at the English language Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=2300973. 

1.1.3. The JAK-STAT pathway as an example of a protein network 

Cells are highly dynamic and thousands of biochemical processes are continuously going on 
in each cell. Proteins play a crucial role in nearly every one of these processes. The enormous 
diversity in 3D structures that are adopted by different proteins allows them to bind to other 
biomolecules with very high specificity. This in turn leads to an immense variety in protein 
functions. Well-known functions of proteins include, but are definitely not limited to, enzymatic 
reactions (e.g. trypsin, which digests other proteins in the stomach; kinases, proteins which 
add a phosphate group to protein substrates), DNA synthesis (DNA polymerases), DNA 
transcription (RNA polymerases, aided by different sorts of transcription factors), cellular 
structure (e.g. microtubules), muscle contraction (e.g. actin, myosin) and oxygen transport 
(hemoglobin). 

Therefore, proteins interact both with each other and with other biomolecules. Indeed, most 
changes inside the cell are triggered by cascades of both stable and transient protein-protein 
interactions, termed signaling pathways. The JAK-STAT pathway is just one of many 
intracellular pathways and constitutes a classic example of how a cell responds to a stimulus 
coming from its environment (Fig. 1.7). JAK-STAT signaling actually is a simple signaling 

                                                
11 Note that some chaperones also work after translation. Some chaperones aid in stabilizing protein structures in 

response to a cellular stressor, others aid in protein unfolding or revert protein aggregation [32].  

https://commons.wikimedia.org/w/index.php?curid=2300973
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cascade and, in reality, such cascades are highly branched, as most proteins have multiple 
interaction partners. 

 
Figure 1.7. Simplified view of the JAK-STAT pathway. Certain events in the human body can trigger the 
release of small proteins, called cytokines, in the blood. Some cells are programmed to respond to these 
cytokines and are therefore equipped with specific cytokine receptors. After binding to an extracellular 
cytokine, the cytokine receptors dimerize, bringing the JAK kinases in close proximity of each other. The 
JAKs will subsequently phosphorylate each other on a Tyr residue. The phosphorylated JAKs will then 
phosphorylate a Tyr residue on the cytoplasmic side of the cytokine receptors. This allows docking of 
STAT proteins. These STAT proteins will also be phosphorylated by the JAKs. Phosphorylated STATs 
will dimerize and translocate to the nucleus, where they allow transcription of mRNA molecules encoding 
for proteins that are needed for the response to the stimulus. Modified after Peter Znamenkiy [Public 
domain], from Wikimedia Commons. 

The JAK-STAT example involves phosphorylation as an illustration of a chemical group that is 
transferred by a protein (a kinase such as JAK) to another protein (a substrate, here the 
cytokine receptor, STAT, or JAK itself). In this example, phosphorylation on tyrosines occurs, 
though it can also occur on serine and threonine residues (as both contain a free hydroxyl (-
OH) group) and on the nitrogen atoms of the imidazole ring in histidine residues [34, 35]. 
Phosphorylation on arginine, lysine, aspartate and glutamate are also known to occur, but are 
very labile in an acid environment and were therefore proven difficult to study by means of 
mass spectrometry [36, 37]. Recent work published on BioRxiv proposes a workflow at near-
physiological pH that allows the identification of thousands of such non-canonical 
phosphorylation sites [38]. Moreover, next to phosphorylation, many more co- and post-
translational modifications exist, and it is not uncommon for proteins to carry modifications 
across different residues. These modifications are not only important in signaling cascades, 
but can also affect protein stability and degradation, alter enzymatic activity and target proteins 
to membranes [39]. Many diseases (e.g. infectious diseases, auto-immune diseases, 
neurodegenerative diseases, …) have been linked to aberrant protein modification states [40-
43]. A comprehensive overview of all possible protein modifications can be found in the UniMod 
database at: http://www.unimod.org/modifications_list.php [44]. 

1.1.4. Proteins in diseases 

The extremely complex web of interactions of proteins with each other and with other 
biomolecules makes that disruption of a single protein’s function often has severe outcomes 
[45]. Genetic diseases are often the result of a loss-of-function caused by the production of 
truncated or abnormally folded proteins. For instance, thalassemias are a family of genetic 
diseases in which an abnormal form of hemoglobin is produced that is less efficient in taking 

http://www.unimod.org/modifications_list.php
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up oxygen [46]. These diseases are caused by one or more mutations in the coding genes that 
lead to changes in hemoglobin’s amino acid sequence. Such changes can cause substitutions 
of one amino acid by another but can also result in shorter or longer proteins when stop codons 
are respectively introduced or erased. They might also impact on mRNA splicing. Large gene 
deletions or insertions and even fusions with other genes have been reported to cause 
thalassemia [47]. Such mutations inhibit the production of one or more hemoglobin chains or 
result in the production of abnormally folded hemoglobin. Mutations can also cause diseases 
by interfering with the normal modification status of a protein. For example, the severe but rare 
disease mandibuloacral dysplasia is caused by a single mutation in the gene encoding for the 
protease ZMPSTE24, which results in the accumulation of toxic farnesylated prelamin A (Fig. 
1.8). 

 
Figure 1.8. Left: overview of the maturation of the protein lamin A in healthy individuals. Normally, a 
hydrophobic farnesyl group is added to lamin A during its preprocessing. Lamin A’s C-terminal end 
containing the modification is then cleaved off by the ZMPSTE24 protease (here shown as a pair of 
scissors). Right: in mandibuloacral dysplasia a homozygous mutation12 in the ZMPSTE24 gene causes 
loss-of-function, which results in the accumulation of toxic farnesylated prelamin A. 

Conversely, for many diseases, genetics alone cannot fully explain disease onset. Late-onset 
Alzheimer’s disease, for instance, has no single genetic cause13. At the protein level, it is 
characterized by the aggregation of the amyloid-β protein in the brain. Other incurable brain 
diseases, like Creutzfeldt-Jakob, are caused by a prion, an incorrectly folded protein that 
causes other proteins of the same kind to take over its aberrant shape, leading to some sort 
of a chain reaction and massive accumulation of misfolded proteins [50]. 

                                                
12 Humans, like all mammals, have two copies of most genes [48]. ZMPSTE24 loss-of-function only occurs when 

both copies are affected. 
13 Many different genes influence susceptibility, and the overall genetic heritability is estimated between 60 and 

80% [49]. 
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1.1.5. Applications of protein research 

Proteins are so abundantly being applied throughout our daily lives, that it is nearly impossible 
to give a complete overview of all their applications. Moreover, researchers continuously strive 
to improve and broaden protein applications. 

In the medical field, proteins are used for diagnosis and disease monitoring. Examples of such 
biomarkers in blood and plasma approved by the US Federal Drug Administration (FDA) 
include HE4 for ovarian cancer, CA19-9 for pancreatic cancer and thyroglobulin for thyroid 
cancer, amongst many others [51], and researchers keep on developing novel biomarker 
assays. 

Determining the 3D structure of proteins is pivotal to their characterization. Indeed, not only do 
these models allow the prediction of a protein’s interactions with other proteins [52], they also 
aid in drug development. Nowadays, companies rationally design potential drug candidates by 
fitting them e.g. onto a protein’s docking site [53, 54]. However, determining a protein’s 
structure is a non-trivial task. Indeed, although the sequence of a protein will in the end 
determine its 3D structure, no algorithm exists that can accurately predict 3D structures solely 
based on amino acid sequences. X-ray crystallography and nuclear-magnetic resonance 
(NMR) are the most commonly used techniques to determine protein structures, although cryo-
electron microscopy is also becoming a viable option [55]. Alternatively, proteins with more 
than 30% sequence homology are often assumed to have a similar structure [56]. Indeed, such 
proteins often show an evolutionary relationship and therefore hold a similar structure and 
function. 

Proteins can also be used as therapeutics, with monoclonal antibodies forming the largest 
class of therapeutic proteins (48% of all FDA approvals in 2011 – 2016) [57]. Examples include 
antibodies against IL-5 for the treatment of asthma [58], anti-CD319 against relapsed multiple 
myeloma [59] and anti-VEGFR2 against gastric cancer [60]. New artificial (“recombinant”) 
proteins can also be produced by modifying the DNA sequence of existing proteins. Examples 
include ocriplasmin against vitreomacular adhesion [61], glucarpidase against kidney failure 
[62] and recombinant von Willebrand factor against von Willebrand disease [63]. Proteins are 
also extensively used in basic biomedical research. Examples include green fluorescent 
protein (GFP) and its derivatives to visualize proteins inside a cell [64] and the use of Crispr-
Cas9 to examine the function of genes by knocking them out or inducing targeted mutations 
[65]. 

However, the study of proteins is not only relevant for human diseases. Enzymes, proteins that 
catalyze biochemical reactions14, are used in sectors as diverse as the pharmaceutical sector, 
the food industry, paper production, detergent manufacturing and biofuel production [67]. For 
the production of pharmaceuticals, enzymes aid in the production of precursors or in chemically 
modifying the final compounds to increase their stability and/or bioavailability [68]. In the food 
industry, α-amylase is used to convert starch into sugars [69], pectinase to clarify fruit juices 
[70] and lactase to produce lactose-free milk [71], amongst many others. In the paper industry, 
xylanase is used to loosen the structure of cellulose fibers, which improves paper quality [72]. 
Proteases, amylases and lipases are used in laundry detergents to help break down stains of 
biological origin [73]. Lipases are used in biofuel production to convert free fatty acids to 
methyl/ethyl esters [74]. 

                                                
14 This acceleration often goes up to several trillions of orders of magnitude [66], allowing reactions that would 

naturally take millions of years to occur almost instantly. Previously mentioned proteins such as JAK and 
ZMPSTE24 are also enzymes: JAK catalyzes a phosphorylation reaction, ZMPSTE24 cleaves a peptide bond. 
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Finally, proteins are also extensively investigated in food crop research. The most well-known 
example is research on transgenic plants. Here, a DNA sequence coding for a protein with 
favorable properties is introduced into a commercial crop. This protein can for example 
promote crop yield or convey resistance against insects, pathogens or herbicides. A notorious 
example is the development of “golden rice”, a genetically engineered rice variant developed 
to combat vitamin A deficiency [75]. Indeed, per gram dry weight, the seeds of golden rice 
contain up to 37 μg β-carotene, a compound that is converted into vitamin A by the human 
body [76]. Although the rice genome can produce all enzymes needed for β-carotene 
production, four of these enzymes are not expressed in rice seeds. In golden rice, only two 
genes are introduced: the psy gene from maize, to produce the enzyme phytoene synthase 
and the crtI gene from the bacterium Erwinia uredovora to produce the enzyme carotene 
desaturase. Together, these enzymes restore the β-carotene pathway in the seeds, which 
results in a rice plant with the typical yellow seeds. Thanks to this simple genetic modification, 
golden rice holds the promise to save a substantial fraction of the 250,000 to 500,000 children 
that become blind every year due to vitamin A deficiency, half of which die within a year [77-
80]. This is especially the case in Asian countries, where rice is a dominant portion of the 
standard diet. 

Understanding how proteins interact with each other increases our understanding of a plant’s 
developmental pathways, which allows the breeding of high-yield variants as well as variants 
that produce stable yields under stress [81]. Indeed, various biotic and abiotic stresses can 
delay or even terminate plant growth, and even a relatively small, transient stress can markedly 
reduce crop yield [82]. Hence, researchers actively investigate protein networks involved in 
stress responses to explain why certain varieties are less stress-sensitive [83, 84]. This 
knowledge can then later be used for crop improvement through cross-breeding or genetic 
modification. The lab of my co-promoter is, amongst others, involved in research into protein 
signaling pathways during the germination of parasitic plants. This is expected to spur the 
development of germination inhibitors for these plagues [85]. 

1.2. The nature of mass spectrometry-based proteomics 
Researchers need to obtain information about the proteome to understand and act upon all 
these protein-related processes. Proteomics is the study of the proteome and today, MS-based 
proteomics is the most important proteomic technology. Here, I start by giving a very brief 
overview of the general principles of chromatography and MS, followed by a discussion of MS-
based proteomics workflows. Then, I will situate the proteomics field with respect to the other 
omics fields. 

1.2.1. General principles of liquid chromatography and mass spectrometry 

Like every other analytical technique, mass spectrometry has its limitations on the complexity 
it can efficiently cope with, both in terms of the number of distinct analytes and in terms of 
differences in the concentrations between these analytes. Separating analytes prior to further 
analysis is thus essential for reaching sufficient analytical depth. For MS-driven proteomics, 
the analytes – which are mainly peptides – are present in solution. Hence, liquid 
chromatography is the method-of-choice for separating peptides prior to analysis by means of 
mass spectrometry. In liquid chromatographic applications for proteomics, the peptides are 
first loaded onto a column (also called the stationary phase) in a buffered solution (also called 
the mobile phase). The composition of the column is such that most (if not all) of the peptides 
interact with and are thus withheld by this column. By now changing the composition of this 
mobile phase, the column-bound peptides will start to partition in the mobile phase and are 
thus eluted from the column at a given composition of this mobile phase. Liquid 
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chromatography can be used to separate peptides based on different physical characteristics 
such as size, charge and hydrophobicity. Separating peptides based on differences in 
hydrophobicity is the preferred chromatographic method that is linked to mass spectrometers. 
In the overall majority of applications, a hydrophobic stationary phase (e.g., chromatographic 
beads functionalized with C18-groups) is used to bind peptides via hydrophobic interactions. 
Here, the buffer used to load the peptides is an aqueous buffer. By now gradually increasing 
the concentration of a water-miscible organic solvent, peptides will start to favor being present 
in the increasingly organic mobile phase and elute from the stationary phase. 

To further analyze the eluted peptides, these peptides need first to be brought into the gas 
phase and need to get ionized. This process happens in the ionization part of a mass 
spectrometer. “Soft” ionization techniques, i.e. ionization techniques that transfer little residual 
energy onto the ions and therefore cause only minimal ion fragmentation have been extremely 
important for the measurement of intact ions. Indeed, John B. Fenn and Koichi Tanaka were 
awarded the 2002 Nobel Prize in Chemistry for the development of electrospray ionization 
(ESI) and soft laser desorption (SLD), respectively. Next to an ionization part, a mass 
spectrometer also consists of at least one analyzer and at least one detector. 

Different types of analyzers have been developed to separate and detect ions based on their 
mass-to-charge (m/z) ratio. In a time-of-flight (TOF) mass spectrometer, ions are accelerated 
by a fixed electric field into a vacuum tube. The time it takes for an ion to travel (or fly) through 
this tube and reach a detector depends on its mass and its charge. Indeed, given the formula 
of kinetic energy, the higher the mass of an ion, the lower its velocity and thus the later this ion 
will hit the detector. Conversely, the higher the charge of an ion, the higher its velocity and thus 
the faster it will hit the detector. The intensity of the signal recorded by this detector is used as 
a proxy for the initial abundance of the recorded peptide. These signals are recorded at 
discrete m/z-values at GHz resolution. 

A quadrupole mass analyzer is an example of a more complex analyzer that works as an m/z 
filter. Quadrupoles consist of four rods, which have an alternating radio frequency voltage with 
an offset direct current. The frequency voltage and the offset can be tuned in such a way that 
only ions with a specific m/z value follow a stable trajectory throughout the quadrupole, while 
all other ions are pushed out (Fig. 1.9). When the quadrupole is used to scan a beam of ions 
over a certain m/z range, a mass spectrum is recorded. 

 

Figure 1.9. Working principle of a quadrupole. The rods have an alternating radio frequency voltage 
with a direct current offset. Due to inertia, ions with very high m/z values will be relatively unaffected by 
the alternating current but will be pushed out of the quadrupole by the non-zero direct current offset. 
Contrary, ions with very low m/z values will be pushed out of the quadrupole as they are strongly affected 
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by the alternating current. By carefully tuning the alternating and direct currents, a quadrupole works as 
a very specific ion filter. Figure based on Vékey et al. (2008) [86]. 

1.2.2. The MS-based proteomics workflow 

Mass spectrometry-based proteomics is the method of choice for the high-throughput 
identification and quantification of peptides and proteins in a single analysis. Fig. 1.10 gives a 
general overview that encompasses the most frequently occurring steps in MS-based 
proteomics workflows. 

 

Figure 1.10. General overview of an MS-based proteomics workflow. The workflow starts with samples 
(a) from which proteins (b) are extracted. These proteins can e.g. be labeled and are, for most 
applications, digested into smaller fragments called peptides (c). The proteins/peptides are separated 
onto a high-performance liquid chromatography (HPLC) column and ionized (d). Then, an MS spectrum 
(e) is recorded. Some ions can be fragmented into smaller ions (f) after which the resulting spectrum is 
recorded (MS² spectrum, g). Some of these fragments can again be targeted for fragmentation (h), after 
which an MS³ spectrum can be recorded (i). Note that the presence or absence of some steps in this 
workflow depend on the type of analysis that is performed. 

Every MS-based proteomics workflow starts with one or more samples. The types of samples 
can vary widely, ranging from plant material over animal tissues, plasma samples, cell cultures 
or recombinantly produced proteins. If the sample is not a solution of (purified) proteins, the 
proteins will need to be extracted first. The techniques used for extraction and purification 
depend on the sample type. For mammalian cell cultures, for example, a rather simple lysis 
buffer will suffice [87]. For organisms with thick cell walls or for membrane proteins, (additional) 
mechanical disruption, e.g. sonication with glass or metal beads, might be necessary [88]. 
Techniques like ultracentrifugation or ammonium sulfate precipitation are then used to 
separate the proteome from other unwanted cellular components (e.g. DNA, RNA, lipids) and 
possible detergents that were used to disrupt cells. Solubilized intact proteins can be directly 
analyzed by MS (top-down proteomics) [89], but complex protein mixtures are generally 
enzymatically digested into smaller fragments, termed peptides, for so-called bottom-up 
proteomics or shotgun proteomics15. 

                                                
15 Note that the term “bottom-up proteomics” refers to any LC-MS proteomics technique that uses prior digestion of 

proteins to peptides, while the term “shotgun proteomics” specifically refers to LC-MS proteomics techniques 
whereby complex protein mixtures are digested into peptides. 
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Peptides have the advantage that they are more chemically tractable, more easily separated 
by liquid chromatography and more easily ionized and fragmented as compared to intact 
proteins [90-92]. To limit the number of possible peptides in bottom-up proteomics to a 
reasonable computational search space, the commonly-used protease is highly specific. 
Trypsin, for instance, is ideally suited, as it cleaves with high specificity after lysine and arginine 
residues. 

Alternative enzymes (e.g. pepsin, chymotrypsin, and the endoproteinases LysC, LysN, AspN, 
GluC and ArgC) have also been used, as they generate different sets of peptides and therefore 
reveal complementary parts of a proteome’s sequence space [93-99]. Parallel digestion of the 
same proteome with multiple proteases can also give a strong boost to the coverage of 
modification sites [100, 101]. Alternative proteases with more infrequent cleavage specificities 
will generate longer peptides that can be studied with middle-down proteomics [92, 102, 103]. 
Nonetheless, trypsin remains the dominant digestion enzyme in bottom-up proteomics. On 
November 2014, more than 96% of all raw files deposited in the PRIDE repository were using 
trypsin [102] and there is little reason to assume this percentage has drastically changed today. 

To facilitate proteolytic digestion, proteins are often first denatured with urea, which disrupts a 
protein’s hydrogen bonds causing the protein to denature and unfold. This results in a 
destruction of protein-protein interactions and a solubilization of hydrophobic lipid-bilayer 
bound proteins. Urea has the advantage that it can easily be removed by reverse-phase 
chromatography [104]. However, adding too much urea might also partially denature the 
protease and hence reduce the digestion efficiency. Further, at higher temperatures, urea 
partially decomposes into isocyanic acid which carbamylates primary amine groups and thus 
introduces artefactual amino acid modifications that also block enzymatic digestion [105, 106]. 
Note that detergents such as sodium dodecyl sulphate (SDS) that are commonly used to lyse 
cells or to denature proteins prior to polyacrylamide gel electrophoresis (SDS-PAGE), should 
generally be avoided as they are incompatible with liquid chromatography (LC)-MS [91]. 
Indeed, even though small amounts of SDS facilitate enzymatic digestion, this detergent 
suppresses ion signals even at very low concentrations (< 0.01%). SDS cannot be removed 
with a reverse-phase high-performance liquid chromatography (HPLC) separation step [106-
109], although the recently-introduced suspension trapping filter S-TrapTM includes a washing 
step that makes it compatible with SDS denaturation [110]. Nevertheless, most digestion 
protocols omit the use of denaturants [111]. Other contaminants may also adversely affect the 
analysis [112]. It is therefore strongly advised to discuss all preprocessing protocols with 
proteomics specialists prior to the experiment. 

If one is interested in only a subpart of the proteome, additional purification of certain proteins 
or peptides, e.g. by immunoprecipitation might be needed. Similarly, many protein 
modifications are transient, have low occupancies, are chemically unstable during standard 
sample preparation procedures and/or decrease a peptide’s ionization efficiency [113-116]. 
Therefore, detecting specific modifications requires optimized enrichment protocols [117]. 

Proteins or peptides are sometimes labeled to facilitate identification and quantification (see 
section 2.1). These labels can either be small chemical groups or heavy isotopes. They can 
either be incorporated during the growth of the organism (metabolic labeling, see 2.1.1) or after 
protein extraction (post-metabolic labeling, see 2.1.2). 

Sample pre-fractionation is an option when samples are very complicated and enough protein 
material is available [118]. Pre-fractionation can be done with a method that is orthogonal to 
the standard reverse-phase liquid chromatograph that is coupled to the mass spectrometer. 
Strong cation exchange (SCX) chromatography is a popular pre-fractionation strategy [119]. 
Although the complexity of each fraction will be reduced, separation is never perfect and many 
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proteins will be present in more than one fraction, which may complicate protein quantification 
[120]. Each of these samples (or fractions in the case of pre-fractionation) is subsequently 
analyzed by the mass spectrometer. If the samples are very simple (e.g. a single protein), the 
proteins/peptides can be directly analyzed by matrix-assisted laser desorption (MALDI) 
ionization coupled to a time-of-flight mass spectrometer, by which a mass spectrum for the 
entire sample is obtained [121]. If the samples are more complex, the proteins/peptides are 
first separated onto a reverse phase liquid chromatography column that is coupled to the mass 
spectrometer. Upon elution, the proteins/peptides are ionized, typically with electrospray 
ionization (ESI) [122]. Traditionally, positively charged ions are generated, while neutral 
molecules and negatively charged ions are filtered out [123]. At discrete time points, the mass 
spectrometer will measure the mass-to-charge ratios for all the ion species eluting from the 
column. In the commonly used Orbitrap analyzer, this is achieved by trapping the ions in an 
orbital motion around a spindle-like electrode, hence the name. The ions are moved back and 
forth and the fluctuations in charge caused by the movement of the ions are recorded by a 
detector. This wavelet signal is subsequently converted into a mass spectrum by Fourier 
transformation. The resulting spectrum is termed an MS or MS1 spectrum. It is important to 
note that due to the natural occurrence of heavy isotopes of all chemical elements in a fixed 
ratio, every ion species generates multiple isotopic peaks in the MS spectrum, resulting in a 
so-called isotopic envelope. Each ion’s charge state is then calculated from the m/z-distance 
between the peaks in such an isotopic envelope. The summed-up intensities of all ions in an 
MS spectrum is called the total ion current (TIC). The evolution of the TIC over time is used as 
a measure of quality control. 

In most workflows, an MS spectrum will be insufficient to identify the ion species. Therefore, a 
single peak in the isotopic envelope of the ions of interest will be selected by the mass 
spectrometer and targeted for fragmentation. Typically, high intensity peaks are targeted for 
fragmentation to avoid selecting noise, which would lead to significant losses in operating time. 
To avoid sequential fragmentations of the same ion during its elution, all previously targeted 
m/z values are often excluded from being targeted again for a certain amount of time (e.g. 20 
seconds). This setting is termed dynamic exclusion and substantially increases the coverage 
of the mass spectrometer by freeing MS time for the targeting and fragmentation of less intense 
MS peaks [124]. 

In shotgun proteomics, collision-induced dissociation (CID) [125] or higher-energy collisional 
dissociation (HCD) [126] are by far the most common fragmentation methods, while electron-
transfer dissociation (ETD) gains popularity for phosphoproteome studies (see 1.3.2) [127, 
128]. Negative electron-transfer dissociation (NETD) [123] and photo-dissociation [129-132] 
are examples of infrequently used fragmentation methods. With CID, ions are collided with 
noble gasses such as helium and argon that increase the ions’ internal vibrational energy and 
eventually lead to fragmentation [133]. With HCD fragmentation, the collision energies are 
higher than 1 keV [134]. Collision therefore occurs in a separate collision cell, typically with a 
heavier gas, such as dinitrogen [135]. If the peptide’s backbone is fragmented, six types of 
ions (a, b, c, x, y and z) can be formed, as shown in Fig. 1.11. The mass spectrum of the 
fragment ions is termed an MS/MS or MS² spectrum. 
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Figure 1.11. Left: overview of the different types of ions that can be formed after fragmentation of a 
peptide ion’s backbone. a-, b- and c-ions are formed if the charge is retained on the N-terminal peptide 
fragment. Conversely, x- y- and z- ions are formed if the charge is retained on the C-terminal fragment. 
Breaking the peptide bond (red) is by far the most energetically favorable fragmentation pattern. 
Therefore, b- and y-ions will be the most abundant ion species in every MS² spectrum generated by CID 
or HCD. n is the total number of amino acids in the protein. Modified after Steen and Mann (2004) [136]. 
Right: example fragmentation pattern for the peptide LDGER. b-ions are indicated in purple, y-ions are 
indicated in blue. Fragments LDG and ER have the same average mass and therefore form a single 
peak in the MS² spectrum. 

With CID and HCD, b- and y-ions will be far more intense than the other types of ions (a-, c-, 
x- and z-ions) [137]. For tryptic peptides, CID fragmentation generates both b- and y-ions, 
while y-ions are much more prominent with HCD fragmentation [137-139]. 

When the intensities of certain fragment ions are to be used for quantification, MS² fragment 
ions can optionally be isolated and subjected to mass spectrometry (MS³ spectrum) to prevent 
interference of other fragment ions with the intensity of the fragment ion of interest. Such MS³ 
workflows are mainly useful for isobaric labeling (see 2.1.2). Identification of an ion species is 
typically achieved by searching the fragment ion spectra against a database (see section 3.1). 

Note that MS instrumentation is evolving extremely rapidly. Only a few years ago, 20 MS² 
spectra per second was considered state-of-the-art [140], but the most recent machines now 
exceed a scanning speed of over 40 spectra per second [141]. This implies that if one MS 
spectrum is recorded per second, more than 40 peaks in this MS spectrum can be fragmented 
and thus potentially identified. 

1.2.3. Proteomics in relation to other omics 

Many omics techniques can provide some information about the state of the proteome, but 
proteomics is the most suited for this purpose. The fields of genomics, epigenomics, 
transcriptomics and ribosome profiling largely rely on the analysis of DNA and RNA molecules. 
RNA can easily be reverse transcribed to DNA and even a single molecule can be readily 
amplified to billions of copies with a routine polymerase chain reaction (PCR). Moreover, 
advanced techniques have been devised to sequence and characterize even single RNA and 
DNA molecules. These possibilities are currently lacking for other types of biomolecules, 
including proteins. Present-day proteomics relies heavily on mass spectrometry and with the 
ever-increasing resolutions and operating speeds of contemporary mass spectrometers, the 
proteomics field has evolved rapidly over the past few years [142, 143]. Other mass 
spectrometry-based omics fields, such as lipidomics and glycomics, are considered to be still 
in their infancies. 
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Since the completion of the Human Genome Project, we have an adequate view on most of 
the protein-coding genes16 and the genomes of more and more organisms are almost routinely 
being added to the ever expanding genome databases [145-149]. However, the genome only 
provides a view on which proteins can potentially be expressed. Indeed, a retina cell is very 
different from a muscle cell, despite sharing the same genomes. Similarly, a caterpillar is very 
different from a butterfly because they both activate different genetic programs. Thus, the 
genome alone provides little information about the current proteomic state of a cell. 

Epigenomics is the study of the modifications (e.g. methylation, acetylation) of the DNA and 
its associated proteins (histones amongst others) [150]. These chemical markers change the 
chromatin’s structure and dictate the accessibility of each gene for the transcription machinery. 
Within the same species, different cell types have different epigenetic patterns. However, 
epigenomics only provides an overview of how easily genes can be accessed, but it does not 
provide answers to how much of each proteoform is actually being produced.  

Transcriptomics is a routine technique to quantify the amounts of (m)RNA molecules derived 
from each gene [151]. It can therefore be used as a rough estimate for protein production. 
However, a substantial amount of mRNA is not translated and there is a variety of mechanisms 
that modulate protein synthesis at the translation step17. The ribosome profiling technique 
provides a quantitative snapshot of which mRNA is getting translated. Therefore, ribosome 
profiling provides a much better estimate of protein translation than mRNA sequencing [153]. 

Metabolomics and lipidomics, the large-scale analyses of metabolites and lipids respectively, 
can elucidate complex metabolic processes related to health and disease [154]. Metabolic 
conversions are not only catalyzed by enzymes, but also closely regulated by various protein 
signaling cascades. Therefore, metabolomics and lipidomics can provide additional indirect 
information on the state of the proteome [155]. 

However, none of these omics’ techniques are able to determine which proteoforms will be 
produced, nor can they provide any information about protein degradation, the other side of 
the balance that governs protein steady-state. They are also not well-suited to assess protein 
localization and are unable to provide information about a protein’s interaction partners. The 
only technique that is able to assess with high-throughput the properties of a protein within a 
proteome is MS-based proteomics. 

1.3. Applications of mass spectrometry-based proteomics 
MS-based proteomics is the preferred method for solving numerous biological questions from 
the “proteome angle”. Identifying and later also quantifying proteins were and are still the main 
initial applications of MS-based proteomics. Over the last decade, the application of proteomics 
for the identification and quantification of protein modifications has also gained significant 
attention. The proteomics field has also been expanded to study amongst others, protein-
protein interactions [156-159], protein-compound interactions [160-163], cellular protein 
localization [164-167] and protein structure determination [89, 160, 168-173]. However, the 
identification and quantification of proteins remains the most important application of MS-
based proteomics and many of these applications rely on the quantitative ability of the mass 
spectrometer. Since my thesis focuses on protein quantification, I will elaborate here on protein 
quantification and the quantification of protein modifications. 

                                                
16 Although the detection of many small “hidden” proteins remains challenging [144]. 
17 These include, amongst others, RNA splicing, reading frame shifts, translational read-through, sequestration of 

mRNA and mRNA degradation [152]. 
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1.3.1. The analysis of protein and peptide abundance 

After a peptide or protein is identified, quantification is the next logical step. Typically, peptides 
from different biological conditions are labeled either isotopically or chemically in order to 
induce a mass shift in the MS, MS² or MS³ spectrum. Alternatively, if labeling is omitted (label-
free proteomics), mass spectra from different runs should be compared. The peak intensities 
are a proxy for peptide (and hence a protein) abundance. The peak intensities registered 
during the elution of a peptide therefore allow for protein quantification in each biological 
condition. Alternatively, quantification can be done by the less accurate, but simpler spectral 
or peptide counting. Relating intensities to protein concentrations is challenging because 
peptides can have very different ionization efficiencies, which are difficult to predict. 
Nonetheless, there were some attempts at absolute protein quantification [174, 175]. Since the 
analysis of protein abundance is the focus of my work, I have kept this section intentionally 
brief since more details about quantitative proteomics are given in chapters 2-4.  

1.3.2. The analysis of protein modifications 

Both bottom-up and top-down proteomics can be employed to study protein modifications as 
these cause shifts in the masses of affected peptides that can readily be detected.  

As mentioned earlier under 1.1.3, proteins can carry a plethora of modifications. Most of these 
modifications occur too infrequently to be detected or prove to be very chemically labile. Other 
modifications, such as the frequently occurring, but often labile phosphorylation, are also 
difficult to detect because of the poor ionization of the phosphoryl group, which carries a 
negative charge. Therefore, when the main research goal is to study a certain protein 
modification, specific enrichment procedures are often required [117]. 

Phosphorylation is both the most common and the most intensively studied protein 
modification [176]. Indeed, phosphorylation is a key modification in many signaling cascades 
and phosphoproteomics has contributed enormously to our understanding of these pathways 
[177-179]. However, the negative charge of the phosphoryl group and the default usage of 
positive electrospray ionization makes it difficult to generate and therefore detect positively-
charged phosphorpeptides. Thus, phosphopeptides are enriched via pre-fractionation with 
hydrophilic interaction liquid chromatography (HILIC), Strong cation exchange (SCX) 
chromatography or strong anion exchange (SAX) chromatography, as well as 
immunoprecipitation, immobilized metal affinity chromatography (IMAC), metal-oxide affinity 
chromatography (MOAC), Phos-Tag chromatography, polymer-based metal ion affinity 
capture (PolyMAC), hydroxyapatite chromatography, enrichment by chemical modification, 
and/or phosphopeptide precipitation [180]. Negative electron-transfer dissociation (NETD) can 
also increase the MS intensities of phosphopeptides [123]. 

Acetylation and methylation are modifications that were first discovered on histones, proteins 
that are associated with the DNA and package it into structural units called nucleosomes [181, 
182]. Histone acetylation is generally associated with open chromatin [183], while histone 
methylation, dependent on the location of the methylation site, can both be associated with 
open and closed chromatin [184]. Acetylation can occur both on protein N-termini and on lysine 
residues [183], while methylation can also occur on arginine residues [184]. 

Acetylation is important for protein localization [185-188], protein folding [189], protein stability 
[190] and interactions with other proteins [191]. Methylation is a major factor in important cell 
signaling pathways such as JAK-STAT, MAPK, WNT, Hippo and BMP [192] and overall protein 
methylation seems to be strongly intertwined with the organism’s metabolic state [193]. 
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Again, enrichment procedures by e.g. (immuno)affinity purification or chromatography are 
preferable when assessing acetylation or methylation on a proteome-wide scale [194-196]. 

Glycosylation is another very important post-translational protein modification as over 50% of 
all mammalian proteins are glycosylated [197]18. Glycosylation plays an important role in 
protein structure and stability [199-201]. The presence of a glycan structure can block other 
modifications such as phosphorylation [202]. Glycan structures can be sensed by other 
proteins (leptins) and play an important role in e.g. cancer and immunity [203, 204]. They are 
also intensively studied in the context of therapeutic proteins, as many of these proteins carry 
glycan structures [200, 205]. The enormous complexity of many glycan structures has spurred 
the development of a new field called glyco(proteo)mics [206]. 

Ubiquitin is a small 8.6 kDa protein that can be covalently linked to lysine residues of other 
proteins. However, non-canonical ubiquitination can also occur at Ser, Thr and Cys residues 
and at a protein’s N-terminal amine group [207]. The earliest known function of K48-linked19 
polyubiquitination is the degradation of the modified proteins in the proteasome. This discovery 
resulted in the 2004 Nobel Prize in Chemistry for Avram Hershko, Aaron Ciechanover, and 
Irwin A. Rose [208]. Although K11-linked polyubiquitination can also result in proteasomal 
degradation [209], ubiquitin is also an important scaffold that allows recruitment of other 
proteins and plays an important role in cellular processes as diverse as e.g. protein trafficking, 
mitophagy and cell cycle control. Next to K48 and K11; K6, K27, K29, K33 and K63 linkages 
have also been described. Many proteins are mono-ubiquitinated, but ubiquitin chains can also 
be linear and branched and even combined with other small ubiquitin-like modifiers such as 
SUMO and NEDD-8 [210]. 

Detection of ubiquitination by MS is challenging because ubiquitin is often either quickly 
degraded by the proteasome or part of very dynamic signaling pathways [211]. Moreover, 
ubiquitin is much bigger than most other small modifications. Being a protein, ubiquitin is also 
degraded by trypsin, leaving only a small GG or LRGG tag behind [212, 213]. Finally, 
ubiquitination does not seem to occur on well-defined amino acid sequence motifs [214-216]. 
Nonetheless, protocols for proteome-wide detection of ubiquitination are now readily available 
thanks to innovative purification and chemical tagging strategies [211, 217]. Similarly, protocols 
have also been developed for the proteomic analysis of other less characterized small 
ubiquitin-like modifiers like SUMO [218, 219], NEDD-8 [220, 221] and ISG [222, 223]. 

  

                                                
18 Note that not only proteins, but also lipids can be glycosylated [198]. 
19 K48-linkage means that each ubiquitin in the chain is linked to the previous ubiquitin via the lysine (K) residue at 

position 48 (starting from the N-terminus). 
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2. TECHNICAL CONTEXT 

As amply demonstrated in the previous chapter, mass spectrometry-based proteomics has 
become an invaluable tool for protein researchers. In chapter 2, I will discuss the different 
flavors of mass spectrometry-based proteomics with a focus on their technicalities. I will 
specifically emphasize label-free shotgun proteomics, as all my PhD work revolves around this 
particular technique. This technical overview will provide a handle for chapter 3, where I will 
link the statistical challenges to the technology. 

2.1. Label-based mass spectrometry-based proteomics 
Traditionally, quantitative proteomics has made use of stable-isotope coded labels. This used 
to be a necessity, as the peptides that were identified often differed strongly between LC-
MS/MS runs. Indeed, even minor differences in electrospray voltages and/or chromatographic 
flow rates increase the run-to-run variability in signal intensities and hence reduce the precision 
of label-free quantification [224, 225]. By metabolically labeling proteins from different samples 
and subsequently pooling these together for a single analysis, it became possible to identify 
the peptides in each sample analyzed and remove the inter-sample variability. In fact, one 
distinguishes two categories of label-based proteomics: metabolic and post-metabolic labeling. 

In metabolic labeling, labels are incorporated during cell or organism expansion. By contrast, 
in post-metabolic labeling, a label is added after protein extraction or even after protein 
digestion, typically by means of a chemical reaction that targets specific reactive groups in 
proteins or peptides. The main advantage of metabolic labeling is that the labeled proteins can 
immediately be pooled together, thus any random or systematic experimental errors that occur 
after pooling will affect all samples equally [226]. Thereby, this unwanted variability can be 
factored out from the analysis, which increases the overall precision. Post-metabolic labeling, 
by contrast, does not affect the biology of the organism under study (see below), as labeling 
only occurs after protein extraction. And, although post-metabolic labeling requires more 
protein material, it is more broadly applicable [227]. Fig. 2.1 gives an overview of the 
experimental stages in which labels are introduced and samples are mixed for different labeling 
protocols. 
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Figure 2.1. Schematic overview of the labeling workflow for two experimental conditions (blue and 
yellow). Horizontal lines indicate when samples are combined, dashed lines indicate the protocol steps 
where experimental variation unequally affects both samples. Reprinted with permission from 
Bantscheff et al. (2012) [228], copyright © 2012, Springer-Verlag. 

2.1.1. Metabolic labeling 

In metabolic labeling, a cell culture or even an entire organism is expanded in a medium that 
contains nutrients composed of heavy isotopes. Metabolic incorporation of radioactive isotopes 
was first used to quantify proteins in gels [229], whereas 15N labeling was the first MS-based 
quantitative proteomics approach [230]. Here, cells were grown in a medium with nutrients 
containing the stable 15N isotope, which allows this isotope to be incorporated into the 
biomolecules of the cell. The heavy-labeled proteins have higher masses compared to proteins 
from cells expanded in a medium containing the natural 14N isotope. This results in a mass 
shift for each peptide that is detected in the mass spectra. 15N labeling is thus well-suited to 
compare the levels of all identified proteins between two conditions: one grown in normal 
(“light” or “unlabeled”) medium and the other in heavy medium. Indeed, peptides originating 
from digesting both proteomes are pooled and analyzed by mass spectrometry. The intensities 
of the 14N and 15N peptides are compared to infer differences in protein abundances. This 
approach assumes that cellular metabolism remains unaffected by the heavy isotopes. 
Nonetheless, several studies indicate that there might be biological effects of heavy isotopes 
given differential preferences of enzymes for certain isotopes [231-234]. To guard against 
statistical confounding due to these kinetic isotopic effects and unavoidable differences in 
quality20 between the light- and the heavy-labeled medium, the heavy and light conditions are 
routinely swapped in experimental repeats. 15N labeling was originally used to quantify baker’s 
yeast (Saccharomyces cerevisiae) proteins and was later also applied on bacterial and 
mammalian cell cultures [235], and even on whole organisms [236-238]. 

                                                
20 E.g. small deviations from the stated isotopic content might bias quantifications. Also, since the heavy and light 

media are stored in separate bottles, there might be small differences in biological effects since fetal bovine serum, 
an essential serum supplement for most cell cultures, is often added separately to each bottle. Moreover, the 
quality of both media might also diverge over time. 
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Incomplete labeling is a major disadvantage of all metabolic labeling strategies. Indeed, natural 
medium still contains a non-negligible albeit very low amount of heavy isotopes (e.g., 1% 13C 
and 0.4% 15N ) [239]. Similarly, medium highly enriched in heavy isotopes still contains a 
fraction of lighter isotopes. As peptides differ in their number of amino acids and different amino 
acids have different numbers of atoms, isotopic labeling will generate a plethora of different 
partially unlabeled variants for every peptide analyzed [240]. Therefore, the mass shift of a 
peptide after labeling depends on its composition, which complicates downstream peptide 
identification and quantification. 

Stable Isotope Labeling by Amino acids in Cell culture (SILAC) is a metabolic labeling 
approach where amino acids, typically essential amino acids, containing one or more stable 
heavy isotopes are used for differential protein quantification [241, 242]. The use of amino 
acids as opposed to isotopically labeled nutrients has greatly simplified data analysis for MS-
based protein quantification, and this because the labeled amino acids are incorporated into 
proteins, implying that a peptide’s mass shift can be directly derived from its amino acid 
composition. An important point is that the organism in the heavy condition needs to be 
exposed to the heavy-labeled amino acids for long enough to allow the complete replacement 
of the organism’s natural (unlabeled) amino acids by the supplied heavy amino acids. For cell 
cultures, seven doubling times seems to be sufficient to allow full incorporation, even for 
proteins with very slow turnover rates [240]. By contrasting light (e.g. 12C6

14N4-arginine), 
medium (e.g. 13C6

14N4-arginine) and heavy (e.g. 13C6
15N4-arginine) SILAC labeling, three 

different conditions can be directly compared [243]. In 2010, the introduction of 5-plex SILAC 
allowed the comparison of up to five different conditions in a single MS run [244]. When more 
than five conditions need to be compared with SILAC, a heavy-labeled standard proteome can 
be spiked into every condition and be used as a reference to allow calculation of the protein 
ratios for every comparison (super-SILAC) [245] [246]. SILAC-labeling was initially confined to 
cell cultures, but over time, it has been expanded to organisms such as the worm 
Caenorhabditis elegans [247], the fruit fly Drosophila melanogaster [248], mice [249] and 
plants [250]. Fig. 2.2 gives an overview of a typical SILAC workflow. 

 
Figure 2.2. Overview of a SILAC workflow where three experimental conditions need to be compared. 
The proteomes from the light, medium-labeled and heavy-labeled conditions can be pooled together 
and analyzed in a single MS run. The intensity ratios of the triplets for each peptide ion species can then 
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be directly calculated from its corresponding MS spectrum. Reprinted with permission from Geiger et al. 
(2011) [251], copyright © 2011, Springer-Verlag. 

Also, the isotopic purity of the SILAC medium is of utmost importance. When the fraction of 
“heavy” amino acids is insufficiently high, the hence-labeled proteome contains a substantial 
fraction of “light” amino acids, leading to quantification biases in the direction of the “light” 
condition [240]. Further, when using trypsin to digest an arginine-SILAC labeled proteome, a 
possible caveat is introduced by the metabolic conversion of arginine into proline and 
glutamate [252], which introduces extra stable isotopes in proline-containing peptides, thereby 
obstructing accurate quantification. This can be prevented by adding an excess of unlabeled 
proline [253, 254] and/or by reducing the arginine concentration [255]. 

SILAC requires dialyzed fetal bovine serum as no other variants of the selected essential 
amino acids other than the labeled variants must be present in the medium. Dialysis however 
results in the loss of growth factors, which will cause a cellular stress response that might bias 
the response to the treatment of interest or even completely prevent cell or organism growth 
altogether [227, 256]. 

Despite its main advantage of factoring out run-to-run variability from each comparison, SILAC 
seems to be slowly getting out of favor for high-throughput protein quantification. The main 
reason is that the quantification depth (i.e. the number of proteins identified) of SILAC is 
reported to be ~30 to 60% lower than the quantification depth of label-free quantification (see 
2.2.1) [257, 258], although this difference also depends on sample complexity and instrument 
resolution. Indeed, as multiple SILAC-labeled samples are jointly analyzed in a single MS run, 
the amount of protein analyzed per experimental condition is two to five (for 5-plex SILAC) 
times lower, while the number of peaks in each MS spectrum increases with the same factor 
[258, 259]21. In such complex spectra, the peptide ion signals will be lower and might even 
become indiscernible from the background noise. Also, the more peaks, the higher the chances 
of co-fragmentation: i.e. two (or more) peptide ions with overlapping isotopic envelopes are 
fragmented together, increasing the risk of unidentifiable spectra [260]. Moreover, as all 
isotopic variants of the same peptide can be targeted for identification, less MS peaks might 
be identified due to limitations on the MS² sampling rate [261]. Another disadvantage of 
metabolic labeling is that its dynamic range is generally smaller than those of label-free and 
isobaric quantification approaches (see 2.1.2 and 2.2.1) [262-265]. Also, isobaric labeling 
appears to have a higher precision [265].  

Recently, neutron-encoded (NeuCode) labeling has been proposed as a promising new 
metabolic labeling approach that relies on the ability of modern high-resolution MS to 
distinguish extremely small mass differences (in the orders of mDa) [261, 266]. However, 
NeuCode did not gain a lot of traction yet because of the extremely high cost of its reagents, 
which seriously limits its throughput. 

2.1.2. Post-metabolic labeling 

In post-metabolic labeling, a different chemical label is added to each sample after protein 
extraction or digestion. Post-metabolic labeling strategies are often used for large experiments 
in which many samples need to be compared because of their superior opportunities to 
simultaneously measure multiple experimental conditions in a single MS run (“multiplexing”). 
In the context of high-throughput protein quantification, labels are added after digestion 

                                                
21 The reason is that the total amount of peptides (in µg) that is spiked onto the mass spectrometer is a fixed 

constraint. Under-spiking will result in low signal intensities and hence low proteome coverage, while over-spiking 
will result in signal saturation. 
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because this allows labeling of peptides that are buried within a protein’s 3D structure, resulting 
in a higher peptide coverage. 

Dimethylation is one of the oldest post-metabolic labeling strategies, though still widely used 
as it is easy to multiplex and fairly cheap [267]. Indeed, dimethylation requires relatively cheap 
reagents such as isotopically labeled formaldehyde and cyanoborohydride [268]. Here, all 
lysine side chains and peptide N-termini are dimethylated, except if the N-terminus starts with 
proline, in which case it will be monomethylated [269]. Originally performed in duplex [270], 
dimethylation was expanded to 3- [271], 4- [272] and 5-plex labeling [273]. By combining 
dimethylation with SILAC, 6-plex labeling has been achieved [274].  Compared to SILAC, 
dimethylation has a similar dynamic range and accuracy [265, 275]. Thus, the additional 
experimental variability introduced by post-metabolic labeling as compared to metabolic 
labeling seems to be limited in practice. Deuterium was used in the dimethylation approaches 
described above. However, compared to hydrogen-1, deuterium binds less strongly to the 
hydrophobic stationary phase due to the lower amplitude of its vibrational frequencies [276]. 
This results in a chromatographic shift as deuterium-labeled peptides elute somewhat earlier 
than their hydrogenated counterparts, which increases the uncertainty on the ratios of their 
peak intensities [277, 278]. Therefore, most contemporary isotopic labeling strategies avoid 
deuterium and favor e.g. 13C, which does not induce a noticeable chromatographic shift [279]. 
18O labeling is an enzymatic post-metabolic labeling approach that was originally used to 
improve peptide identification [280-282]. Soon after, 18O labeling also became a tool for protein 
quantification [283-286]. Here, protein digestion is performed either in normal water or in 18O-
rich water. Two 18O-atoms are incorporated at the peptides’ C-termini, resulting in 4 Da mass 
shifts. Nowadays, 18O labeling is not very common anymore as 18O incorporation efficiency is 
variable and the technique cannot be multiplexed [287]. 

Isobaric labeling relies on mass differences in the fragment ions of isotopologic tags to quantify 
peptide ions via their MS² spectra. Indeed, the isobaric labels in each condition have the same 
total nominal mass, but a specific fragment ion, the reporter ion, has different masses for each 
label. Differentially labeled peptides thus coincide in the MS spectrum, but the reporter ions 
allow for quantification in the MS² spectrum. iTRAQ [288] and TMT [227] are the most well-
known and frequently used reagents for isobaric labeling (Fig. 2.3). 
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Figure 2.3. Left: chemical structures of 4-plex iTRAQ- (top) and 6-plex TMT- (bottom) labeled peptides. 
In isobaric labeling, peptide mixtures from different conditions are labeled with different isobaric labels 
that have the same total nominal masses but differ in the distributions of heavy isotopes within their 
structures (i.e. the isobaric labels are isotopologues of each other). Indeed, the reporter groups of the 
different isobaric labels all have different nominal masses (due to differential usage of heavy isotopes). 
This mass difference is balanced out by the balance group to ensure equal total nominal masses. The 
reporter group is constructed so that it detaches easily during fragmentation. It also has a strong 
preference to carry the positive charge after fragmentation so that it can be readily detected. Right: the 
monoisotopic22 forms of differentially labeled peptide ions with identical amino acid sequences and 
charges will generate a single peak in the MS spectrum (top, red). However, after fragmentation of the 
isobaric labels, the mass difference of the reporter fragment ions will allow differential quantification in 
the MS² spectrum (bottom, red). 

The main advantage of isobaric labeling is that it does not increase the complexity of the MS 
spectra and is therefore highly suitable for multiplexing [289]. Indeed, TMT readily allows 6-
plex quantification [290], while iTRAQ goes up to 8-plex [291]. By making use of isotopologues, 
TMT-labeling has now even reached 11-plex [292, 293]. However, despite the market 
dominance of iTRAQ and TMT, some recent isobaric labeling alternatives such as DiArt [294] 
and DiLeu [295] labeling are gaining attention due to their easy synthesis, low cost, labeling 
efficiency and improved fragmentation efficiency. With DiLeu, up to 12 samples [296] can be 
compared in a single run. Isobaric labeling has also been combined with SILAC which 
increases its multiplexing potential even further [297]. 

However, in isobaric labeling, distortion of the reporter ion intensities in the MS² spectra is a 
major issue. Furthermore, isotopic impurities in the isobaric labeling reagents lead to isotopic 

                                                
22 The monoisotopic form is the isotopic variant wherein all atoms of a molecule are in their most abundant isotopic 

form. 
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overlaps in neighboring reporter ion intensities. Prior to data analysis, each reporter ion peak 
should therefore be corrected for isotopic overlap using correction factors supplied by the 
reagent manufacturer [298]. Another issue is that co-eluting near-isobaric peptide ions are 
isolated and co-fragmented with the target peptide ion, skewing the ratios of the reporter ion 
intensities towards the median value over all proteins, which is usually very close to one23. For 
this reason, this phenomenon is also called ratio compression [298-300]. 

Several technical solutions have been developed to reduce ratio compression. Gas-phase 
purification [301] and ion mobility separation [302] remove interfering ion species prior to 
fragmentation. MS³ prevents co-fragmentation by isolating an MS² peptide fragment ion and 
fragmenting it again to produce an MS³ spectrum. This additional step massively reduces the 
chance that the selected fragment ion will again be co-isolated with a fragment ion from another 
peptide species. As this MS² fragment ion contains all the isobaric labels, the reporter ions in 
the MS³ spectrum enable more accurate and more reproducible protein quantification [303]. 

Even with these improvements, around 8% of the MS³ spectra remain affected by co-
fragmentation [265]. The introduction of synchronous precursor selection MS³ (SPS-MS³), in 
which multiple MS² fragment ions of a precursor peptide are co-isolated, strongly boosts MS³’s 
sensitivity [304]. However, despite clear progress, MS³ still requires complex instrumentation 
and has a slower duty cycle, resulting in a lower identification depth compared to MS² 
quantification [289]. TMTc and EASI tag are new strategies whereby the complement ions (i.e. 
peptide fragments that remain attached to the balance group) are quantified in the MS² 
spectrum [289, 305, 306]. These approaches avoid both the complexities of MS³ and the 
unwanted ratio compression because they examine the isotopic envelope of a particular 
labeled MS² peptide ion fragment. 

Disadvantages of isobaric labeling include the loss of quantification depth and the poor 
accuracy for quantifying low-intensity peaks due to the lower signal-to-noise ratio in MS² 
spectra compared to MS spectra [265, 307]. The former can be partially alleviated by pre-
fractionation. However, this results in longer run times and a more complicated data analysis 
[308, 309]. MS²-based quantification also implies that only those peptides that are selected for 
fragmentation can be used for quantification [266]. Hence, for the many proteins that are 
identified with few peptides, it is difficult to assess the precision on their differential abundance 
estimates. Finally, iTRAQ and TMT labeling are relatively costly [275]. 

2.2. Label-free mass spectrometry-based proteomics 
My PhD work is centered around the quantification of data-dependent label-free discovery-
based shotgun proteomics data. Therefore, I will here give an extensive overview of the label-
free shotgun proteomics workflow. 

2.2.1. The label-free proteomics workflow 

An overview of a generalized proteomics workflow has already been given in 1.2.2. In this 
section, I will focus on the aspects that are specific to label-free proteomics, and more 
specifically on those aspects that pose challenges to the ensuing data analysis. 

A label-free proteomic workflow consists of the following steps: (1) proteins are extracted from 
the sample, (2) these proteins are digested into peptides, (3) the peptides are separated by 
reverse phase HPLC (RP-HPLC), (4) eluting peptides are ionized, (5) an MS spectrum is taken, 
(6) a precursor ion is selected, (7) this precursor ion is fragmented and (8) an MS² spectrum 
                                                
23 The total amounts of peptides loaded and analyzed are usually equal for all samples. 
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of its fragments is taken. Steps 6-8 are typically repeated several times for different precursor 
ions before a new MS spectrum is recorded. The peak intensity in the MS spectrum is used as 
a proxy for a peptide ion’s abundance, while its corresponding MS² spectrum is used to identify 
the precursor. An overview of this procedure for a quadrupole Orbitrap instrument is given in 
Fig. 2.4. 

 
Figure 2.4. Overview of a typical label-free mass-spectrometry-based proteomics workflow on a 
quadrupole Orbitrap instrument. First, proteins are extracted from a sample. Then, the extracted proteins 
are digested into peptides, using a protease with a strong cleavage specificity (typically trypsin). This 
peptide mixture is loaded onto the instrument. A high-performance liquid chromatography column allows 
separation of the peptides by their hydrophobicity (RP-HPLC). The eluate from the column is ionized by 
electrospray ionization (ESI). The quadrupole ensures that only positively charged ions pass through. 
In the Orbitrap, an MS spectrum is taken. Each peak in the spectrum corresponds to a peptide ion. In a 
next step, the quadrupole will select a peptide ion with a sufficiently high peak in the MS spectrum. This 
peptide is fragmented and an MS² spectrum of its fragments is taken. This process is repeated for other 
peptides with high enough MS intensities. 

Several of these steps create particular issues that are important to consider when analyzing 
the data. Table 2.1 presents a non-exhaustive overview of common issues in label-free 
proteomics workflows that have an important impact on the ensuing data. In what follows, I will 
elaborate on the most important issues of each data analysis step. 
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Table 2.1. Non-exhaustive list of issues that arise during a label-free shotgun proteomics workflow and 
their impact on the data. 

Analysis step Issues Consequences 
Protein extraction Differences in extraction 

efficiencies 
Variable protein concentrations 
over different samples 

Protein digestion Unequal enzymatic cleavage 
efficiencies, non-canonical 
cleavage, peptide ragging  

Unequal concentrations of 
peptides originating from the 
same protein 

RP-HPLC separation Technical variability in elution 
times 

Difficulties in matching 
unidentified peptides to 
identified peptides across 
different runs 

 Peptide carry-over due to 
peptides from previous runs that 
did not elute from the column 

Detection of peptides that were 
not present (worst case), 
peptide intensities influenced 
(increased) by the order in 
which the samples were run 

ESI ionization Strong differences in peptide 
ionization efficiencies 

Strong differences in MS 
intensities for peptides 
originating from the same 
protein 

 ESI saturation: peptides 
compete for ionization 

Ionization suppression: a 
peptide’s MS intensity (partially) 
depends on the nature and 
amount of other co-eluting 
peptides 

  Suppression of high MS 
intensities resulting in an upper 
limit of quantification 

 Peptides ionize in different 
charge states 

Intensities for different charge 
states need to be taken into 
account when quantifying a 
peptide 

 Gas-phase peptide ions 
undergo chemical reactions 

Artificial peptide modifications, 
which are possibly not 
accounted for, resulting in 
unidentifiable spectra and 
missing values 

 Changes in electrospray 
voltage during and across 
different runs 

Increased variability in peptide 
ionization efficiencies 

MS recording Discrete MS spectrum 
recording 

MS intensity not recorded at the 
elution peak 

 MS detector saturation Suppression of high MS 
intensities resulting in an upper 
limit of quantification 

MS² recording Limited amount of MS peaks 
targeted for fragmentation 

Different peaks fragmented 
across different runs: missing 
values 

 Preferential targeting of high-
intensity MS peaks 

Intensity-dependent missing 
values 

 Loss of unexpected peptide 
fragments 

Difficulties in MS² spectrum 
identifications and thus missing 
values 

 Co-fragmentation of peptide 
ions with similar m/z values 

Unidentifiable chimeric MS² 
spectra and thus missing values 
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The first step in the protocol, protein extraction, was shown to be responsible for 72% of all 
technical variability [310]. However, small differences in protein extraction efficiencies 
generally should not pose too much problems as an equal amount of total peptides is loaded 
onto the instrument for every sample. As noted in 1.2.2, it is imperative that all sample 
preprocessing is compatible with RP-HPLC-MS. It is therefore important to limit or avoid the 
use of urea [105, 106] and to avoid the use of SDS [91, 106-109] as well as other contaminants 
[112]. 

The digestion step is also critical. If the digestion efficiencies differ between samples, certain 
peptides might be formed to different extents. Consider for example the proteolytic cleavage 
of the following protein: 

SESNAHFSFPKEEEKEFLESYPQNCPPDALPGTPGNLDSAQELEGFQIPTNLDWAGTSQAR 

The most commonly used protease, trypsin, cleaves at the C-terminus of lysine (K) and 
arginine (R) (indicated in red) [311]. Depending on the digestion efficiency, varying amounts 
of the peptides SESNAHFSFPK and SESNAHFSFPKEEEK can be identified. Both the very 
short EEEK peptide and the very long EFLESYPQN…R peptide are barely or not detected by 
the mass spectrometer. Peptide SESNAHFSFPKEEEK is said to have one missed cleavage 
site, but peptides can have multiple missed cleavages. The presence of missed cleavages not 
only depends on the duration of the digestion, but also on the quality of the enzyme [312]. 
However, peptides can also be formed at non-canonical cleavage sites (i.e. not at lysine’s or 
arginine’s C-terminus) and modifications (either of biological origin or artifacts formed during 
sample preprocessing) may affect enzymatic digestion efficiency [311]. Next to these 
elements, the amino acids adjacent to a possible cleavage site, the location of a peptide in a 
protein’s 3D structure and chemical degradation also play a role in the kinetics of the 
generation and degradation of different peptide species. Moreover, unwanted chemical 
reactions during sample preprocessing and/or the activities of exopeptidases that might be 
present in the sample or as contaminants in the commercial protease batch may cause N-
terminal or C-terminal peptide degradation (“peptide ragging”) [313]. For these reasons, the 
concentrations of most peptides are not equal to the initial protein concentration [314]. This 
stresses the importance of uniformity in the digestion conditions over the different samples. 

Since the RP-HPLC column is typically packaged with porous silica beads coated with apolar 
alkyl chains (e.g. C18), peptides will be separated by their differences in hydrophobicity [315]. 
Protein modifications can however influence the column retention of an affected peptide [316]. 
Further, there is inherent variability in the chromatographic retention of a given peptide over 
different MS runs. This is an important factor to bear in mind when matching an identified peak 
in one MS run to an unidentified peak in another run; so-called matching between runs [317]. 
Comparing retention times over different runs is routinely done by algorithms for retention time 
alignment [318]. Retention times are often monitored as a general quality control measure by 
spiking in a known peptide or peptide mix [319, 320] and several algorithms have been 
developed to predict the retention times of known peptides [315, 321-323]. In order to maximize 
the mass spectrometer’s operation time, HPLC columns are generally not replaced between 
analyses. Therefore, peptides from a previous injection might partially remain retained on the 
column and elute during a subsequent run, thus leading to the detection of peptides that were 
not present in that last sample and/or biased quantifications. Little has been published in the 
literature about sample carry-over, even though this is a non-negligible problem [324]. 

Peptide elution happens continuously, while the mass spectrometer only generates mass 
spectra at discrete time points. As peptide elution takes around 5 – 25 seconds [325, 326] and 
modern mass spectrometers typically tend to record an MS spectrum every second, the 
intensity peak for a single peptide ion will be recorded in sequential MS spectra. To allow for 
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an accurate quantification, it is important to record at least one MS peak at or near each 
peptide’s elution apex. High-resolution RP-HPLC separation concentrates peptides in 
narrower elution peaks and is highly beneficial for different reasons [141]. First, repeated 
fragmentations of the same peptide ion over its elution window are highly reduced, thus 
winning MS analysis time. Next, highly focused peptide elution increases ion intensities and 
the ability to target monoisotopic peaks, which facilitates identification. Finally, an improved 
separation reduces co-elution of peptides, preventing ion suppression and co-fragmentation 
(see below). 

The quality of ionization is of utmost importance as poor ionization leads to lower quality 
spectra (lower signal-to-noise ratio), making it more difficult to identify and quantify peptides. 
The electrospray voltage should also be kept as constant as possible over different runs as 
even small voltage deviations aggravate the variability in ionization efficiencies of peptides 
over different runs, which reduces the precision of label-free quantification [225]. 

During electrospray ionization (ESI), peptides are endowed with a positive charge (when 
working in positive ionization mode) [122]. However, the ionization efficiency of peptides 
differs. For example, highly acidic peptides and phosphopeptides ionize more poorly [123]. 
Such different ionization efficiencies leads to different MS intensities across different peptides, 
even if their concentrations are equal. In addition, the ionization efficiency of a peptide is also 
influenced by the nature and the amount of co-eluting peptides as these may suppress each 
other’s ionization, a phenomenon known as ionization competition or ionization suppression 
[122, 327]. For these reasons, peptide ionization efficiencies are still difficult to predict [328]. 
Finally, the total amount of peptides that can be ionized simultaneously is also limited due to 
saturation effects during ionization [329, 330], which results in a suppression of high MS 
intensities and therefore an upper limit on the amount of peptides that can be quantified.  

Ionization also generates different ion species from a single peptide, which differ in charge 
state. Indeed, ESI typically generates multiple ions with different charge states from the same 
peptide. For tryptic peptides, a double positive (+2) charge state is the by far most common 
after ESI ionization (around 75 - 90% of all ions), followed by triple positive (+3, around 10 - 
20% of all ions) and single positive (+1, around 5% of all ions) [331]. The ionization step might 
also affect the chemical composition, and hence the mass, of an ion. Examples include in-
source peptide oxidation and the loss of water or ammonia from N-terminal glutamate or 
glutamine residues, respectively, to form pyroglutamate [332, 333]. 

In the MS spectrum, the intensity of every ion that eluted from the HPLC column at that 
particular point in time is recorded in function of its mass-to-charge (m/z) ratio. Ion intensities 
can be seen as proxies for abundance, with the caveat that the ionization efficiencies differ 
strongly between different ion species. The detector of the mass spectrometer is also sensitive 
to saturation, which might also result in suppression of high MS intensities [329, 330]. 

After the generation of the MS spectrum24, a high-intensity ion species is isolated with the 
quadrupole and targeted for fragmentation, a process that is repeated several times before a 
new MS spectrum is recorded. High-intensity MS peaks are intentionally targeted for 
fragmentation to avoid the targeting of noise peaks and hence increase the depth of the 
analysis. However, the fact that not all peaks in an MS spectrum can be targeted for 
fragmentation and the fact that high-intensity peaks are preferentially selected, results in 
intensity-dependent missing values. Dynamic exclusion, whereby previously-targeted m/z 

                                                
24 Or sometimes during the generation of the MS spectrum, if the machine has two mass analyzers. 
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values are temporarily excluded from fragmentation increases the quantification depth but 
does not alleviate the issue of intensity-dependent missingness.  

Fragmentation also commonly results in neutral losses of water and ammonia, or even partial 
or complete amino acid side chains [137]. Such losses need to be taken into account when 
identifying a peptide ion based on its MS² spectrum. To facilitate identification, it is also 
preferable that the monoisotopic peak is correctly determined. For short peptides, the 
monoisotopic peak is often the highest one, but for longer peptides, this peak might be 
considerably smaller. This sometimes leads to determination of the wrong peak in the isotopic 
envelope and hence a wrong selection of candidate peptides during database filtering. Finally, 
when one or more peptides of about the same m/z elute together with a target peptide ion, 
such neighboring ions can be isolated as well, resulting in a mixed MS² spectrum [334]. Such 
a mixed fragmentation spectrum will also cause problems regarding identification and 
quantification. 

2.2.2. Advantages and disadvantages of label-free MS-based proteomics 

An obvious advantage of label-free MS-based proteomics is that the laborious and often costly 
labeling is omitted altogether [226]. Moreover, label-free analyses have a deeper coverage 
compared to label-based strategies. Indeed, compared to label-based quantification at the MS 
level, a significantly deeper coverage in label-free proteomics is caused by the decrease in 
spectral complexity [257, 258]. Compared to isobaric labeling strategies, the increase in 
coverage mainly results from the higher signal-to-noise ratios in MS spectra compared to MS² 
spectra [265, 307]. As noted before, label-free approaches also have a higher coverage and a 
higher dynamic range than label-based approaches [263, 308]. Another major advantage of 
label-free quantification is that there are no restrictions on the sample type. Indeed, metabolic 
labeling cannot be applied to every type of sample (e.g. patient blood samples), and, although 
the use of a labeled reference standard (e.g. super-SILAC) might be an option in certain cases, 
this application is destined to fail when the samples in an experiment are too different from 
each other. Isobaric labeling can be applied on any sample type and has reached multiplexing 
capacities up to 12 [296]. However, when more samples need to be compared, between-run 
comparisons will need to be made [335]. Moreover, for any label-based strategy, all samples 
should be generated prior to the MS analysis of the first sample. Label-free quantification 
allows for the analysis of an unlimited number of samples, even retroactively, as long as the 
machine’s working conditions have not been changed dramatically [317, 336]. 

Since labeling is omitted, each sample is analyzed separately. This results in longer overall 
run times and thus a lower throughput [306, 336]. Inevitably, precision will also be lower 
compared to label-based approaches because random run-to-run variability cannot be factored 
out. Thus, robustness of the instrumentation and the analytical conditions is imperative for 
successful label-free analyses [336]. However, after balancing the pros and the cons, most 
research publications that compared label-based quantification to label-free quantification 
seem to express a general preference for the latter [257, 258, 308, 309], although the 
preference of individual researchers is often driven by their own experience, i.e. the 
instrumentation and quantitation technology they are most comfortable with. 

2.2.3. Other label-free approaches 

Next to label-free discovery-based data-dependent shotgun proteomics, there are two other 
major label-free proteomic techniques: targeted proteomics and data-independent proteomics. 
For the sake of completeness, and because I briefly refer to them in my future perspectives, I 
will here outline their major points. 
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All techniques outlined so far in this chapter aim to identify and quantify as many proteins as 
possible. However, none of these techniques guarantees that a particular protein of interest 
will be identified, especially if this protein is very low abundant (e.g. many transcription factors) 
[337] or is difficult to solubilize (e.g. membrane-inserted proteins) [338]. In fact, some proteins 
or protein regions have never even been identified by mass spectrometry, the so-called 
“hidden” or “dark” proteome [337, 339, 340]. Moreover, even if a protein of interest is identified 
in a certain run, it is not guaranteed to be identified in another run due to inherent run-to-run 
variability. 

Targeted proteomics aims to reproducibly monitor and precisely quantify one or more selected 
proteins [341]. Indeed, if the retention times and m/z values from peptide ions of interest are 
known, a mass spectrometer can be programmed to detect, fragment and record MS² spectra 
only for those peptide ions. This technique is called selected reaction monitoring (SRM) and is 
typically performed on a triple quadrupole instrument (QQQ) instrument. In this instrument, the 
first quadrupole is used to isolate the peptide ion, the second quadrupole serves as a collision 
cell to fragment this ion and the third quadrupole is used to isolate selected fragment ions. 
Since the QQQ only isolates selected fragment ions, SRM on a QQQ instrument has a high 
dynamic range and is very selective and sensitive [342]. Note that it is also possible to operate 
other machines in SRM mode [343]. In parallel reaction monitoring (PRM), the third quadrupole 
is substituted with a highly accurate mass analyzer to record all fragment ions [344]. PRM 
recently gained a lot of traction as PRM assays have a similar performance compared to SRM 
assays, but are easier to develop and possibly even more specific [345]. 

In data-independent acquisition (DIA), the intensity of the MS peak does not determine which 
ions are being fragmented. Shotgun CID, MSE and All-ion Fragmentation are DIA methods in 
which the complete m/z range of the MS spectrum is targeted for fragmentation [135, 346, 
347]. Other approaches divide the m/z range of the MS spectrum into predetermined m/z 
isolation windows and sequentially co-fragment all ions within such windows before going on 
to record the next MS spectrum [120, 348, 349]. DIA methods are immensely promising 
because they record all fragment ion spectra. Theoretically, it is thus possible to record every 
possible peptide in a sample as long as its fragment ions can be identified. Moreover, DIA data 
can be retroactively queried for new peptides of interest (e.g. modified forms of peptides). DDA 
search engines have been modified to unravel the very complicated MS² spectra that result 
from DIA [346, 348]. However, deconvoluting such multiplexed spectra remains challenging 
[350]. 

Out of all DIA methods, Sequential Windowed Acquisition of all Theoretical fragment ion mass 
spectra (SWATH-MS) is the most popular [351-353]. In SWATH-MS, specific MS² fragment 
ion peaks are tracked over time without deconvoluting the spectra [351]. On the new Q 
Exactive HF-X, a single SWATH-MS run identifies on average more than twice the number of 
peptides of a DDA run [354]. Moreover, in a benchmark experiment where 12 human proteins 
were spiked in a HEK-293 background, SWATH-MS analysis had only 1.6% missing values 
compared to 51% missing values in the DDA analysis of the same sample [355]. SWATH-MS 
is also highly reproducible across different labs [356]. Compared to targeted proteomics, it has 
a much higher coverage, but remains slightly less sensitive [351, 357-359]. 

The major disadvantage of DIA is that knowledge on the chromatographic and mass 
spectrometric behavior of peptides of interest is required to build a spectral library needed to 
identify the peptides [359]. This often implies that a DDA analysis is performed prior to the DIA 
analysis to obtain the necessary information on the peptides expected in the sample. 
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3. FROM SPECTRA TO DATA 

In the previous chapter, I described the bottom-up shotgun proteomics workflow up to the 
generation of MS and MS² spectra. Given the continuous elution of peptides from the HPLC 
column, most peptide ions will be recorded in multiple, consecutive MS spectra. The peaks in 
these spectra must be converted into meaningful qualitative and quantitative information about 
the peptides in the samples. In this chapter, I will describe how MS and MS² spectra are used 
to identify peptides in label-free DDA MS-based proteomics. Then, I will show how peptides 
are assigned to proteins and I will describe how a single intensity value is assigned to each 
peptide followed by a description of the nature of the MS data. I will conclude this chapter with 
an explanation for the need for benchmarking and the description of the CPTAC Study 6 
benchmark dataset. 

3.1. Peptide ion identification 
In MS-based proteomics, peptide ions (also called “features”) are identified based on 
information present in both the MS and the MS² spectrum and only features that are deemed 
to be reliably identified are typically passed on to the quantification stage. Do note that a 
feature’s identification is actually not required for its quantification. Indeed, some workflows, 
such as those proposed by Sieve (Thermo Fisher Scientific) and Progenesis (Nonlinear 
Dynamics) adopt a feature-based quantification whereby identification efforts are primarily 
focused on features that are flagged as differentially abundant after the quantification stage. 
However, my thesis primarily focuses on the protein quantification, for which prior identification 
of features is required. Therefore, the remainder of this thesis describes the identification-
based workflow. 

The charge state and the mass of a feature can be readily determined from its MS spectrum. 
Indeed, charge state variants elute simultaneously and are thus present in the same MS 
spectra. As mass-to-charge ratios (m/z values) are recorded in MS spectra, an ion with, say, 
charge state +3 will have a peak at an m/z value exactly equal to 2/3 times the m/z value of 
the same ion with charge state +2. As mentioned in 1.2.2, the natural occurrence of stable 
heavier isotopes generates an isotopic envelope for each charge state of an ion. Since 
isotopes differ in mass by a natural number of neutrons, the minimal difference in mass 
between two isotopic variants is approximately 1 Dalton. This knowledge is used to infer the 
charge state of an ion: a difference of m/z = 1/2 Th between the peaks of an isotopic envelope 
denotes a +2 charge state, whereas a difference of m/z = 1/3 Th points to a triply positively 
charged ion. From this charge state, the monoisotopic mass of a peptide ion can be readily 
calculated by multiplying its corresponding monoisotopic m/z value by its charge state. 
However, knowing the mass of a peptide is not enough to identify it. Indeed, not only do all 
permutations of a particular amino acid sequence have exactly the same masses25, some 
entirely different combinations of amino acids also have the same nominal masses26. Also note 
that modifications change a peptide’s mass and that modified peptides often do not co-elute 
with their unmodified counterparts [333]. For these reasons, an MS² spectrum of a peptide is 
required to identify the amino acid sequence corresponding to a peptide’s MS peak. 

An MS² spectrum contains the m/z values for all the fragment ions obtained by fragmenting a 
single peptide ion. To enable identification, the selected peptide ion should by preference be 
the monoisotopic peptide ion. Indeed, any other peak in the isotopic envelope is in fact a 
                                                
25 E.g. the amino acid sequences LDGER, DGERL, GERLD, etc. all have a 588 Da mass. 
26 E.g. the amino acid sequences LGD and ER both have a nominal mass of 303 Da. 
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mixture of numerous isotopic variants. For example, the m+1 peak represents a mixture of ions 
that consist of a single heavy isotope together with only light isotopes. However, this heavy 
isotope can be for example a heavy carbon in the first amino acid, or a heavy carbon in the 
second amino acid, or a heavy nitrogen in the third amino acid, and so on. 

As described in 1.2.2, the type of fragmentation determines the main type of fragment ions that 
will be found in the MS² spectrum (both y- and b-ions for CID, mainly y-ions for HCD [137-
139]). In the early days, when mass spectrometers only generated a few 100 MS² spectra, 
peptide identification was often done manually by printing out the MS² spectra and measuring 
the distances between the fragment ion peaks. The sequence could then be inferred through 
some sort of “ladder sequencing” as demonstrated in Fig. 3.1. 

 
Figure 3.1. Theoretical demonstration on the inference of a peptide sequence based on some sort of 
ladder sequencing if all b- and y-ions are present (shown in purple and blue, respectively). The mass 
differences between the peaks give information about the amino acid sequence of the peptide. Since 
leucine (L) and isoleucine (I) have the same empirical chemical formula and thus the same masses, no 
direct distinction can be made between both. y-ions are often somewhat more abundant than b-ions, 
especially in HCD fragment spectra. Therefore, peptide sequencing based on y-ions is shown. The 
presence of the b-ions complicates the analysis somewhat but can also provide supporting evidence. 
Note that this representation is somewhat simplistic. In reality, a-, c-, x- and z-ions might also be present 
in the fragmentation spectrum. Moreover, some b- and y-ions might not exceed noise levels, while noise 
peaks (either true noise or fragments from co-isolated peptides) might obfuscate the analysis. 
Modifications will also influence the masses of those fragments that carry the modified amino acid. 

Nowadays, manual inspection of the sheer number of MS² spectra is impossible as high-quality 
experiments typically generate well over 5,000 MS spectra and over 50,000 MS² spectra in a 
single run. 

Because of the sheer amount of data, bioinformatics software is now indispensable for feature 
identification. One example is PeptideProphet [360], which makes use of the SEQUEST 
algorithm [361]. The idea behind SEQUEST is rather simple. First, a database with protein 
sequences is provided to the algorithm. This database clearly depends on the sample: when 
the sample is e.g. a human cell culture, one uses the human proteome from the UniProt 
Knowledgebase, whereas for an Arabidopsis sample, the TAIR database is often used [362]. 
All proteins in the database are then in silico digested according to the cleavage rules of the 
protease used. For trypsin, all protein sequences are thus split at lysine (K) or arginine (R) 
residues. Next, only those peptides are selected from the database which lie within a narrow 
mass tolerance range around the observed mass value of the MS peak. Then, all possible b- 
and y-ions are calculated for each of these peptides and a score is calculated. This score 
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increases for each theoretical b- or y-ion that, again within a certain mass tolerance, can be 
matched to an observed MS² peak. Similarly, the score decreases for each theoretical peak 
that cannot be matched to an observed peak and for any observed peak that cannot be 
matched to a theoretical one. All theoretical peptide candidates are then ranked according to 
their scores and the highest-ranking peptide is assumed to be the correct one if it scores 
significantly higher than the second-highest ranking peptide. This coupling of a peptide ion 
species to a certain MS² spectrum (and hence the corresponding MS peak) is termed a 
peptide-to-spectrum match (PSM) [363]. The simple idea of calculating a score based on 
theoretical spectra from in silico digested proteins still remains the basis of all other database 
search algorithms today. 

In reality, the SEQUEST algorithm is more complicated than described above as it also takes 
neutral losses such as water, ammonia and carbon dioxide into account. In its earliest version, 
modifications could only be considered if they were assumed to be present at every occurrence 
of the modification site. This was achieved by simply shifting the masses of the in silico 
peptides. Later on, variable modifications were also introduced. This means that the algorithm 
searches both for the presence and the absence of certain modifications on certain amino 
acids in certain peptides. Phosphorylation of serine, threonine and tyrosine residues is an 
example of a variable modification that is often included in a search. One problem with 
searching for variable modifications is that they massively inflate the computational search 
space, especially if peptides are allowed to carry multiple modifications at multiple amino acids. 
For example, a variable search for phosphorylation alone may lead to a 67-fold increase in the 
search space [364]. Such inflations do not only drastically increase computational search 
times, but also increase the uncertainty on PSMs that map to unmodified peptides because of 
the increased probability that an in silico spectrum of an unrelated modified peptide matches 
against the spectrum of an unmodified peptide. Researchers are therefore often advised to not 
search for more than two or three variable modifications. Nonetheless, search space inflation 
can be largely fended off with some clever optimizations because the masses of modifications 
rarely coincide with amino acid masses, a property that can be exploited in high-resolution MS 
data [365]. Other optimizations include performing a two-pass search in which the second 
search only probes for modifications of peptides for which an unmodified counterpart was 
already identified in the first search [366]. Alternatively, one could limit the search to those 
modifications and modification sites that have previously been confirmed and are stored in a 
curated database [364]. Interestingly, it has been shown that unaccounted modifications are 
responsible for about 20–50% of all false positive identifications [367]. Therefore, open 
modification search engines have been developed that allow users to search for mass 
differences [365]. That way, much more modifications and even peptides that differ by a single 
amino acid from the canonical sequence in the database can be detected. 

The Mascot search engine was the first to introduce probability-based scoring, whereby the 
probability of an identification was weighted against the probability that a match between the 
theoretical and the observed spectrum occurred by random chance [368]. This was later on 
improved by incorporating the concept of target-decoy matching [369, 370]. In target-decoy 
matching, a set of nonsensical peptides (decoys) of the same size as the theoretical database 
peptide set (targets) is added to the search space. This nonsensical set can be obtained in 
multiple ways, e.g. by random scrambling of the original protein sequences, but is mostly 
obtained by simply reversing the protein sequences followed by in silico digestion. In case of 
palindromic sequences, forward and reverse sequences would overlap, but palindromes are 
extremely rare in practice because the protease’s specificity typically requires peptides to end 
in very few specific amino acids (e.g. arginine (R) or lysine (K) in the case of trypsin). Therefore, 
a palindromic sequence should already display a missed cleavage after the first amino acid, 
which is rather uncommon. Next, the observed peaks are matched against the combined 



40 

database as described before. Then, an identification false discovery rate (FDR) threshold is 
calculated for each target-PSM. This FDR is simply calculated by dividing the number of 
equally- or higher-scoring decoy-PSMs by the number of equally- or higher-scoring target-
PSMs. Finally, an FDR threshold is set (typically at 1%, rarely at 5%) and all PSMs under this 
threshold are passed on to the quantification stage, while the PSMs that exceed the threshold 
are removed from the data as these are deemed not certain enough. Note that for two-pass 
searches, this FDR calculation is way too liberal because the enrichment of targets in the first 
pass makes it more likely for the spectra to match to targets in the second pass. This 
constitutes a violation of the assumption that false matches should be equally likely to match 
a target or a decoy. Therefore, two-pass searches require an adjusted target-decoy database 
[371]. 

Nowadays, there are many different algorithms that enable peptide identifications from MS² 
spectra. These include Tide, a fast implementation of the SEQUEST algorithm [372],  
X!Tandem [373], MS-GF+ [374], MS Amanda [375], MyriMatch [376], Comet [377], Andromeda 
[378], OMSSA [379], Novor [380] and DirecTag [381]. A tool like SearchGUI [382], developed 
by the compOmics lab, unites all these algorithms in a graphical user interface. Furthermore, 
tools such as PeptideShaker [383] can be used to combine results of different search engines 
to boost identifications. The MaxQuant software package, which uses the Andromeda search 
engine, is very popular nowadays thanks to its integrated pipeline from identification to 
quantification and its user-friendly graphical user interface [384]. 

3.2. Protein inference 
In a typical shotgun proteomics workflow, the aim is to identify and quantify as many proteins 
as possible, but the data used for this are at the PSM level. Therefore, PSMs should be first 
assigned to one (or more) protein(s). Protein inference is straightforward for peptides that can 
be uniquely mapped to a protein sequence stored in a database. However, this becomes more 
complicated when a peptide can be mapped to several protein sequences [385], which 
frequently occurs for different protein isoforms that result from alternative splicing and for 
proteins that originate from paralogous  genes27. Such peptides are called “shared peptides”, 
“degenerate peptides” or “razor peptides”. 

PeptideProphet was the first algorithm to propose a solution to this problem [386]. Here, protein 
identification probabilities are first calculated under the assumption that all peptide matches 
are independent. Then, peptide identification probabilities are updated based on the protein 
identification probabilities. This updating of peptide and protein identification probabilities is 
then repeated until convergence. Others statistical models have also been proposed in an 
attempt to more reliably assign shared peptides [387, 388]. A conceptually simple way to deal 
with shared peptides is Occam’s razor approach. Here, each shared peptide is simply assigned 
to the protein which already has the highest number of identified unique peptides assigned to 
it. This is the approach currently implemented in MaxQuant [384]. MaxQuant also groups 
proteins that share a large fraction of their peptides in so-called “protein groups”. As the 
abundance of a shared peptide might reflect the combined abundance of multiple proteins, 
shared peptides are almost always removed from the dataset prior to quantification. 

Another issue in protein inference is the occurrence of so-called “one hit wonders”: proteins 
that are identified by a single peptide. It is generally considered unreliable to infer a protein 

                                                
27 Paralogous genes are genes that descend from the same ancestral gene within a species and therefore often 

have a high sequence homology. Their resulting protein products often execute similar functions. 
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based on a single peptide because if this identification is incorrect28, a protein is quantified that 
might not even be present in the sample. Therefore, such proteins are often removed from the 
dataset after using the so-called “two-peptide rule” [385], which however has also been 
criticized. It was indeed shown that it is more likely to find a protein with two mediocre-scoring 
peptides in the decoy database than it is to find a protein with a single high-scoring peptide in 
the decoy database [389, 390]. It was therefore proposed to abandon this two-peptide rule in 
favor of an approach in which the protein identification FDR is the sole criterion to accept a 
protein as being identified. Indeed, although in the past, all PSMs that passed a certain FDR 
threshold were passed on to the quantification stage, it was soon shown that if the PSM FDR 
is controlled at the 1% level, the protein FDR is much higher and should therefore also be 
taken into account [391, 392]. This is because the chance that a false positive PSM maps to a 
protein in the database is in theory random and therefore only dependent on that protein’s 
number of theoretical (tryptic) peptides. However, a protein that is truly present in a sample will 
typically generate multiple PSMs that will correctly map to that protein. Therefore, a fraction of 
the proteins in the dataset (i.e. the true positives) will be enriched in true positive PSMs, while 
a relatively large fraction of false positive proteins will have very little PSMs assigned to them 
[393]. 

Many different methods have been developed to estimate protein identification FDRs [386, 
394-396]. However, when calculating a protein FDR, it is important to clearly define how this 
value is to be interpreted. As noted by The et al. (2016), a distinction should be made between 
defining a false discovery as a protein that is inferred from an incorrect PSM versus defining a 
false discovery as the incorrect identification of a protein that is in reality not present in the 
sample [397]. These are not the same, as many proteins might be present in the sample that 
are not assigned any correct PSM but can be assigned to one or more incorrect PSMs by 
random chance. These authors noted that protein FDRs can strongly differ depending on the 
definition.  

The protein inference problem is reviewed more in depth in Huang et al. (2012) [398] and 
Serang and Noble (2012) [399]. 

3.3. Peptide quantification 
A first step in the quantification procedure is the determination of the abundance of all identified 
peptides. This can be done in two ways. The first way, summing up MS² intensities, is now 
largely deprecated for label-free DDA data. The second and by far the most common way is 
by using the MS intensities. 

The reason why label-free approaches in which MS² fragment ion intensities are summed to 
determine a peptide ion’s intensity perform worse than MS peak-based methods in terms of 
reproducibility, missing data, quantitative dynamic range and quantitative accuracy [307] is 
because MS² intensities are highly data-dependent. Due to dynamic exclusion, a particular 
peptide ion can be targeted for fragmentation when it is relatively far from its elution apex. This 
makes summed-up MS² intensities much more variable from run to run and hence less suited 
for reliable quantification. 

When quantifying peptides based on MS intensities, it is important to realize that peptides elute 
continuously from the RP-HPLC column, while MS spectra are recorded at discrete time points. 
Indeed, if an MS spectrum is recorded every second and peptide elution typically ranges from 
5-25 seconds [325, 326], most peptide ion peaks will be recorded in multiple, sequential MS 
                                                
28 At a 1% PSM identification FDR, on average 1% of all PSMs is expected to be wrong, but for each specific PSM, 

this probability might be significantly higher or lower. 
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spectra (see also 2.2.2). Here, every peptide ion is recorded in each MS spectrum as an 
isotopic envelope due to the natural isotopic occurrence. A simple way to determine an 
identified peptide ion’s intensity would be to sum the intensities of the isotopic envelopes in 
each MS spectrum and select the MS spectrum in which this summed intensity is the highest 
(i.e. near the peptide’s elution peak). However, this results in rather imprecise quantifications 
because for one peptide ion, an MS spectrum might be recorded very close to its elution peak, 
while for another ion, the MS spectrum with the ion’s highest intensity peak might be recorded 
up to 0.5 seconds29 before or after its elution peak. As shown in Fig. 3.2, the elution profile of 
a peptide can be fairly easily reconstructed based on the sampled MS intensities of this 
peptide. Indeed, by fitting a curve to these summed intensities over time, a peptide’s elution 
profile can be reconstructed, which results in a much more reproducible quantification [400, 
401]. 

 
Figure 3.2. Theoretical example demonstrating the challenges in MS1 and MS² peptide quantification. 
A. Illustration of the elution profile of three peptides (blue, red and green). Arrows denote the discrete 
time points at which an MS spectrum is taken. Crosses on the elution profile indicate when that specific 
peptide is selected for fragmentation, which results in an MS² spectrum. MS spectra at time points a, b 
and c are shown in B; MS² spectra are shown in C. Due to its high abundance, the blue peptide was 
selected for fragmentation early in its elution profile (MS² spectrum d: dark blue). Because of dynamic 
exclusion, this peptide was not re-selected for fragmentation again until far beyond its elution peak (MS² 
spectrum f: light blue). Reprinted with permission from Krey et al. (2014) [402], © 2014 American 
Chemical Society. 

Some methods are even more sophisticated in trying to increase the quantitative accuracy. 
For example, the Andromeda search engine, incorporated in MaxQuant, integrates the peak 
intensities of each ion’s isotopic envelope during peptide elution. More specifically, Andromeda 
fits a Gaussian peak to the three most central data points in each isotopic envelope. These 2D 
peaks are then smoothed to 3D peaks in the retention time dimension and the total intensity 
for a particular ion is then set equal to the volume of its corresponding 3D peak [384]. Fig. 3.3 
gives a 3D visualization of the increase in intensities in the isotopic envelope at the start of the 
elution of a peptide ion. 

                                                
29 This is, given that an MS spectrum is recorded every second, a typical user-defined setting. 



43 

 
Figure 3.3. 3D view of the isotopic peaks during the elution of the doubly charged peptide ion 
CCSDVFNQVVK in sequential MS spectra in the MaxQuant Viewer tab. Image adapted from Tyanova 
et al. (2015) [403]. Proteomics. Published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, CC BY-
NC-ND 4.0. 

A disadvantage of Andromeda’s algorithm is that it is computationally intensive. Moreover, until 
very recently, MaxQuant was only available on Windows, which impeded its inclusion in 
automated Linux server pipelines [404]. These were the main motivations for the development 
of moFF, a platform-independent quantification algorithm that only quantifies the apex of the 
elution profile, making it fast, but without compromising on quality [405, 406]. Do note that 
many other algorithms have been developed to calculate peptide ion intensities, some of which 
are reviewed in Sandin et al. (2014) [407]. 

3.4. The nature of the data 
The previously described workflow results in specific data properties that are typical for MS-
based proteomics and that are important to bear in mind when evaluating protein levels.  

In bottom-up proteomics, PSMs do not correspond to peptides, but to peptide ions, whereby 
multiple peptide ions can map to the same peptide sequence. Indeed, the same peptide can 
often be identified under different charge states and/or with different modifications. Sometimes, 
a given modification can be detected at more than one location within the same peptide. As 
the (unmodified) backbone amino acid sequences of such PSMs are identical, these ion 
species are expected to behave more alike compared to unrelated ion species. Therefore, the 
intensities of these species are correlated with each other. Similarly, ion species of the same 
charge states will also be correlated. On a higher level, there is correlation between all peptides 
that are mapped to the same protein. The highest level in the hierarchy is the correlation 
between proteins. Indeed, since proteins interact with each other in numerous pathways, 
proteins that closely interact with each other, that are part of the same signaling pathway or 
even reside in the same subcellular location tend to behave more similarly than totally 
unrelated proteins. Orthogonal to the correlations between peptides and proteins, there is a 
strong within-run correlation due to the relatively large run-to-run variability in label-free 
proteomics. To keep this run-to-run variability minimal, it is necessary to tightly control the 
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instrumentation. This makes raw label-free proteomics data hierarchical with correlations on 
many levels in the data. Moreover, it is possible that for the same protein in the same MS run, 
e.g. two peptides are observed with only one PSM, three peptides with two PSMs and one 
peptide with three PSMs. 

Even for peptides originating from the same protein, differences in intensities are often 
substantial. One reason for this is that differences in proteolytic cleavage efficiency cause 
some peptides to be generated more efficiently than others, rendering individual peptide levels 
not equal to protein levels. Moreover, intensities of different peptide ions also strongly differ 
because of large differences in ionization efficiency. Finally, the latter is context-dependent as 
the nature and the amount of co-eluting peptides also drive the efficiency by which a peptide 
is ionized (see chapter 8). Such ionization competition can be a more important driver of a 
peptide’s intensity than its actual abundance [408]. As noted in section 3.2, the intensities of 
shared peptide sequences arise from an unknown combination of peptide ions coming from 
different proteins. Therefore, shared peptides are often removed from the dataset prior to 
quantification. 

While the raw data is at the PSM-level, quantification is typically done at the protein level. PSM-
level data thus needs to be summarized to the protein level. It is possible to summarize the 
PSMs directly to the protein level. However, this might be suboptimal because of the 
hierarchical nature of the data and the missing values that make the data unbalanced. Indeed, 
if the PSMs would be summarized as if they were independent observations, a bias will be 
introduced because some peptides will be “overrepresented” in the protein’s abundance 
estimate, while other peptides will be “underrepresented”. Therefore, summarization is 
sometimes done in two steps: in a first step, the data are summarized to the peptide level (i.e. 
each peptide sequence is the summary of all its potential charge states and peptideforms). 
MaxQuant, for example, outputs peptide-level summaries as summed raw PSM intensities. In 
a second step, the peptide-level data are summarized to the protein level (discussed in detail 
in 4.1.5). Contrary to protein summarization based on peptide-level values, PSM to peptide 
summarization has not been studied in detail, and commonly-used data analysis pipelines 
such as the MaxLFQ algorithm in MaxQuant [317] and MSstats [409] calculate protein-level 
summaries based on PSM intensities, ignoring possible correlation between PSMs that map 
to the same peptide sequence. From here on, I will assume that all data are summarized to 
the peptide level, unless specifically mentioned otherwise. However, note that all of the 
criticisms regarding peptide-to-protein summarization outlined in 4.1.5 can also be applied to 
PSM to peptide summarization. 

The linear dynamic range of the mass spectrometer also affects the data. Indeed, within a 
certain concentration range, an increase in peptide concentration will result in a multiplication 
of the MS signal with more or less the same factor. This range is termed the linear dynamic 
range. Above this range, the ESI spray ionization and/or the MS detector becomes saturated, 
leading to a plateau in the ion’s MS intensity signal. Below the linear dynamic range, a peptide 
ion will not be observed. Note that the linear dynamic range will be different from peptide to 
peptide due to their different ionization efficiencies. Fig. 3.4 gives a graphical representation 
of the linear dynamic range. 
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Figure 3.4. The concept of linear dynamic range in proteomics. (a) Peptide ion intensities for three 
theoretical proteins: a low abundant, middle abundant and highly abundant protein. For the low abundant 
protein, many of its peptides will fall below the limit of detection (LOD) and will therefore not be identified. 
Its abundance will only be estimated based on the identified peptides and might therefore be over-
estimated. For the middle abundant protein, most of its peptides are observed and the protein’s 
estimated abundance will be close to its true abundance. For the highly abundant protein, some of its 
peptides will be more abundant than the upper limit of quantification (ULOQ), and their ion signals will 
be lowered. Hence, the highly abundant protein’s abundance might be under-estimated. (b) The 
dynamic range in practice. In this experiment, different known amounts of proteins were compared to 
each other. When the differences in concentration become large, the difference between the estimated 
protein abundances and the true protein abundances also increase. Such deviations from linearity are 
substantial for large differences in abundance. Image (a) modified after Jarnuczak et al. (2016) [330], © 
2016 by American Chemical Society (“ACS”), CC BY 4.0 and image (b) adapted from Arsova et al. 
(2012) [410] © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 

The large amount of missing values in the data is a major issue in label-free DDA shotgun 
proteomics. Upon searching the public repository PRIDE [411] for MaxQuant datasets that 
applied shotgun proteomics to full or partial proteomes, we found 16 to 82% missing values at 
the peptide level (see chapter 10). There are multiple reasons for this missingness. A first 
reason is that a protein might simply not be present in certain samples. A second reason is 
that experimental reasons (e.g. different tissues with different protein abundance profiles are 
compared), biological reasons (e.g. downregulation or degradation of a protein) or technical 
reasons (e.g. inferior quality of a certain run) might cause the MS intensity of a peptide that is 
truly present to fall below the background noise level. For label-free shotgun proteomics, the 
limit of detection was estimated to lie around 1 fmol [412]. A third important reason is in the 
data-dependent nature of the sampling: a peak that was selected in one run, might not be 
selected for fragmentation in a next run. Indeed, the height of the peak mainly dictates if a peak 
is targeted for fragmentation or not [413]. This type of missingness is thus largely intensity-
dependent, although ionization also renders this type of missingness context-dependent. A 
fourth reason for missing values in label-free shotgun proteomics is that on average around 
75% of all MS² spectra is not identified [414]. This happens when an MS² spectrum’s highest-
scoring PSM falls below the pre-set identification FDR threshold or when no distinction can be 
made between two or more high-scoring alternatives. Alternatively, the PSM could pass the 
FDR threshold but might in reality be misidentified. Poorly ionizing peptides are particularly at 
risk for failed or incorrect identifications. Peptides carrying a phosphate-modification, for 
example, ionize notoriously poorly because of the phosphoryl group’s default double negative 
charge state. Moreover, CID fragmentation of peptides with a phosphorylated serine residue 
often results in a dominant neutral loss of phosphoric acid, leaving too little energy for the 
efficient fragmentation of the precursor’s peptide bonds [415]. Furthermore, most peptide 
modifications with a biological or an artefactual origin are often unsearched for due to the 
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strong inflation in computational search space when allowing for too much modifications to 
occur on the peptides. It has been estimated that at least one third of all spectra cannot be 
assigned to a peptide due to the presence of sub-stoichiometric post-translational 
modifications [416]. Another cause for failed MS² identification is co-fragmentation [334]. The 
chimeric MS² spectra that result from co-fragmented peptide ions are either not identified, or 
misidentified, resulting in a missing value, or mapped onto only one of the precursor ions. As 
the corresponding MS peak is a mixture of more than one ion, the abundance of this ion will 
be estimated higher than it actually is. 

All of this stresses the importance of MS² fragmentation. Indeed, all MS peaks that were not 
targeted for fragmentation or for which no peptide could be matched to the MS² spectrum 
remain unidentified. One way to alleviate such cases of missing values is by applying a feature 
alignment or “match-between-runs” algorithm [400, 417, 418]. Here, unidentified MS peaks in 
one MS run are matched, based on their masses, charges and retention times, to identified 
peaks of another run in which a similar sample was analyzed. Important for these algorithms 
is that they should be able to accurately align retention times over different runs and keep their 
retention time windows (i.e. the deviations in retention time to allow a match between two MS 
peaks) narrow enough to prevent incorrect matches. This again stresses the importance of a 
stable analysis workflow and sufficient quality control [419]. A match-between-runs algorithm 
is also frequently applied in MaxQuant searches [420]. 

3.5. The need for benchmarking 
As explained above, peptide intensities are used for differential analysis of protein 
abundances. However, there is an enormous variety in differential protein abundance analysis 
workflows, and each step in these workflows has its impact on the result. Hence, the 
performances of the different workflows might also differ considerably. This difference in 
performance is an important point. Indeed, if suboptimal workflows are used, biologically 
relevant proteins might remain under the radar. Therefore, I will here explain the need for 
benchmarking to allow comparison of the performances of different workflows. 

To evaluate the sensitivities and specificities of different quantitative pipelines, a dataset is 
needed in which the true relative amounts of proteins in all samples (“the ground truth”) are 
known. Such a dataset can either be generated by simulation or by spiking in proteins of a 
certain organism into another organism’s proteome. Simulations have the advantage that they 
are very simple to generate: one only needs a computer. However, simulated datasets often 
do not reliably capture the complex data structures of true biological experiments. In a spike-
in experiment, a set of proteins from one organism is spiked into a complex protein background 
from another organism at different concentrations. Hence, when two different spike-in 
conditions are compared, only the spiked-in proteins are differentially abundant. Generating a 
spike-in dataset requires setting up a wet-lab experiment. Here, it is important to pick two 
organisms that are genetically very distinct to avoid a large number of shared peptides between 
both organisms. 

In what follows, I will use the CPTAC study 6 dataset to demonstrate the effect of each 
preprocessing step. In the 6th study of the National Cancer Institute's Clinical Proteomic Tumor 
Analysis Consortium (CPTAC), a trypsin-digested mix of 48 human proteins (Universal Protein 
Standard 1, UPS1) was spiked in 5 different concentrations into a mix of trypsin-digested 
Saccharomyces cerevisiae proteins. These concentrations were: 0.25 fmol/µL (sample 6A), 
0.74 fmol/µL (sample 6B), 2.2 fmol/µL (sample 6C), 6.7 fmol/µL (sample 6D) and 20 fmol/µL 
(sample 6E). These samples were sent to five different labs and analyzed on six different mass 
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spectrometers30. For convenience, I only used the data from the LTQ-orbitraps at sites 56, 65 
and 86. The study was conceived to provide a benchmark dataset to compare the power of 
different approaches to detect differential abundance and it is the most well-known 
quantification benchmark dataset. Indeed, Paulovich et al. were cited 121 times in Scopus on 
February 7th, 2019. 

This dataset is ideal to demonstrate the statistical concept of blocking. Indeed, a typical 
proteomics experiment is often restricted by spatiotemporal constraints that prevent the 
generation of all samples simultaneously, with the same equipment, etc. Such variation causes 
unwanted technical variability (noise) and makes it harder to detect the effect of interest. 
Blocking is the experimental design choice to assign the experimental units (e.g. MS runs) to 
different “blocks” (e.g. batches, periods in time) in such a way that the treatments that need to 
be compared are present within each block. This enables to estimate the treatment effect within 
each block, in which the noise is lower. Blocking is therefore a way of removing unwanted 
variability and thus increases the power of a statistical analysis. In the CPTAC dataset, we 
retained the data from three different laboratories. Since the between-lab variability is not of 
interest, “lab” can be considered as a blocking factor, which allows to remove the between-lab 
variability from the analysis.  

Note that there are issues with ionization competition in the CPTAC dataset [421]. Due to the 
relatively high spike-in concentrations of the UPS1 mix, ionization of UPS1 peptides will 
partially suppress the intensities of the yeast peptides. This might lead to the false positive 
calling of yeast proteins as DA. We indeed noticed that most quantification methods could not 
control their quantification false discovery rates at the 5% level when large differences in spike-
in concentrations were compared [422]. Fig. 3.5 gives an overview of CPTAC Study 6, which 
was used in all my first-author manuscripts. 

 
Figure 3.5. Overview of the subset of the CPTAC Study 6 that will be used throughout this thesis. 
Digested human UPS1 proteins were spiked in five different concentrations (6A – 6E) into digested 

                                                
30 “Lab 65” analyzed the samples on two different machines 
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yeast (Saccharomyces cerevisiae) proteome. These samples were sent to three different laboratories. 
Each laboratory analyzed the samples in technical triplicates. 

Other, more recent spike-in datasets were published in Ramus et al. (2016) [423] and 
Jarnuczak et al. (2016) [330]. 

There might be some confusion on the usage of the term “sample”. In this section, I denoted 
the different spike-in conditions as “samples”, which were repeatedly analyzed. However, in a 
biological experiment, multiple samples will be taken for each treatment condition of interest 
and each of these samples will be analyzed in one or more technical replicates on the mass 
spectrometer. Because of the ever-increasing sequencing depth, technical replication is often 
omitted in modern experiments, which causes each “sample” to correspond to a single MS run. 
In the literature, indicators referring to “sample” or “MS run” are therefore almost always used 
interchangeably. To avoid confusion, I will use the terms “condition” or “treatment” to refer to 
the spike-in conditions from now on. 
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4. DIFFERENTIAL PROTEIN ABUNDANCE ANALYSIS 

Once peptides are identified, linked to a protein and assigned an intensity value, the data can 
be used for the analysis of differential protein abundance. In this chapter, I will go deeper into 
the different steps in a typical differential protein abundance analysis workflow. I will start with 
data preprocessing, followed by a demonstration of the most important methods to use the 
preprocessed data for differential protein abundance analysis. 

4.1. Preprocessing 
Because of the nature of the peptide-level data described in section 3.4, preprocessing is 
required before proteins can be quantified. There is a plethora of preprocessing workflows and 
many of these are often constructed ad hoc. Nonetheless, in most workflows, the data typically 
undergo some kind of (log-)transformation, filtering, normalization, imputation and 
summarization. Note that the order in which each of these preprocessing steps are executed 
impacts on the final results. Transformation, in principle can be executed at any stage in the 
preprocessing workflow, but typically occurs early because it makes the data easier to handle. 
Similarly, filtering is done early in the workflow to remove those observations that are deemed 
unreliable and/or unwanted for various reasons. Furthermore, Karpievitch et al. (2012) showed 
that normalization followed by imputation generally outperforms imputation followed by 
normalization [424]. The rationale behind this is that imputing missing values obscures 
possible bias trends and therefore renders normalization less efficient. Moreover, imputing 
missing values does not make sense when unaccounted systematic bias is still present in the 
data. Finally, data summarization is best done after imputation as it is much more difficult to 
summarize data that contains missing values [425]. Nonetheless, some workflows, such as 
the default MaxQuant-Perseus workflow impute the data only after summarization (see 4.1.4). 
In this section, I discuss each of the preprocessing steps in more detail. 

4.1.1. Transformation 

The distributional properties of raw intensity measurements are often unfavorable for direct 
statistical modeling. Therefore, nearly every quantitative proteomics workflow involves a 
transformation of the raw intensity values. Log-transformation is a logical choice because raw 
intensity and concentration measurements are often more or less log-normally distributed: their 
values are always positive, they are skewed to the right and their variances increase with the 
mean. The strong right-skewness of the raw intensities is shown in Fig. 4.1: there are many 
relatively low intensities and only a few very high intensities. After log-transformation, the 
distributions become much more symmetrical. 
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Figure 4.1. Impact of log2 transformation on the raw peptide intensities in the CPTAC dataset [426]. 
Left: the densities of the raw peptide intensities are strongly skewed to the right. Right: the densities of 
the log2-transformed peptide intensities are much more symmetrical. The densities are colored 
according to lab: red corresponds to the orbitrap at site 56, yellow to the orbitrap at site 65 and blue to 
the orbitrap at site 86. 

Moreover, the variance structure of the raw intensities is often multiplicative: the variability in 
the data tends to be higher for higher intensities than for lower intensities (Fig. 4.2). Log-
transformation will stabilize the variances by transforming a multiplicative error structure into 
an additive error structure [263]. In an additive error structure, the variability in the data is 
independent of the mean. The statistical property of equal variances is called homoscedasticity 
(as opposed to heteroscedasticity: unequal variances). The assumption of homoscedasticity 
opens the way to use the standard toolbox for statistical inference, such as linear regression. 
Such classic inference methods often provide closed-form solutions for their estimators, which 
makes the estimation procedures much simpler and faster. In practice, there sometimes 
remains a mildly positive mean-variance correlation in the log2-transformed intensities. 

 
Figure 4.2. Raw intensities (left) and log2-transformed intensities (left) of peptide NVNPVALPR, which 
is part of the human UPS1 protein P08311 (cathepsin G) in the CPTAC dataset [426]. The variability in 
the peptide’s raw intensities increases with higher spike-in concentrations but remains constant for the 
log2-transformed intensities. 
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A final argument in favor of the log-transformation is that by modeling PSM intensities at the 
log-scale, one models proportional differences at the biological scale, which is also more 
relevant from a biological point of view. Most researchers choose a log-transformation with a 
base of 2. A one-unit increase in log2-abundance will then be equivalent with a factor 2 increase 
in protein abundance. 

4.1.2. Filtering 

The data are filtered prior to differential analysis to remove peptides and proteins that are a 
priori uninformative from a biological or statistical perspective. Removing uninformative 
peptides increases the power to detect differential abundance in their corresponding proteins. 
Removing uninformative proteins reduces the number of proteins that needs to be tested for 
differential abundance. This will result in a less severe multiple testing correction and thus in a 
higher statistical power [427]. 

Examples of peptides or proteins that are typically filtered out include:  

- decoy peptides  
- typical contaminants such as keratin, which originate from the operator’s skin amongst 

others 
- other highly abundant and possibly less informative proteins (e.g. RuBisCo in plant 

samples) 
- shared peptides, being peptides that map to more than one protein. Sometimes, these 

shared peptides are assigned to a protein (group) with the most unique peptides, but 
this practice should be discouraged because a shared peptide’s intensity could very 
well represent the combined intensity of multiple proteins. 

- proteins or peptides identified in only a few samples 
- proteins identified with only one or a few unique peptides (e.g. the two-peptide rule) 
- proteins for which no peptides without a modification site are identified. The rationale 

here is that the identification FDR is more difficult to calculate for a peptide carrying a 
modified site or amino acid mutation. Some search engines, such as MaxQuant, are 
less certain about the identification of a peptide with a modification and prefer to filter 
out proteins that are identified with only modified peptides, rather than doing inference 
on a protein of which they are less certain that it is really present in the data. 

- peptides with very variable retention times over different runs, as this might be an 
indication for misidentification [428]. 

According to the vignette of the R package genefilter [429], a good filtering criterion should 
adhere to three criteria: 

1. It should be statistically independent from the test statistic under the null hypothesis 
(i.e. the protein is not differentially abundant). 

2. It is correlated with the test statistic under the alternative hypothesis (i.e. the protein is 
differentially abundant). 

3. Filtering based on the criterion does not notably change the dependence structure (if it 
exists) of the joint test statistics. 

The second property provides a benefit for filtering as it enriches for differentially abundant 
proteins after filtering. The first and the third criterion are necessary to keep control over the 
false discovery rate of the subsequent analysis at the pre-specified level (see 4.2.5). Indeed, 
as long as these criteria are fulfilled, filtering will not result in a biased analysis. The 
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aforementioned filtering procedures all fulfill the first criterion31. However, filtering on a criterion 
such as fold change estimates would induce a biased downstream quantification, as the fold 
change is an integral part of almost every test statistic and hence strongly correlates with it, 
also under the null hypothesis. The effect of filtering on different quantification methods has 
been studied in Belouah et al. (2019) [430]. 

4.1.3. Normalization 

Even in a very clean, synthetic dataset as CPTAC, where there is no biological variability and 
only the spiked 48 UPS1 proteins are differentially abundant, the marginal peptide distributions 
are quite distinct. Considering all proteins in the dataset, there are considerable effects 
between samples with different spike-in concentrations, even within the same lab (Fig. 4.3, 
left). Moreover, for replicate measurements of the same samples, there is considerable lab-to-
lab variability, and even the within-lab variability is non-negligible (Fig. 4.3, right). 

 
Figure 4.3. Left: density plot of the log2 peptide intensities for the orbitrap at site 65 in the CPTAC 
dataset [426]. The densities are colored according to spike-in condition (black: spike-in condition 6A, 
dark red: spike-in condition 6B and green: spike-in condition 6C). Right: density plot of the log2 peptide 
intensities for spike-in condition 6A. The densities are colored according to lab (red: orbitrap at site 56, 
yellow: orbitrap at site 65 and blue: orbitrap at site 86). 

Normalization aims to remove, or at least dampen, this potentially large, unwanted variability.  
Center mean and center median normalization subtract the respective means or medians from 
each distribution (Fig. 4.4). These simple normalization approaches aim to remove non-
biological variability by centering the peptide intensity distributions and do not impact on their 
shapes [431]. However, it is clear from Fig. 4.4 that the shapes of the distributions are also 
affected by technical variability. Hence, more advanced normalization procedures are needed. 

A method that has proven to work well for microarray data is quantile normalization [432, 433]. 
Quantile normalization will impose the same density distribution upon each MS-run. Here, the 
peptide intensities are sorted from low to high. The lowest peptide intensity for each run is then 
set equal to the mean of the lowest peptide intensities over these runs. Similarly, the second-
lowest peptide intensity in each run will be equal to the mean of the second-lowest peptide 
                                                
31 In practice, criterion 3 is rarely problematic, as most filtering procedures do not noticeably change the correlation 

structure of the tests [429]. 
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intensities in each run, and so on. Missing values are handled based on the assumption that 
the data are missing at random. 

Linear regression is a versatile statistical framework that can also be used to normalize the 
data (more about linear regression in section 4.2) [424, 434, 435]. VSN normalization is an 
example of a regression-based normalization approach that simultaneously executes 
transformation and normalization [436]. In brief, VSN normalization assumes that the different 
raw intensities from the different MS runs can be brought onto the same scale through linear 
mappings. VSN normalization assumes that the variance of the raw intensities 𝜐𝑝 depends on 
the mean 𝜇𝑝 as follows: 

𝜐𝑝 = 𝜐(𝜇𝑝) = (𝑐1𝜇𝑝 + 𝑐2)
2 + 𝑐3,                                                                                                            (Eq. 4.1) 

with 𝑐3 > 0. Based on these assumptions, a transformation ℎ is proposed such that the 
variance is approximately independent of the mean. Then, the following statistical model is 
proposed: 

ℎ𝑟(𝑌𝑝𝑟) = 𝜇𝑝 + 𝜀𝑝𝑟,                                                                                                                                    (Eq. 4.2) 

for all 𝑝 ∈ 𝑝null. Here, 𝑌𝑝𝑟 is the raw intensity for peptide 𝑝 in MS run 𝑟, and 𝑝null is the set of 
non-differentially abundant peptides. The parameters of the model are estimated with a least 
trimmed sum of squares regression under the assumptions that E[𝜀𝑝𝑟] = 0 and that the 
variance of the error term is constant: Var[𝜀𝑝𝑟] = 𝜎2. A more detailed explanation of the VSN 
algorithm can be found in Huber et al. (2002) [436]. Both older and more recent publications 
that compared the performance of different normalization methods seem to indicate that linear 
regression-based methods, such as VSN, generally outperform other normalization methods 
[435, 437, 438], although the relative performance of different normalization methods is also 
strongly dataset-dependent [439]. 
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Figure 4.4. Overview of the effects of different types of normalization on the peptide intensity 
distributions in the CPTAC dataset [426]. 

The MaxLFQ summarization algorithm described in 4.1.5 combines summarization with 
normalization, although MaxLFQ summaries are sometimes still normalized afterwards. 

An important assumption of all these normalization approaches is that the abundance of the 
large majority of the peptides remains unchanged over the different treatments. This 
assumption is often reasonable because researchers are mostly interested in biological 
perturbations that affect very specific pathways in the cell, thus affecting a minority of proteins. 
Moreover, most normalization methods can tolerate quite large fractions of differentially 
abundant peptides, as long as there is a more or less equal number of up- and downregulated 
peptides. This premise is also quite reasonable since the total amounts of peptides (in µg) 
analyzed in each run are as equal as possible. 

The assumption of no major changes in the bulk of the proteome is however problematic for 
specific studies. For example, in AP-MS studies, proteins are purified that specifically interact 
with a protein of interest (bait). The control group contains only “background proteins”, i.e. 
proteins that non-specifically interact with the bait. Therefore, a large fraction of the identified 
proteins is more abundant in the samples with the bait, while the background proteins are, in 
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theory, equally abundant between control and bait samples. In such kinds of experiments, 
normalization should be performed with extreme caution [407]. 

Note that even though normalization intends to remove the overall run-to-run variability, 
considerable block effects can persist at the level of the individual peptides. Fig. 4.5 shows a 
multidimensional scaling (MDS) plot after quantile normalization for the CPTAC dataset. Even 
with a radical normalization method like quantile normalization, which literally forces the log2-
transformed intensity distributions to be equal in each MS run, the runs clearly cluster together 
per lab. This demonstrates that it will be necessary to also correct for blocking effects further 
down the analysis pipeline. 

 
Figure 4.5. Multidimensional Scaling (MDS) plot after quantile normalization for the CPTAC dataset 
[426]. The MDS plot shows each MS run in such a way that the distance between each pair of runs is 
equal to the root-mean-square deviation for the top 500 peptides that are the most distinct between the 
pairs of runs. 

4.1.4. Imputation 

To demonstrate the important aspects of missingness, we investigated the amount of missing 
values at the peptide level in 73 recent label-free shotgun proteomics datasets. We showed 
that on average 44% of all values at the peptide level are missing (see chapter 10). To cope 
with such large amounts of missing values, they are often replaced with substitute values in a 
process called imputation. 

Classically, three types of missingness can be defined: missingness completely at random 
(MCAR), missingness at random (MAR) and missingness not at random (MNAR) [440]. MCAR 
assumes that the missing values cannot be explained by the nature of their underlying true 
values, nor by any known covariate: every value in the data matrix has an equal probability of 
being missing. MAR is a type of missingness whereby the probability of an observation to be 
missing is dependent on one or more observed covariates, but independent of the nature of 
the underlying values themselves. MNAR are all cases where the missingness is dependent 
on the underlying values (and optionally also on one or more known covariates): some values 
(e.g. very low values, very high values) have a higher probability of being missing than others. 

Missingness in label-free shotgun proteomics datasets is a combination of missingness 
completely at random (MCAR) (e.g. an enzymatic modification in one experimental condition 
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might cause a peptide to be unidentified if that modification was not accounted for during the 
search), missingness at random (MAR) (e.g. certain peptide sequences ionize more easily 
than others; therefore, missingness is much more likely for poorly-ionizing peptides) and 
missingness not at random (MNAR) (e.g. more abundant peptides simply have a higher chance 
of getting fragmented and thus being identified).  Note that this MNAR is exacerbated as the 
probability for a peptide to be identified is also context-dependent: when co-eluting with many 
other highly abundant peptides, a peptide will have a smaller chance of getting identified than 
if these other peptides would be absent or lower in abundance.  

When choosing an imputation strategy, it is important to keep in mind the assumptions of that 
imputation strategy as most imputation strategies make use of either a MCAR or a MNAR 
assumption, but not both. 

k-nearest neighbors (kNN) imputation is an example of an MCAR imputation strategy. In kNN, 
a Euclidean distance metric is calculated on all peptide intensities. Based on this distance 
matrix, the k most similar peptides (neighbors) are identified for each peptide that has at least 
one missing value. All missing values for that peptide are then imputed with the average of the 
corresponding (non-missing) values from the k neighbors [441, 442]. 

Quantile Regression Imputation of Left Censored data (QRILC) imputation is an example of 
an MNAR-based imputation strategy [443]. In QRILC, missing values are imputed with random 
draws from a truncated distribution with parameters that are estimated using quantile 
regression. QRILC has been implemented in the MSnbase R/Bioconductor package for 
manipulation, processing and visualization of proteomics data [444]. 

The popular proteomics computational platform Perseus also makes use of an MNAR-based 
imputation strategy. In Perseus, imputation is achieved by imputing the data with random 
draws from a rescaled, down-shifted normal distribution [445]. The characteristics of this 
distribution are calculated based on the data. More specifically, its mean is equal to the 
average of all the observed data minus d times the standard deviation of the observed data.  
Its standard deviation is equal to w times the standard deviation of the observed data. The 
default values for w and d are 0.3 and 1.8, respectively. 

The current version of the popular Bioconductor package MSstats (version 3.12.2) [446] uses 
a more advanced, model-based approach to impute missing values under a MNAR 
assumption. Their accelerated failure time (AFT) model (see 4.2.3) does not incorporate a 
random missingness component as the authors argue that due to the improved technology, 
the proportion of random missing values has become negligible.  

Choosing for no imputation, MCAR-based imputation or MNAR imputation can have a big 
impact on the downstream analysis. For example, the MCAR-based kNN is more suited when 
the majority of the missing values is not intensity-dependent [447]. Contrary, MNAR-based 
methods like QRILC, Perseus and AFT model imputation, perform better in a context with 
relatively more intensity-dependent missing values. These MNAR-based methods might 
however perform poorly in detecting special cases, e.g. where a long isoform of a certain 
protein is absent, but a smaller isoform is strongly upregulated (Fig. 4.6). In such cases, 
imputation with low-intensity values might dilute the signal and obscure the classification of the 
given protein as DA. 
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Figure 4.6. Imputation with low-intensity values can dilute signals present in the data. In this theoretical 
example, a protein consisting of 6 tryptic peptides is present in the left condition, while only a short 
isoform of the same protein giving rise to tryptic peptides 1 and 2 is 4 times more abundant in the right 
condition. When assessing peptides 1 and 2, the protein log2 fold change is equal to 2. However, 
imputing the missing values (“not assigned”, NA) with either MCAR or MNAR methods will dilute this 
signal. 

Indeed, although imputing missing peptide values was suggested in the proteomics literature, 
imputation should always be used with caution. When nothing is known about the nature of the 
missing values, it has been suggested to use MCAR imputation approaches based on local 
similarity, as these perform well on average [424]. It has to be noted however, that the 
performance of an imputation approach is highly dataset-dependent [422, 447-449]. In reality, 
missing values are often caused by an unknown mix of intensity-dependent and -independent 
mechanisms, which is strongly dataset-specific [424, 447] and choosing the wrong imputation 
method for the dataset at hand can result in a severe backlash in performance [422]. 

Some imputation methods try to combine MCAR and MNAR imputation. For example, one of 
the imputation strategies in the DEP Bioconductor package by Smits and Huber suggests an 
imputation method whereby proteins for which the values are completely missing in one or 
more experimental conditions are imputed with a MNAR method, while the other missing 
values are imputed with a MCAR method [450]. However, this distinction is rather arbitrary, 
since for some proteins, all values in an experimental condition might also be missing due to 
random chance. Conversely, some missing values for proteins which are detected in all 
experimental conditions might still be due to low intensities. 

A final issue with imputation is that, even if the true mechanism of missingness would be 
known, the uncertainty caused by replacing a missing value by a fixed value from a certain 
distribution is essentially ignored. A correct data analysis strategy should take this uncertainty 
into account. This problem might be solved by using a multiple imputation strategy [451, 452] 
in which the dataset is imputed multiple times and each of these imputed datasets is 
subsequently analyzed. The variability in the outcomes gives a good idea of the impact of the 
imputation on the analysis. Unfortunately, multiple imputation has not yet been widely adopted 
in the field. Note that it is also possible to model mechanisms of missingness explicitly (see 
section 4.2.3) [440]. 

4.1.5. Summarization 

As noted in section 3.4, differential analysis mostly takes place at the protein level, but the data 
are at the peptide level. Therefore, most workflows involve some kind of summarization. In this 
section, I will focus on peptide- to protein-level summarization to show the effects of different 
summarization techniques. A simple way to summarize is by summing up all raw peptide 
intensities that correspond to each protein in each MS run [453]. Alternatively, mean 
summarization involves taking the mean of the peptide intensities to obtain a protein-level 
summary. Median summarization is also very common as a median is insensitive to outlying 
peptide intensities [384]. For the same reason, weighted means [454, 455] or medians [456], 
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whereby the outlying peptides are given less weight, or trimmed means [299] have also been 
proposed. 

Although these techniques are very simple to apply, one needs to consider a few things. The 
first one is the intensity-dependent missingness. Indeed, in samples with a high concentration 
of a particular protein, more of its poorly ionizing peptides are expected to be found compared 
to samples with a lower concentration of that protein. However, such poorly ionizing peptides 
reduce the protein concentration estimates in the samples where the protein is highly 
abundant. Therefore, a naive mean or median summary that does not correct for peptide 
ionization efficiency produces fold change estimates that are biased towards 0. This fold 
change bias is demonstrated in Fig. 4.7. 

 
Figure 4.7. Effect of intensity-dependent missingness on mean and median summarization. The figure 
shows the log2-transformed intensities for all identified peptide sequences of a UPS1 protein in the 
CPTAC dataset [426] in the low spike-in condition 6A (black) and the higher spike-in condition 6C (green 
and blue). Symbols denote different labs (plus: site 56, triangle: site 65, circle: site 86). All peptides 
identified in condition 6A were also identified in condition 6C. Blue are the peptides which are exclusively 
identified in condition 6C. Full lines denote the mean summaries, dashed lines the median summaries. 
The black lines are the summaries for condition 6A, the blue lines the summaries for condition 6C. The 
green lines are the summaries for condition 6C when the peptides exclusively identified in condition 6C 
(blue) are omitted. Omitting those peptides increases both the mean and median summaries for 
condition 6C. 

To avoid this issue, it is of course possible to base the protein summaries only on the 
overlapping peptides. However, when many different conditions are compared, the number of 
peptides that is identified in every condition tends to be very low, which makes it impossible to 
obtain such a protein-level summary for many proteins in the dataset. 

MaxLFQ, the algorithm that is used to summarize proteins in MaxQuant, addresses this issue 
by making use of only those PSMs that overlap between each pair-wise MS run comparison. 
[317]. A schematic overview of the MaxLFQ algorithm is given in Fig. 4.8. 
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Figure 4.8. (A) Example of a protein of which five peptide sequences (indicated in magenta) are 
detected. (B) These five peptides were identified as seven different PSMs (“peptide species”). (C) 
Occurrence of each of the seven PSMs in 6 exemplary samples A – F, each of which was run once on 
the mass spectrometer. (D) Matrix with the pairwise protein ratios. Protein ratios are calculated by taking 
the median of all valid normalized pair-wise PSM ratios. Valid protein ratios are ratios for which two or 
more PSMs are in common between both runs (green). Protein ratios for which less than two PSMs are 
in common are considered invalid (red). (E) System of equations that needs to be solved to obtain the 
MaxLFQ protein intensities per run. MaxLFQ intensities for runs for which no valid protein ratios exist 
(e.g. run F) will be set to zero (i.e. a missing value on the log-scale). (F) Run-wise MaxLFQ protein 
intensities for the given protein. MaxLFQ intensities are calculated by solving the equations in (E) 
through least squares and rescaling the result to maintain the total summed intensity over all runs. Image 
adapted from Cox et al. (2014) [317], © 2014 by The American Society for Biochemistry and Molecular 
Biology, Inc., CC BY 4.0. 

The rationale behind MaxLFQ is the following: 

The intensity for each PSM is calculated as the area under the isotopic envelope at the 
maximum intensity over the retention time profile multiplied by a run-wise normalization factor. 
These normalization factors are calculated by least-squares minimization of the overall pair-
wise log fold changes for all PSMs between all runs. As with most normalization methods, the 
assumption is made that the large majority of the proteome is not differentially abundant. 

Then, the common PSM intensities between each run pair 𝑞 and 𝑟 are used to calculate PSM 
ratios. The pair-wise protein ratio 𝜚𝑞𝑟 between runs 𝑞 and 𝑟 is then equal to the median of all 
pair-wise PSM ratios between runs 𝑞 and 𝑟. 
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Based on all pair-wise protein ratios, it is then possible to calculate log-transformed protein-
level intensities 𝑦𝑞 for each run 𝑞. This is done by performing the following protein-wise least-
squares analyses for each “valid” pair of runs 𝑞 and 𝑟: 

log 𝜚𝑞𝑟 = 𝑦𝑟 − 𝑦𝑞 + 𝜀𝑞𝑟                                                                                                                              (Eq. 4.3) 

Herein, 𝜚𝑞𝑟 is the pair-wise protein ratio between runs 𝑞 and 𝑟, 𝑦𝑞 the log-transformed protein 
intensity in run 𝑞 and 𝑦𝑟 the log-transformed protein intensity in run 𝑟.  𝜀𝑞𝑟 is a random error 
term. Pairs are considered valid if they have at least two PSMs in common. Finally, the whole 
profile of the estimated run intensities �̂�𝑞 is rescaled to maintain the total summed intensity for 
a protein over all runs. Important to note is that in this procedure, summaries are calculated 
solely based on the PSMs that are common between each pair of runs. Therefore, MaxLFQ 
does not suffer from a downwards bias in its summary estimates. 

It is also possible to reformulate the summarization problem as follows: 

𝑦𝑓𝑟 = 𝛽0 + 𝛽𝑓
feature + 𝛽𝑟

run + 𝜀𝑓𝑟,                                                                                                           (Eq. 4.4) 

Herein, 𝑦𝑓𝑟 is the log-transformed intensity for PSM (feature) 𝑓 in run 𝑟, 𝛽0 is the intercept, 
which corresponds to the average log-transformed intensity of a certain reference PSM in a 
certain reference run. 𝛽𝑓

feature is the effect of PSM 𝑓 relative to the intercept and 𝛽𝑟
run is the 

effect of run 𝑟 relative to the intercept. 𝜀𝑓𝑟 is a random error term. The MaxLFQ procedure is 
in fact an ad hoc procedure to fit such a model for the ratio 𝑦𝑓𝑟/𝑦𝑓𝑞, conditional on all PSMs 𝑓 
that are in common between runs 𝑞 and 𝑟. The disadvantage of the MaxLFQ procedure is that 
if the PSM overlap between runs 𝑞 and 𝑟 is very limited, the MaxLFQ estimates become very 
imprecise. This is the reason that MaxLFQ requires an overlap of at least two PSMs before 
allowing a ratio to be valid. 

It is however more efficient to fit model (Eq. 4.4) as it is, as this model uses the information in 
all the PSMs, not only those that overlap, and still corrects for peptide-specific effects thanks 
to the 𝛽𝑓

feature effect. 𝛽0 + 𝛽𝑟
run can then be interpreted as the average protein intensity in run 

𝑟 for the reference PSM. 

Median polish [457, 458] is a robust way of fitting model (Eq. 4.4) that is also implemented in 
the current version of MSstats, but still seems show a slightly downwards bias. MaxLFQ, 
conversely,  produces nearly unbiased protein-level estimates (Fig. 4.9). 
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Figure 4.9. Overview of the log2 fold change estimates between condition 6C and 6A for the 36 UPS1 
proteins for which these estimates could be calculated based on log2-transformed PSM-level intensities 
with four different summarization methods: mean summarization, median summarization, median polish 
and MaxLFQ. The red line denotes the true log2 fold change based on the known spike-in concentrations 
(2.2 fmol/µL for 6C, 0.35 fmol/µL for 6A). Mean and mean summarization strongly underestimate the 
true fold change. Median polish shows a smaller downwards bias, while MaxLFQ is nearly unbiased. 

To avoid the downwards bias introduced by intensity-dependent missingness, MSstats 
imputes the data under a missing-by-low-intensity assumption prior to median polish 
summarization. However, such an assumption is not always valid, as already discussed in 
4.1.4. 

Note that both MaxLFQ and MSstats start from PSM-level intensities without taking into 
account the fact that PSMs mapping to the same peptide sequence are correlated. 

4.2. Methods for differential protein abundance analysis 
Differential analysis here aims at identifying those proteins that are differentially abundant. In 
proteomics, there are three main methods to perform differential analysis: summarization-
based methods, counting-based methods and peptide-based methods. However, differential 
analysis is only meaningful if the design of the study allows for it. Therefore, I will start this 
section with a note on the importance of the study design. 

4.2.1. The importance of study design 

In its early days, mass spectrometry was tedious, time-consuming and costly. The main reason 
for this was the low duty cycle of the mass spectrometers, implying that, within a given time 
frame, very few peptides got selected for fragmentation and could thus be identified. Intelligent 
approaches such as MudPIT [119] and ICAT [459], countered this by peptide pre-fractionation 
or by selecting for so-called protein-representative peptides respectively. The former increased 
the overall analysis time, whereas the latter relied on expensive reagents that also tended to 
interfere with peptide fragmentation and peptide identification. Hence, samples were often 
analyzed only once on mass spectrometers. Proteins were then declared “significant” solely 
based on a fold change threshold [241, 243]. Publications using this approach are sometimes 
still accepted in high-impact journals [460]. Alternatively, a normal distribution was fitted to all 
fold change estimates and fold changes for proteins in the upper and lower 2.5% quantiles 
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were declared “significant” [455, 461]. Some authors even developed advanced empirical 
Bayes methods to deal with single-run experiments [462]. However, these methods provide 
little to no evidence about which proteins are truly differentially abundant. Indeed, with no 
information on the biological variability between biological repeats, it is impossible to assess 
how an estimator varies from experiment to experiment. For all we know, a protein with a very 
high fold change estimate can be in fact a protein whose abundance is highly variable, but 
unrelated to the studied treatment [463]. Hence, experiments without biological repeats make 
it impossible to infer the results towards the population. It is thus of utmost importance to design 
a study in such a way that samples are included from multiple, independent subjects from the 
population on which one aspires to do inference. For instance, if properly conceived, a study 
containing only BALB/c mice should provide results that are valid for all BALB/c mice. However, 
if a researcher wants to extrapolate these results towards other mice strains, he or she should 
have included at least a few different mouse strains in his/her experimental design. Fig. 4.10 
demonstrates how different levels of replication contribute to the total variability in the system. 

  
Figure 4.10. Different levels of replication do not contribute equally and independently to the total 
variability in the system. In the given example, there are two biological levels of replication (animal and 
cell) and one technical level of replication (measurement). Although the average expression of all 
animals in the population is equal to 10, each of these replication levels contributes to the total 
measurement variability by introducing, in this example, a random error that follows a normal distribution 
with variances 1, 2 and 0.5 respectively (the corresponding standard deviations are shown as horizontal 
lines). Note that in proteomics data, these levels of replication hold for every single protein. Moreover, 
proteomics data has multiple levels of technical replication: MS run, peptide and PSM, as discussed in 
section 3.4. Reprinted with permission from Blainey et al. (2014) [464], copyright © 2014, Springer-
Verlag. 

Still too often, researchers limit themselves to conducting a few “biological” replicates on the 
same cell line, often from the same vial, or worse, they run only one sample in a few technical 
replicates on the mass spectrometer. In the first case, the results can only be extrapolated to 
that specific cell line in that specific lab, but at least, the experimental variability was taken into 
account (i.e. difference due to slightly different handling of the cells, a slightly different 
temperature because the repeats were performed on a different day, etc.). In case only 
technical replicates are used, the results can only be extrapolated to that specific sample. 
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These types of improper study designs are, in my opinion, one of the reasons for the replication 
crisis that plagues the biological sciences. An extensive overview of the statistical 
considerations to bear in mind when designing an MS-based proteomics experiment can be 
found in Oberg and Vitek (2009) [465]. 

4.2.2. Summarization-based methods 

Summarization-based methods for differential analysis start from protein-level summaries. In 
this section, I will explain a few of the most commonly used methods. 

Perseus is one of the most popular software packages amongst mass spectrometrists to 
perform differential analysis [445]. It seamlessly imports MaxQuant output and is equipped 
with a user-friendly GUI that allows for a variety of data manipulations, statistical analyses and 
visualizations. 

Perseus’ default way to perform differential analysis between two groups is via t-tests on 
MaxLFQ-summarized, log2-transformed and preprocessed protein intensities. A t-test relies on 
three assumptions: 

1. Independence. The information about any of the observations does not provide 
additional information about any of the other observations after correction for the 
treatment. This implies that all observations should be at the same level of hierarchy 
and that no pair of observations can be assumed (by design) to be more similar to each 
other than any other pair of observations (after correction for the treatment). 

2. Normality. The normality assumption demands that the observations in both conditions 
are realizations of a normally distributed population. 

3. Homoscedasticity. Homoscedasticity or equality of the variances means that the 
population variances in both conditions are equal. When the homoscedasticity 
assumption is not met, it is however still possible to use the Welch two-sample t-test 
(see below). 

If the rigid assumptions of the t-test are not met, there is no guarantee that the inference will 
be correct. In practice, however, researchers seldom assess these assumptions, especially in 
high-throughput omics contexts. The rationale behind a t-test is to weigh the fold change of a 
protein by its natural variability in abundance. Indeed, as explained above, a high fold change 
is not very meaningful if a protein’s abundance is very variable from sample to sample (Fig. 
4.11). 
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Figure 4.11. Illustration of signal and noise. If the signal increases, the confidence that a protein is 
differentially abundant between the green and the black condition will also increase. However, if for a 
constant signal, the noise increases, the confidence that a protein is differentially abundant will 
decrease. Hence, the signal-to-noise ratio is an ideal statistic to assess differential abundance. 

The t-test will wrap the ratio of signal (fold change estimate) to noise (estimate of the variability 
in protein intensities) in a single test statistic 𝑡 that estimates the signal-to-noise ratio. The t-
test statistic performs superior compared to the use of simple fold change cut-offs because it 
also takes the noise into account. More specifically, the t-test statistic is defined as follows: 

𝑡 =
�̅�1 − �̅�2

𝑠√ 1
𝑅1

+ 1
𝑅2

                                                                                                                                             (Eq. 4.5) 

Here, �̅�1 is the average protein-level log2 intensity in the first treatment group, �̅�2 the average 
log2 intensity in the second treatment group, 𝑅1 the number of observations (MS runs) 
corresponding to the first treatment and 𝑅2 the number of MS runs corresponding to the second 
treatment. 𝑠 is the pooled variance estimate. It is calculated as follows: 

𝑠 =
1

𝑅1 + 𝑅2 − 2
∑∑(𝑦𝑟𝑡 − �̅�t)2

𝑅𝑡

𝑟=1

2

𝑡=1

                                                                                                        (Eq. 4.6) 

Here, 𝑡 = 1,2 is the indicator for each treatment and 𝑟 = 1,… , 𝑅𝑡 the indicator for each MS run 
in a treatment. If the assumptions are correct, the test statistic follows a t-distribution with 𝑅1 +
𝑅2 − 2 degrees of freedom under the null hypothesis. If only the homoscedasticity assumption 
is not met, it is possible to use the Welch two-sample t-test instead. This option is also foreseen 
in Perseus. A Welch two-sample t-test omits the pooled variance estimator and instead 
calculates the t-test statistic as follows: 

𝑡 =
�̅�1 − �̅�2

√𝑠1
2

𝐽1
+ 𝑠2

2

𝐽2

                                                                                                                                                (Eq. 4.7) 

With 𝑠1
2 and 𝑠2

2 the sample variances in both treatments. This test statistic no longer follows a 
t-distribution under the null hypothesis, but it can be approximated as a t-distribution with an 
adjusted number of degrees of freedom through the Welch-Satterthwaite approximation. 
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The null hypothesis of a two-sample t-test states that there is, in reality, no difference in the 
average log2 intensities between both treatments. Next, the calculated test statistic 𝑡 is 
confronted with the t-distribution (Fig. 4.12). 

 
Figure 4.12. Illustration of the determination of p-values based on the t-test statistic. The p-value 
corresponds to the area under the t-distribution for which the t-statistic is as extreme as or more extreme 
than the observed t-statistic. The regions for which a t-statistic would be accepted and rejected at the 
5% significance level given a t-distribution with three degrees of freedom are also given. 

The percentile corresponding to the calculated test statistic can be easily converted into a p-
value. This p-value denotes the probability that a new test statistic, calculated based on an 
independent repeat of the given experiment would be as extreme as, or more extreme than 
the observed test statistic, given that the null hypothesis is true. If this p-value is very small, it 
is not very likely to observe the given result under the null hypothesis. One then chooses to 
reject the null hypothesis and accept the alternative hypothesis, i.e. there is a real difference 
in the average log2 intensities between both treatments. The p-value threshold below which 
one chooses to reject the null hypothesis is called the significance level. Traditionally, this 
significance level is often set at 5%, but in fact, the choice of the significance level is up to the 
researcher. Other thresholds (e.g. 1%, 10%) can also be set, depending on the relative impact 
of falsely reporting non-differentially abundant proteins versus not reporting truly differentially 
abundant proteins. 

In Perseus it is possible to use a moderated t-test statistic. This statistic is calculated as follows: 

𝑡 =
�̅�1 − �̅�2

�̃�
,                                                                                                                                                  (Eq. 4.8) 

with: 

�̃� = 𝑠0 + 𝑠√
1
𝑅1

+
1
𝑅2

                                                                                                                                   (Eq. 4.9) 

Hence, an offset 𝑠0 is provided to the numerator of the t-test statistic. Providing a small offset 
reduces the impact of a protein’s variance estimate 𝑠. Indeed, sometimes it happens that, due 
to random chance, the protein level estimates in the dataset are not very variable. This will 
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result in a small pooled variance estimate 𝑠, and hence a high test statistic 𝑡 and a small p-
value, even if a protein’s fold change is rather small. Such proteins, with very small fold 
changes, but significant p-values due to small variance estimates are often not of interest to 
the researcher. Adding the offset 𝑠0 stabilizes the test statistic. This procedure is known as 
significance analysis of microarrays (SAM) [466]. By adding the offset, the test statistic no 
longer follows a t-distribution and p-values are calculated by permuting the log2 protein 
intensities across all proteins over both treatments. The widespread use of the SAM procedure 
in the proteomics community, whereby 𝑠0 is arbitrarily chosen by the experimenter has been 
criticized as it may lead to biased quantifications [467]. 

The use of t-tests and SAM limits Perseus analyses only to two-group comparisons. Consider 
the CPTAC dataset as an illustration. When comparing condition 6C to condition 6A for 
example, the independence assumption of the t-test is violated. Indeed, samples that were 
analyzed in the same lab are more similar than samples that were analyzed in different labs. 
Therefore, each sample contains some information about the other samples from the same 
lab, thereby invalidating the independence assumption. Summarizing the data from the 
sample- to the lab-level seems like a solution, but besides the loss of information, this does 
not solve the problem that data from the same lab over different conditions are more similar 
than data from different labs over different conditions. 

Therefore, the t-test should be expanded towards a more general framework: linear regression. 
In the linear regression framework, every observed outcome variable 𝑦𝑟 (with index 𝑟 = 1,… , 𝑅 
denoting the MS run) is assumed to originate from a linear combination of covariates 𝑥𝑟𝑚 and 
regression coefficients (also termed “parameters” or “effects”) 𝛽0 and 𝛽𝑚 (with index 𝑚 =
1,… ,𝑀 denoting the model parameters) summed with a random error term 𝜀𝑟 that covers the 
deviation of each observation 𝑦𝑟 from its expected value under the model: 

𝑦𝑟 = 𝛽0 + ∑ 𝑥𝑟𝑚𝛽𝑚

𝑀

𝑚=1

+ 𝜀𝑟                                                                                                                    (Eq. 4.10) 

The linear regression model has four assumptions: 

1. Independence: Independence again denotes that none of the observations holds 
additional information about any of the other observations after correction for the 
covariates 𝑥𝑟1 to 𝑥𝑟𝑀. 

2. Linearity: Linearity between the response and predictors means that the outcome 
variable varies linearly in function of the predictors 𝑥𝑟𝑚 and that there are thus no 
higher-order trends that cannot be accounted for. Linearity implies that the residuals 
(i.e. fraction of the data that cannot be explained by the predictors) have a mean of 0 
and that they are orthogonal on the predictors. 

3. Normality: The errors are assumed to be normally distributed, i.e. ε𝑟~N(0, 𝜎2). 
4. Homoscedasticity: Homoscedasticity requires that the variance of the residuals is equal 

for each covariate pattern. This also implicates that are no trends in the spread of the 
residuals when the residuals are plotted in function of the fitted outcome values. 

At a first glance, the linearity assumption seems to be rather restrictive for linear regression 
modeling. However, linear regression models can be easily adapted to capture higher-order 
(e.g. quadratic effects) or even non-parametric trends (e.g. splines).  

Linear regression models are often written in a compact matrix notation: 

𝒚 = 𝑿𝜷 + 𝜺                                                                                                                                                 (Eq. 4.11) 
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For the CPTAC dataset, our aim is to compare the different conditions to each other. Therefore, 
separate linear regression models can be proposed for every protein 𝑖, whereby the protein-
level log2 intensities are modeled in function of the spike-in conditions. By including lab effects, 
we also account for the blocked experimental design. As the peptide-level intensities are 
summarized to protein-level intensities in each run, we opt here to write an indicator 𝑟 for run 
instead of 𝑗 and we call 𝑅 the number of runs for which a protein-level summary could be 
determined for protein 𝑖. Ultimately, the matrices can be specified as follows for each protein 𝑖 
in the CPTAC dataset, whereby the indicator 𝑖 is suppressed for notational convenience: 

𝒚 = [

𝑦1…
𝑦𝑟
…
𝑦𝑅

]                                                                                                                                                      (Eq. 4.12) 

𝜷 =

[
 
 
 
 
 𝛽0

𝛽2
condition

𝛽3
condition

𝛽2
lab

𝛽3
lab ]

 
 
 
 
 

                                                                                                                                        (Eq. 4.13) 

𝑿 =

[
 
 
 
𝒙𝟏
…
𝒙𝒓…
𝒙𝑹]

 
 
 
=

[
 
 
 
 1…
1
…
1

𝑥12
condition

…
𝑥𝑟2

condition

…
𝑥𝑅2

condition

𝑥13
condition

…
𝑥𝑟3

condition

…
𝑥𝑅3

condition

𝑥12
lab
…

𝑥𝑟2
lab

…
𝑥𝑅2

lab

𝑥13
lab
…

𝑥𝑟3
lab

…
𝑥𝑅3

lab]
 
 
 
 
                                                                   (Eq. 4.14) 

𝜺 = [

𝜀1…
𝜀𝑟
…
𝜀𝑅

]                                                                                                                                                      (Eq. 4.15) 

Here, 𝒚 is a vector containing all log2-transformed protein-level intensities 𝑦𝑟. The vector 𝜷 
contains the effect sizes: 𝛽0 is a constant intercept, which refers to the average log2-
transformed protein intensity in a certain reference condition 1 (e.g. spike-in condition 6A) in a 
reference lab 1 (e.g. LTQ-orbitrap at site 86). 𝛽2

condition and 𝛽3
condition are the effects of the 

second and the third spike-in conditions relative to the reference condition after correction for 
lab-effects. They can be directly interpreted in terms of log2 fold changes between their 
corresponding spike-in condition and the condition that was chosen as a reference condition. 
Given a certain spike-in condition, 𝛽2

lab and 𝛽3
lab denote the effects on the log2 protein intensity 

of the second and the third labs, respectively, relative to the reference lab. To model the 
discrete, non-linear effects of spike-in condition and lab, we make use of so-called “dummy” 
variables whereby e.g. 𝑥𝑟2

condition is equal to 1 if run 𝑟 corresponds to the second spike-in 
condition and 0 otherwise. Idem for the other dummies. 𝜺, finally, is a vector that contains the 
random error terms 𝜀𝑟. For the CPTAC dataset, the regression model can then be written as 
follows: 

𝑦𝑟 = 𝛽0 + ∑𝑥𝑟𝑡
condition𝛽𝑡

condition
3

𝑡=2

+ ∑ 𝑥𝑟𝑏
lab𝛽𝑏

lab
3

𝑏=2

+ 𝜀𝑟                                                                  (Eq. 4.16) 
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Regression models that contain only categorical variables32 are often presented in the more 
condense ANOVA notation whereby the predictor variables 𝒙𝒓 are not written explicitly, but 
indices are used instead to denote different levels of the categorical variable. For the CPTAC 
dataset, the ANOVA notation of the model can be written as follows:  

𝑦𝑡𝑏𝑟 =  𝛽0 + 𝛽𝑡
condition + 𝛽𝑏

lab + 𝜀𝑟                                                                                                     (Eq. 4.17) 

Here, 𝑦𝑡𝑏𝑟 is the log2-transformed protein-level intensity for protein 𝑖 in MS run 𝑟, which 
corresponds to condition (treatment) 𝑡 = 2,3 and lab (block) 𝑏 = 2,3. 𝛽0 is the constant 
intercept. 𝛽𝑡

condition is the effect of condition 𝑡 relative to the reference condition, 𝛽𝑏
lab the effect 

of lab 𝑏 relative to the reference lab and 𝜀𝑟 the random error term. The estimated condition 
effects �̂�𝑡

condition are the effects of interest.  

The most common way to estimate the parameters is by least squares, i.e. by minimizing the 
sum of the squared distances of the observations to the model fit: 

‖𝒚 − 𝑿𝜷‖2 = (𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷)                                                                                                      (Eq. 4.18) 

This results in the following estimator for 𝜷: 

�̂� = (𝑿𝐓𝑿)−𝟏𝑿𝐓𝒚                                                                                                                                     (Eq. 4.19) 

In the least-squares context, the estimator for the variance of �̂� is given by: 

Var̂(�̂�) = �̂�2(𝑿𝐓𝑿)−1                                                                                                                              (Eq. 4.20) 

Herein, �̂�2 is an unbiased estimator for the error variance: 

�̂�2 =
‖𝒚 − 𝑿�̂�‖

2

𝑅 − 𝑀
,                                                                                                                                      (Eq. 4.21) 

with 𝑅 the number of runs and 𝑀 the number of estimated parameters in the mean model. The 
estimator for the standard error on the 𝑚th parameter estimator �̂�𝑚 can also be written as: 

�̂��̂�𝑚
= �̂�√𝜐𝑚,                                                                                                                                              (Eq. 4.22) 

with 𝜐𝑚 = (𝑿𝐓𝑿)𝑚,𝑚
−1  the 𝑚th diagonal element of (𝑿𝐓𝑿)−1. Under the null hypothesis of no 

differential abundance, the following test statistics follows a t-distribution with 𝑅 − 𝑀 degrees 
of freedom: 

�̂�𝑚 − 𝑎
�̂��̂�𝑚

~𝑡𝑅−𝑀                                                                                                                                             (Eq. 4.23) 

Here, �̂�𝑚 is the estimated value for the 𝑚th model parameter 𝛽𝑚 (typically the effect of a certain 
treatment; in the case of the CPTAC study: the spike-in condition), 𝑎 the value of 𝛽𝑚 under the 
null hypothesis (typically zero) and �̂��̂�𝑚

 the estimated variance on the estimate of 𝛽𝑚. Given 
the null distribution, a p-value can be calculated for each parameter, denoting its statistical 
significance. Note that some research questions (e.g. the difference in protein abundance 
between two non-reference conditions) require statistical inference on a linear combination of 

                                                
32 Categorical variables are variables that do not correspond to any measurable quantities. Examples include 

gender, different compounds, different treatments, etc. This is opposed to numerical variables that correspond to 
measurable quantities (e.g. doses of a certain compound, time after treatment, blood pressure,). 
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multiple model parameters, so-called statistical contrasts. Just as for single parameters, t-
statistics and p-values can also be calculated for contrasts. 

The current version (3.12.2) of the popular Bioconductor package MSstats makes use of linear 
regression at the protein level. These protein-level summaries are obtained after imputation at 
the PSM-level data under a MNAR assumption followed by a median polish summarization 
[446]. 

The popular Bioconductor package limma was originally developed for the analysis of 
microarray data [468], but has also become popular for differential proteomics analyses [469]. 
Limma makes use of the huge amounts of data in high-throughput omics datasets to borrow 
strength across proteins. More specifically, limma assumes that the residual variances from 
each regression model are composed of a common variance shared by all proteins (models) 
and a protein-specific variance. This allows to obtain a more stable estimate of the error 
variance, which is especially beneficial for proteins identified by only a few peptides. Indeed, 
their variances are stabilized by relying on the variances estimated for proteins with much more 
data. 

Limma uses an empirical Bayes framework to provide a statistically sound alternative to SAM 
for linear regression models. More specifically, limma proposes a Bayesian model which 
assumes the following prior distribution on the error variance 𝜎𝑖

2 for each protein 𝑖 (𝑖 = 1,… , 𝐼): 

1
𝜎𝑖

2 ~
1

𝑑0𝜎0
2 𝜒𝑑0

2                                                                                                                                               (Eq. 4.24) 

In this formula, 𝜎0
2 is a prior variance and 𝜒𝑑0

2 denotes a 𝜒2 distribution with 𝑑0 degrees of 
freedom. In limma, the user does not define the value of the prior variance 𝜎0

2 and the prior 
degrees of freedom 𝑑0, but estimates 𝜎0

2 and 𝑑0 based on all protein error variance estimates 
�̂�𝑖

2 and the degrees of freedom 𝑑𝑖 = 𝑀 − 𝑅 of all proteins in the dataset. Statistical inference 
methods whereby the priors are estimated based on the data are termed empirical Bayesian 
methods. 

Limma’s empirical Bayes estimators for the prior variance 𝜎0
2 and the prior degrees of freedom 

𝑑0 have closed-form solutions that are computationally very fast. Furthermore, instead of 
estimating full posterior distributions, limma calculates a maximum a posteriori point estimate 
�̃�𝑖 for the residual standard deviations: 

�̃�𝑖 = √
𝑑𝑖�̂�𝑖

2 + 𝑑0�̂�0
2

𝑑𝑖 + 𝑑0
                                                                                                                                  (Eq. 4.25) 

Herein, �̂�𝑖 is the residual standard error for protein 𝑖 and �̂�0
2 the estimated common variance 

over all proteins. Substituting the residual standard deviation by its maximum a posteriori 
estimator results in a moderated t-test statistic: 

�̃�𝑖𝑚 =
�̂�𝑖𝑚 − 𝑎
�̃�𝑖√𝜐𝑖𝑚

                                                                                                                                            (Eq. 4.26) 

It can be shown that the moderated t-test statistic �̃�𝑖𝑚 follows a t-distribution with 𝑑𝑖 + 𝑑0 
degrees of freedom, with 𝑑𝑖 equal to 𝑅 − 𝑀, as indicated before. Hence, not only are the 
variances being stabilized as in SAM, but, contrary to SAM, the null distribution follows an 
analytical t-distribution. Note that the degrees of freedom of this t-distribution are augmented 
with 𝑑0 as compared to the degrees of freedom of the null distribution of the ordinary t-test. 
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This reflects the increased power of the moderated t-test due to the borrowing of strength 
across proteins. 

4.2.3. Peptide-based models 

Summarization-based approaches, especially the naive ones such as those based on mean 
and median summarization, use summary values that are based on different peptides and 
different numbers of peptides. When such summaries are compared to each other, a bias will 
be introduced due to the comparison of different peptides with non-negligible differences in 
ionization efficiency. Also, differences in precision due to the different numbers of peptides for 
each summary are ignored. Instead of summarizing PSMs directly to the protein level, it is 
however also possible to keep the data at the PSM or peptide-level and to include the 
hierarchical nature of the data directly into the statistical model. We call these models peptide-
based models (see chapter 8). They have the advantage that they correct for differences in 
ionization efficiencies between different peptides and for differences in precision due to 
different numbers of identified peptides in each MS run. Compared to summarization-based 
methods, two additional parameters need to be added to the model. A peptide-based linear 
regression model for each protein 𝑖 in the CPTAC experiment then looks as follows (whereby 
the indicator 𝑖 is again suppressed for notational convenience): 

𝑦𝑝𝑟 =  𝛽0 + 𝛽𝑡
condition + 𝛽𝑏

lab + 𝛽𝑝
peptide + 𝑢𝑟

run + 𝜀𝑝𝑟                                                                  (Eq. 4.27) 

The response variable 𝑦𝑝𝑟 is now the log2-transformed intensity of peptide 𝑝 in run 𝑟. 𝛽𝑝
peptide 

is added to account for the effect of the 𝑝th peptide. The effect for MS run, 𝑢𝑟
run, is added 

because for protein 𝑖, there can be multiple peptides identified in the same run. This is an 
important point: the run effect needs to be included because peptide intensities within the same 
run are expected to be positively correlated. Indeed, due to the run-specific effects described 
in 3.4, peptide intensities from a protein within the same run will behave more similar compared 
to peptide intensities that were measured across different runs. However, if the run effect were 
modeled as a standard fixed effect, statistical inference would only be valid for within-run 
comparisons because the run-to-run variability would be removed from the model. When the 
run effect is modeled as a random effect, whereby it is assumed that 𝑢𝑟

run~N(0, 𝜎𝑢
2), both 

within- and between-run variability are taken into account. This is important in label-free 
proteomics experiments because the treatment will vary between runs, but not within runs. The 
run effect thus both accounts for the correlation of all peptides of protein 𝑖 identified within run 
𝑟 and enables a correct statistical inference for between-run comparisons. Statistical models 
that contain both fixed and random effects are referred to as mixed models and allow to model 
correlation structures in the data.  This mixed model structure for peptide-level data was first 
proposed by Daly et al. (2008) [470]. 

Clough et al. (2009) [471] propose a specific parameterization for protein-wise mixed models: 

𝑦𝑓𝑟 =  𝛽0+𝛽𝑓
feature + 𝛽𝑡

condition+𝛽𝑓𝑡
feature:condition + 𝛽𝑏

biorep + 𝜀𝑓𝑟                                            (Eq. 4.28) 

These authors later implemented this model in the proteomics quantification package MSstats 
prior to version 3, in which MSstats used to model the data directly at the feature (PSM) level 
[409, 472]. 

Herein, 𝛽𝑓
feature is the effect of the 𝑓th feature (PSM). 𝛽𝑓𝑡

feature:condition is an interaction effect 
between feature and condition. Such an interaction allows the effect of interest (condition) to 
affect each feature differently. 𝛽𝑏

biorep is then the effect of the 𝑏th biological repeat. In MSstats, 
the experimenter can opt to encode 𝛽𝑏

biorep either as a fixed effect, which is useful when 𝛽𝑏
biorep 
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is a blocking factor, or as a random effect, which is useful in the case of biological replication. 
Indeed, biological replication caused by e.g. multiple measurements on the same animals also 
leads to correlation in the data and should therefore be modeled as random. The disadvantage 
of the former MSstats framework is that it does not allow to correctly model the within-sample 
correlation unless the samples coincide with the biological repeats. Moreover, just like the 
present MSstats implementation, it only allows to model experiments that fit into this specific 
model framework. 

It has to be noted that, if the summarization step is performed correctly, the estimated 
differences in ionization efficiencies can in fact be removed from the data. Hence, the only 
clear advantage of peptide-based models is that they account for difference in precision due 
to different numbers in peptides. However, this advantage seems to be rather small in practice, 
which may be one of the reasons why MSstats in their most recent version, reverted to a faster, 
summarization-based workflow. 

The very first peptide-based model for label-free shotgun proteomics was proposed in 2008, 
when Bukhman et al. proposed the following model [473]: 

𝑦𝑝𝑟 = 𝛾𝑝 + 𝜓𝑝 ∑𝛿𝑖𝑝𝜃𝑖𝑟 + 𝜀𝑝𝑟
𝑖

                                                                                                             (Eq. 4.29) 

Herein, 𝑦𝑝𝑟 is the log-transformed intensity of peptide 𝑝 in sample (or MS run, assuming each 
sample was only run once) 𝑟, 𝛾𝑝 the background log-transformed intensity of peptide 𝑝, 𝜓𝑝 the 
peptide-specific effect of peptide 𝑝, 𝛿𝑖𝑝 an indicator whether peptide 𝑝 maps to protein 𝑖 (1 if 
the peptide maps and 0 if the peptide does not map), 𝜃𝑖𝑟 the abundance of protein 𝑖 in sample 
𝑟 and 𝜀𝑝𝑟 a random error term. The inclusion of the 𝜓𝑝 term allows the sample effect 𝜃𝑖𝑟 to be 
different from peptide to peptide. Note that in this model, all proteins are modeled together and 
that this model allows to use shared peptides, although the authors exclude peptides that are 
shared by three or more proteins. 

Another peptide-based model was proposed by Henao et al. (2012) [474]: 

𝑦𝑝𝑠𝑏 = 𝑚𝑝𝑏 + ∑𝑎𝑙𝑝𝑧𝑙𝑠 + ∑𝑏𝑖𝑝𝑤𝑖𝑠 + 𝜀𝑝𝑠                                                                                       (Eq. 4.30)
𝑖𝑙

 

Herein, 𝑦𝑝𝑠𝑏 is the average log-transformed intensity of peptide 𝑝 in sample 𝑠 in batch 𝑏. 𝑚𝑝𝑏 
is the average intensity of peptide 𝑝 in batch 𝑏. This model also accounts for the correlation of 
certain peptides within the same sample (e.g. peptides that behave similarly due to 
physicochemical similarities). To capture this correlation,  𝑧𝑙𝑠 represents the 𝑙th intra-sample 
effect for sample 𝑠, while 𝑎𝑙𝑝 are the peptide-specific effects that correspond to each of these 
intra-sample effects. 𝑤𝑖𝑠 represents the effect of interest: the effect of protein 𝑖 in sample 𝑠, 
while 𝑏𝑖𝑝 models the impact of peptide 𝑝 on the effect of protein 𝑖. 𝜀𝑝𝑠 is a random error term. 
From the model specification, it is clear that this model will be strongly over-parameterized for 
most, if not all proteins. These authors, however, tried to tackle the quantification problem from 
a Bayesian perspective. In classic frequentist statistics, the aim is to estimate the true value of 
one or more unknown population parameters and provide estimates on the uncertainty of these 
parameter estimates. Contrary, in Bayesian statistics, the population parameters are believed 
upfront to follow certain distributions, the prior distributions. When experiments are performed, 
evidence (data) is collected that might confirm or challenge this prior belief. The prior 
distributions are then updated based on the data by making use of Bayes’ theorem and result 
in posterior distributions that reflect the statistician’s new beliefs after confronting his beliefs 
with the data. 
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The idea of including a researcher’s beliefs into a statistical method is very sensible because 
experiments are rarely, if ever, performed without any prior knowledge. Indeed, even if nothing 
is known about a protein in the literature, a protein’s true log2 fold change will either be 0 
(unregulated), or a positive or negative value rather close to zero (up- or downregulated). Very 
extreme log2 fold changes such as +1000 or -1000 are highly unlikely and can therefore be 
given a very low prior probability. And, even if absolutely nothing is known or can be assumed 
about an experiment and all values are equally likely, a so-called uninformative prior can be 
used. In this respect, the framework of Bayesian statistics is very elegant because it allows the 
posterior distribution of a previous experiment to be used as a prior distribution in a follow-up 
experiment and thus to organically update our beliefs based on the data. 

Henao et al. (2012) indeed place Gaussian (normal) priors on the average abundance 𝜇𝑖𝑚 and 
the noise component 𝜀𝑖𝑛 [474]. Gaussian priors are also assigned to 𝑎𝑖𝑙, while a Laplace prior 
is set on 𝑧𝑙𝑛 to allow these intra-sample effects to shrink to 0 if necessary. 𝑏𝑖𝑘 is also given a 
normal prior, but hyperpriors are set in such a way that proteins can also be correlated with 
each other in a hierarchical tree structure. Bayesian models have also been proposed to 
include the effects of shared peptides [475]. 

Disadvantages of the Bayesian framework are that the choice of the prior is always somewhat 
arbitrary and based on the beliefs of the researcher. Moreover, Bayesian inference models 
mostly do not have a closed-form expression for the posterior distributions. Therefore, the 
posterior distributions need to be approximated by repeated sampling, e.g. by making use of 
Markov Chain Monte Carlo (MCMC) methods, which are computationally very intensive. 

Another persistent issue in the proteomics field are missing values, hence the usual custom of 
including an imputation step in a typical workflow. Instead of imputing missing values, it is also 
possible to handle missing values within the framework of the statistical model. For shotgun 
proteomics data, this approach was pioneered by Karpievitch et al. (2009) [425]. In their 
censored regression model, peptide intensities are assumed to be either missing completely 
at random, or missing not at random if a peptide’s intensity falls below a certain censoring 
threshold 𝑐𝑖𝑝 for each peptide 𝑝 corresponding to protein 𝑖. These authors model all proteins 
together in one model. It is assumed that all log2-transformed intensities originate from a 
normal distribution with mean 𝜇𝑖𝑝𝑡 and standard deviation 𝜎𝑖𝑝. The expected intensity for a 
peptide 𝑝 of a protein 𝑖 in treatment condition 𝑡 can then be described as follows: 

𝜇𝑖𝑝𝑡 = 𝛽0 + 𝛽𝑖
protein + 𝛽𝑖𝑝

peptide + 𝛽𝑖𝑡
condition                                                                                     (Eq. 4.31) 

In each MS run 𝑟, the probability of a peak to be missing at random is assumed to be equal to 
𝜋𝑟. If 𝑊𝑖𝑝𝑡𝑟 is the probability that a log2-transformed intensity 𝑦𝑖𝑝𝑡𝑟 is observed (0 if observed 
and 1 if unobserved), the probability that intensity 𝑦𝑖𝑝𝑡𝑟 will be missing can be written as follows: 

𝑃(𝑊𝑖𝑝𝑡𝑟 = 1) = 𝜋𝑟 + (1 − 𝜋𝑟)Φ(
𝑐𝑖𝑝 − 𝜇𝑖𝑝𝑡

𝜎𝑖𝑝
)                                                                                 (Eq. 4.32) 

In this expression, Φ is the cumulative distribution of the normal distribution with mean equal 
to 0 and standard deviation equal to 1. This expression shows that peptides are missing at 
random (MAR, conditionally on run 𝑟) with a probability 𝜋𝑟. Any peptide that is not MAR will be 
MNAR if its log2-transformed intensity is lower than the peptide-specific censoring threshold 
𝑐𝑖𝑝. The current implementation of MSstats uses a very similar model to impute missing values 
prior to summarization to the protein level, albeit without the random missingness component 
[446]. In 2012, Koopmans et al. proposed an empirical Bayesian random censoring threshold 
model to cope with missing values in a summarization-based context, but just like most 
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Bayesian inference models, the posterior does not have a closed-form solution and needs to 
be constructed by repeated MCMC sampling, which makes it computationally intensive [476]. 

4.2.4. Ridge regression 

Due to low protein abundances, limited numbers of tryptic peptides per protein and the data-
dependent nature of the acquisition, the number of observed peptides is relatively small for 
most of the proteins in a typical label-free shotgun proteomics dataset. This makes protein-
wise statistical modeling challenging because even relatively simple models are prone to over-
fitting for such proteins. Over-fitting occurs when a model is too complex with respect to the 
amount of data that is available: the model is fit too closely to the observed data but will not 
generalize towards new data. 

Ridge regression is a way to reduce over-fitting. Recall that for ordinary least squares, the 
following loss function is minimized: 

‖𝒚 − 𝑿𝜷‖2 = (𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷)                                                                                                      (Eq. 4.33) 

Ridge regression adds a penalty term to this loss function (indicated in red): 

(𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷) + 𝜆𝜷T𝑫𝜷,                                                                                                             (Eq. 4.34) 

with 

𝐷 = [
0 𝟎1×(𝑀−1)

𝟎(𝑀−1)×1 𝑰(𝑀−1)×(𝑀−1)
]                                                                                                            (Eq. 4.35) 

Herein, 𝟎 is a matrix with only zeros and 𝑰 is the unit matrix33. Matrix D allows certain 
parameters to be unpenalized by setting their corresponding diagonal elements to 0. In the 
given example, only the intercept 𝛽0 remains unpenalized. The penalty term increases if the 
absolute values of the parameters 𝜷 increase. This prevents over-fitting by shrinking model 
parameters towards 0 (Fig. 4.14). 

 
Figure 4.14. Graphical representation of the ridge estimate and the ordinary least squares (OLS) 
estimate in an example case where two model parameters 𝛽1 and 𝛽2 need to be estimated. The OLS 

                                                
33 The unit matrix is a matrix with 1 on its diagonal elements and 0 on its off-diagonal elements. The model thus 

implies equal variances for all covariates and no correlation between the covariates. 
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estimate minimizes the residual sum of squares (RSS), while the ridge estimates are shrunken towards 
0. 

When fitting this regression model, the aim is to minimize the mean squared error (MSE): 

MSE(�̂�) ≝ E [(�̂� − 𝜷)
2
]                                                                                                                        (Eq. 4.36) 

It can be shown that the MSE can also be written as [477]: 

MSE(�̂�) = E [(�̂� − E[�̂�])
𝟐
] + E[(E[�̂�] − 𝜷)]

2                                                                                 (Eq. 4.37) 

= Var(�̂�) + Bias(�̂�)
2                                                                                                                              (Eq. 4.38) 

In 1956, Stein showed that for models with 3 or more parameters, certain shrinkage estimators 
outperform the least-squares estimator in terms of MSE [478]. Shrinkage estimators introduce 
a small bias but reduce the overall MSE due to a strong reduction in the variance of the 
estimator. Therefore, such shrinkage estimators are more stable overall. Leave-one-out cross-
validation is one way to tune the penalty parameter. Cross-validation enables to assess how 
accurate a model is on new, unobserved data. In leave-one-out cross-validation, the data is 
fitted to the dataset from which one observation 𝑗 is removed. This allows to estimate the MSE: 
the model’s estimate �̂�𝑗 for observation 𝑗 can be seen as a “new” data point. With cross-
validation, the following estimator for the overall mean squared error is minimized towards 𝜆 
[479]: 

𝑓(𝜆) =
1
𝐽
∑(𝒙𝒋�̂�(𝑗)(𝜆) − 𝑦𝑗)

2
𝐽

𝑗=1

                                                                                                             (Eq. 4.39) 

Herein �̂�(𝑗)(𝜆) is a vector of ridge parameter estimates based on the data from which the 𝑗th 
observation is removed and [𝑿�̂�(𝑗)(𝜆)]𝑗 the leave-one-out model estimate for the 𝑗th 
observation 𝑦𝑗. Leave-one-out cross validation requires iteratively fitting ridge models without 
the 𝑗th observation until convergence. It is also possible to repeatedly leave out 𝐾 observations 
and reduce the squared distances of the leave-𝐾-out model fit to the 𝐾 observations that were 
left out. 

As explained in 4.2.3, peptide-based models require the inclusion of a random sample effect 
to allow correct statistical inference. Leave-one-out cross-validation would require iterative 
fitting of a mixed model. There is however a link between mixed models and ridge regression, 
which is tempting to exploit when introducing ridge regression in a mixed model context as this 
would give a big computational advantage. As a demonstration of this link, assume the 
following mixed model: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺                                                                                                                                      (Eq. 4.40) 

With 𝑿 the design matrix for the fixed effects 𝜷 =

[
 
 
 
 
 𝛽

0

𝛽1…
𝛽𝑚
…
𝛽𝑀]

 
 
 
 
 

, 𝒁 the design matrix for the random 

effects 𝒖 = [

𝑢1…
𝑢𝑛
…
𝑢𝑁

] with 𝒖~MVN(𝟎, 𝜎𝑢
2𝑰). Herein, MVN denotes the multivariate normal 
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distribution, 𝟎 a 1 × 𝑁 column vector with zeros, 𝜎𝑢
2 the variance on the random effects and 𝑰 

the unit matrix. 𝜺~MVN(𝟎, 𝜎2𝑰) denotes the random error terms. We maximize the joint 
likelihood of y, 𝜷 and 𝒖 towards 𝜷 and 𝒖: 

L(𝑦, 𝜷, 𝒖) = L(𝑦, 𝜷|𝒖)L(𝒖)                                                                                                                     (Eq. 4.41) 

=
1

√2𝜋𝜎2
𝑒−(𝒚−𝑿𝜷−𝒁𝒖)T(𝒚−𝑿𝜷−𝒁𝒖) 2𝜎2⁄ 1

√2𝜋𝜎𝑢
2
𝑒−(−𝒖)T(−𝒖) 2𝜎𝑢

2⁄                                                       (Eq. 4.42) 

Log-transformation results in: 

l(𝑦, 𝜷, 𝒖) = −
𝐽
2

log(2𝜋) −
𝐽
2

log(𝜎2) −
(𝒚 − 𝑿𝜷 − 𝒁𝒖)T(𝒚 − 𝑿𝜷 − 𝒁𝒖)

2𝜎2  

−
𝑁
2

log(2𝜋) −
𝑁
2

log(𝜎𝑢
2) −

𝒖T𝒖
2𝜎𝑢

2                                                                                                           (Eq. 4.43) 

With 𝑁 the number or random effect parameters. After replacing 𝜎𝑢
2 by 𝜎2 𝜆⁄  and multiplying 

by -2, this is equivalent with minimizing the following expression: 

𝐽 log(2𝜋) + 𝐽 log(𝜎2) +
(𝒚 − 𝑿𝜷 − 𝒁𝒖)T(𝒚 − 𝑿𝜷 − 𝒁𝒖)

𝜎2 + 𝑁 log(2𝜋) + 𝑁 log(
𝜎2

𝜆 ) +
𝜆𝒖T𝒖
𝜎2  

                                                                                                                                                                        (Eq. 4.44) 

Set 𝜽 = [𝜷𝒖] and 𝑪 = [𝑿 𝒁]. Minimization to 𝜽 only involves: 

(𝒚 − 𝑪𝜽)T(𝒚 − 𝑪𝜽) + 𝜆𝜽T𝑫𝜽,                                                                                                              (Eq. 4.45) 

which is exactly the ridge regression loss function. Hence, parameters with a ridge penalty can 
be estimated by parameterizing them as random effects in a mixed model. In peptide-based 
models, where a random run effect needs to be included to account for within-run correlation, 
this link between mixed models and ridge regression can be exploited to estimate parameters 
with a ridge penalty, as we will see in Chapter 9.1. After optimizing the loss function, we obtain 
the following estimator: 

�̂� = [�̂�
�̂�
] = (𝑪T𝑪 + �̂�𝑫)

−1𝑪T𝒚                                                                                                               (Eq. 4.46) 

This estimator for �̂� is termed the best linear unbiased predictor (BLUP). An estimate for 𝜎2 
can be obtained by plugging in the estimates �̂� into the log likelihood and solving this profile 
log-likelihood towards 𝜎2. In practice, we make use of the restricted maximum likelihood 
(REML) criterion that also accounts for the degrees of freedom due to the fixed effects in the 
model. Conditional on 𝒖, the variance on �̂� can be estimated as follows: 

Var̂ ([ �̂�
�̂� − 𝒖

] |𝒖) = �̂�2(𝑪T𝑪 + �̂�𝑫)
−1𝑪T𝑪(𝑪T𝑪 + �̂�𝑫)

−1                                                             (Eq. 4.47) 

This variance estimator, however, does not account for the bias in the estimator �̂�. Hence, 
inference based on this estimator will only be correct when the bias is negligible. However, 
since E(𝒖) = 0, the BLUP estimator �̂� is unbiased on average over the distribution of u. 
Unconditional on 𝒖, the variance estimator on �̂� is given by: 

Var̂ ([ �̂�
�̂� − 𝒖

]) = �̂�2(𝑪T𝑪 + �̂�𝑫)
−1                                                                                                      (Eq. 4.48) 
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The estimator also accounts for the bias introduced by the penalized regression and is 
therefore somewhat larger than the conditional variance estimator. Ridge regression has been 
used in other omics fields to predict the effects of various molecular markers on organismal 
phenotypes [480, 481]. 

4.2.5. Robust regression with M estimation 

Outliers are observations with extreme response values. If such observations also have a 
strong leverage (i.e. if they have a large distance to the average predictor values), the 
observation will have a strong influence on the model fit: the model will be fit close to the 
influential observation due to a lack of neighboring observations. Outliers are more likely to 
correspond to less reliable measurements. Indeed, an extremely high intensity value could for 
example have originated from a spike in electrospray voltage, while a very low intensity value 
is very likely to be missing in a repeated run due to intensity-dependent missingness. 
Moreover, even if the outlier is a valid measurement, it is often undesirable that a single 
observation has a very strong impact on the model.  

Robust regression with M estimation aims to minimize the maximal bias of the estimators. With 
robust regression, statistical tests are only asymptotically valid. However, if the errors are 
normally distributed, M estimators have a high efficiency. Recall the OLS loss function: 

‖𝒚 − 𝑿𝜷‖2 = (𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷)                                                                                                      (Eq. 4.49) 

This function is also called the L2 loss function since it minimizes the L2 norm of 𝒚 − 𝑿𝜷. With 
M estimation, the following loss function is minimized: 

Ω(𝒚 − 𝑿𝜷)                                                                                                                                                   (Eq. 4.50) 

The function Ω(𝑥) should have the following characteristics: 

• Ω(𝑥) is symmetric 
• Ω(𝑥) has a minimum at Ω(0) = 0 
• Ω(𝑥) is positive for all 𝑥 ≠ 0 
• Ω(𝑥) increases as 𝑥 increases 

Given these conditions, the estimator �̂� is the solution to the equation: 

ω(𝒚 − 𝑿𝜷) = 0                                                                                                                                          (Eq. 4.51) 

Where ω is the derivative of Ω. For �̂� to possess the robustness property, ω should be bounded 
(i.e. there exists a real number 𝑀 such that |𝜔(𝑥)| ≤ 𝑀 for all values of 𝑥). However, robust ω 
functions are non-linear in 𝜷 and typically do not have a closed-form solution. We will therefore 
recast the problem. 

When location parameters 𝜷 and a scale parameter 𝜎 have to be estimated simultaneously, 
we minimize: 

Ω(
𝒚 − 𝑿𝜷

𝜎
)                                                                                                                                                (Eq. 4.52) 

Whereby: 

ω(
𝒚 − 𝑿𝜷

𝜎
) = 0                                                                                                                                        (Eq. 4.53) 
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Define 𝜼 = 𝒚−𝑿𝜷
𝜎

 and weight function 𝑤(𝜼) = ω(𝜼) 𝜼⁄ . The last estimation equation can then be 
rewritten as: 

𝑤(𝜼)𝜼 = 0                                                                                                                                                   (Eq. 4.54) 

This expression can be solved as an iteratively reweighted least-squares (IRWLS) problem. 
Herein, the weights 𝑤(𝜼) are kept constant in 𝜼 and the expression is solved to 𝜷. Then, the 
weights are recalculated based on the new �̂� and the procedure is repeated until convergence. 

Examples of robust loss functions Ω include: 

• Huber: ΩHuber = {x
2 2⁄                  if |𝑥| ≤ 𝑘

𝑘(|𝑥| − 𝑘/2)   if |𝑥| > 𝑘,                                                                      (Eq. 4.55) 

with 𝑘 = 1.345 the default tuning constant 

• “Fair”: ΩFair = 𝑐2 (|𝑥|
𝑐

− log (1 + |𝑥|
𝑐
)),                                                                                (Eq. 4.56) 

with 𝑐 = 1.3998 the default tuning constant 
• Cauchy: ΩCauchy = 𝑐2

2
(1 + (𝑥 𝑐⁄ )2),                                                                                    (Eq. 4.57) 

with 𝑐 = 1.3849 the default tuning constant 

The default tuning constants are chosen in such a way that the methods have a 95% 
asymptotic efficiency when applied to standard normal data. Fig. 4.15 demonstrates the impact 
of robust regression with M estimation with Huber weights. 

 

Figure 4.15. Plot of the residuals 𝑦𝑗 − �̂�𝑗 in function of the model-fitted values for all log2-tranformed 
peptide intensities �̂�𝑗 (𝑗 = 1,… , 637) of yeast protein SYKC in the CPTAC dataset after fitting regression 
model (Eq. 4.27) robustly with Huber weights. The sizes of the datapoints are proportional to the Huber 
weights in the IRWLS procedure. Note that observations with large residuals have small weights, which 
is indicative of the robustness property. 

Examples of common loss functions and their corresponding weight functions are plotted in 
Fig. 4.16 and 4.17, respectively. An extensive overview of robust loss functions can be found 
in Bolstad (2004) [482].  
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Figure 4.16. The default L2 loss function and examples of loss functions Ω that are commonly used in 
robust M estimation. Figure adapted from Bolstad (2004) [482].  
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Figure 4.17. Examples of the weight functions 𝑤 that are used in the IRWL procedure to obtain the 
corresponding loss functions in Fig. 4.15. Figure adapted from Bolstad (2004) [482]. 

4.2.6. Counting-based methods 

To quantify proteins with any of the above-described methods, it is necessary to extract ion 
intensities, which generally requires, as shown in section 3.3, rather advanced algorithms that 
are implemented in specialized software. Moreover, reliable protein quantification with these 
methods requires, depending on the study design, basic to advanced statistical knowledge. It 
was soon noticed that simply counting the number of MS² spectra that map to a certain protein 
provides a reasonably good approximation of a protein’s abundance [483, 484]. This makes 
sense because the more abundant a protein, the more of its peptide ions that can be expected 
to be detectable above noise levels. Moreover, the more abundant a peptide, the longer its 
elution time and hence the higher the chance that it will be targeted for fragmentation more 
than once, thus generating more MS² spectra. Spectral counting also deals more naturally with 
missing values: as a zero count [90]. Spectral counting became very appealing to many 
researchers, not because of its reliability, but mainly because of its ease-of-use. Indeed, 
researchers could now simply count the number of MS² spectra mapping to a protein and 
directly divide these numbers in order to obtain a fold change estimate. However, when the 
significance of such fold changes needs to be assessed, statistics are again needed. A natural 
framework for handling count data is Poisson regression. Poisson regression assumes that 
the spectral counts 𝑥𝑖𝑟 for each protein 𝑖 in each run 𝑟 follow a Poisson distribution: 



80 

𝑥𝑖𝑟~Poisson(𝜇𝑖𝑡𝑏)                                                                                                                                     (Eq. 4.58) 

This makes sense because a Poisson distribution is typically used to model the number of 
times an event occurs (detecting a spectrum that maps to protein 𝑖) during a fixed time interval 
(an MS run). For the CPTAC example, we can make use of the generalized linear model 
framework, to model the first two moments (mean and variance) of the spectral counts. As 
counts always have a lower bound of 0 and negative means are not meaningful for count data, 
we make use of a log-link function to allow unbounded estimation of the model parameters. 
For the CPTAC dataset, the model can be specified as follows: 

log(𝜇𝑖𝑡𝑏) = 𝛽𝑖
0 + 𝛽𝑖𝑡

condition + 𝛽𝑖𝑏
lab                                                                                                       (Eq. 4.59) 

Note that for a Poisson distribution the mean 𝜇𝑖𝑡𝑏 and the variance 𝜐𝑖𝑡𝑏 are equal. 

Here, 𝛽𝑖
0 is the intercept, 𝛽𝑖𝑡

condition is the effect of spike-in condition 𝑡 and 𝛽𝑖𝑏
lab is the effect of 

lab 𝑏. By using a Poisson distribution, it is implied that the variance in the data 𝜐𝑖𝑡𝑏 is equal to 
the mean 𝜇𝑖𝑡𝑏. Such a mean-variance relationship is very restrictive. In reality, the residual 
variance is often larger (over-dispersion) or sometimes even smaller (under-dispersion) than 
what would be expected under the Poisson distribution. The mean-variance relationship can 
however be relaxed by making use of a quasi-Poisson regression model [485].  

Note that quasi-Poisson regression does not model the full distribution, but only the first two 
moments of the distribution: the mean 𝜇𝑖𝑡𝑏 and the variance 𝜐𝑖𝑡𝑏. The specification of the 
mean model is identical to Poisson regression. However, the variance is more flexible: 

𝜐𝑖𝑡𝑏 = 𝜑𝑖𝜇𝑖𝑡𝑏                                                                                                                                               (Eq. 4.60) 

The factor 𝜑𝑖 allows to to correct for over- or under-dispersion. Count data can also be 
proposed to follow a negative binomial distribution, which assumes a quadratic mean-variance 
relationship: 

𝜐𝑖𝑡𝑏 = 𝜇𝑖𝑡𝑏 + 𝜑𝑖𝜇𝑖𝑡𝑏
2                                                                                                                                   (Eq. 4.61) 

A negative binomial distribution reduces to a Poisson distribution if 𝜑𝑖 is zero. Negative 
binomial generalized linear models are implemented in the popular RNA sequencing 
quantification packages EdgeR [486, 487] and DESeq2 [488], which have also been applied 
in proteomics contexts [489]. 

Other statistical models have been proposed as well to deal with count data in proteomics, 
including a generalized linear mixed effects Poisson regression model in which all proteins are 
modeled together [490], a beta-binomial model [491] and Bayesian models [492]. 

Peptide counting is an alternative to spectral counting. In peptide counting, the number of 
unique peptides instead of the number of unique PSMs that match to each protein are counted. 
Some authors reported that spectral counting is more accurate and more reproducible than 
peptide counting which is in turn more reproducible than sequence coverage-based 
approaches [483, 493, 494]. This is probably because spectral counting is more fine-grained 
than peptide counting (there at least as much PSMs as peptides per protein), which might 
make it more feasible to quantify smaller differences in abundance. 

A very simple peptide counting method is the Exponentially Modified Protein Abundance Index 
(emPAI). For each protein 𝑖, the emPAI is calculated as follows [174]: 

emPAI𝑖 = 10𝑛𝑖
pep 𝑛𝑖

predpep⁄ − 1                                                                                                               (Eq. 4.62) 
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Hereby, 𝑛𝑖
pep is the number of observed unique peptides mapping to protein 𝑖 and 𝑛𝑖

predpep is 
the number of tryptic peptides that can theoretically map to protein 𝑖. emPAI is an example of 
so-called “absolute protein quantification” method. By normalizing the peptide count of each 
protein by its number of predicted unique tryptic peptides 𝑛𝑖

predpep, emPAI claims to be able to 
compare the abundances of different proteins to each other (as opposed to comparing the 
abundances of the same proteins over different conditions, so-called “relative quantification”). 
The content of protein 𝑖 in mol % is then calculated as follows: 

Protein 𝑖 content (mol%) =
emPAI𝑖

∑ emPAI𝑘𝑛protein
𝑘=1

,                                                                               (Eq. 4.63) 

with 𝑛protein the total number of proteins in the dataset. Of course, for quantitative protein 
inference, peptide counting methods also require some statistical modeling. The models for 
peptide counting are very similar to those of spectral counting and many statistical models for 
spectral counting and peptide counting can be used interchangeably. 

Absolute Protein Expression (APEX) is an example of an absolute quantification method based 
on spectral counting that has gained quite some traction [175, 495]. An APEX score for protein 
𝑖 is calculated as follows: 

APEX𝑖 =
𝐶𝑛𝑖

MS2𝜋𝑖
ID

𝑛𝑖
predPSM ∑ 𝑛𝑘

MS2𝜋𝑘
ID

𝑛𝑘
predPSM

𝑛protein
𝑘=1

,                                                                                                (Eq. 4.64) 

with 𝑛𝑖
MS2 the total number of MS² spectra mapping to protein 𝑖, 𝜋𝑖

ID the probability that protein 𝑖 
is correctly identified,  𝑛𝑖

predPSM the number of computationally predicted PSMs for protein 𝑖 
and 𝐶 an estimate of the total concentration of protein molecules in the cell. 

Do note that although absolute quantification methods might give some indication about a 
protein’s abundance, these estimates remain generally very crude because normalizing 
protein abundances to each other based on e.g. the theoretical number of tryptic peptides they 
can generate is quite inaccurate. Also, count-based approaches have become largely obsolete 
in present-day proteomics given that quantification based on continuous intensity-based 
signals is clearly superior over discrete counts [317]. It has indeed been shown that count-
based methods have a lower linear response to various protein loading amounts, a lower 
reproducibility, a lower quantitative accuracy, a lower precision, lower sensitivity, and a higher 
ratio of false positives to false negatives compared to MS intensity-based quantification [307]. 
This is because peptide counting disregards the inherent abundance-intensity relationship 
(within a certain dynamic range [496]) for each peptide. Dynamic exclusion, during which 
identified ions are excluded from being re-targeted for fragmentation for a certain amount of 
time, further obscures the relationship between spectral counts and protein abundances [497]. 
Counting-based approaches perform especially poorly for low-abundant proteins [228, 483, 
498]. Indeed, it is not possible to calculate an accurate protein ratio between two conditions if 
only one or two spectra per condition are mapped to the protein of interest [497]. And, at higher 
levels of protein abundances, saturation effects come into play for relatively low total protein 
concentrations when all peptides that can theoretically be detected are in fact detected [228]. 
Spectral counting is reviewed extensively in Lundgren et al. (2010) [494]. 

4.2.7. Controlling the false discovery rate 

Whether statistical inference is done with t-tests, linear regression models, or other statistical 
approaches, the fact that statistical inference is done for each protein in the dataset creates a 
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huge multiple testing problem. Imagine testing 1,000 proteins, all of which are not differentially 
abundant (i.e. the null hypothesis is true). When using the traditional 5% cut-off at the p-value 
level, on average 5%, i.e. 50 proteins, will be erroneously declared differentially abundant 
(false positives). Therefore, it is clear that, in the case of multiple testing, a significance 
threshold based on p-values will be way too liberal. 

Solutions to this problem have been proposed in the form of controlling the family-wise error 
rate (FWER). The aim of FWER procedures is to control the probability of detecting at least a 
single false positive at a given level, typically 5%. An example of an FWER procedure is the 
simple, but somewhat conservative Bonferroni correction [499]. Here, a protein is only declared 
significantly differentially abundant if its p-value is smaller than 𝛼 𝑛protein⁄ , with 𝛼 the significant 
threshold (e.g. 5%) and 𝑛protein the number of proteins that are being tested. It turns out that 
FWER procedures are often too conservative for high-throughput applications. Indeed, the 
number of biological replicates in such a context is often rather low, which limits the statistical 
power of each individual test. 

To cope with the specific context of high-throughput experiments, false discovery rate (FDR) 
procedures were developed. The false discovery rate aims to control the expected fraction of 
false positive proteins in a list of differentially abundant proteins at a certain level, again, 
typically 5% [500]. In practice, FDR-controlled lists are much more interesting for practitioners: 
a researcher will prefer a list of 20 significant proteins of which on average 1 is a false positive 
(i.e. the FDR is controlled at 5%) over a list of maybe 2 or 3 proteins that are not in error 
according to the FWER criterion. The most well-known and most widely used FDR procedure 
is the Benjamini-Hochberg FDR [501]. The procedure works as follows: 

In a first step, the p-values are sorted from large to small. If 𝐼 p-values need to be FDR 
corrected, let 𝑖 = 1,… , 𝐼 be the rank of the 𝑖th p-value. Then, the q-value 𝑞𝑖 for the 𝑖th p-value 
is calculated as follows: 

𝑞𝑖 = min
𝑘

(1,
𝐼𝑝𝑘

𝐼 − 𝑘 + 1
) ,                                                                                                                         (Eq. 4.65) 

for 1 ≤ 𝑘 ≤ 𝑖. All proteins with a q-value smaller than the proposed threshold, e.g. 5%, are then 
considered statistically significant. 
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5. RESEARCH HYPOTHESIS 

5.1. Setting the stage 
Many biological processes strongly depend on balanced levels of protein expression and the 
perturbation of a single protein can already lead to organismal malfunctioning (e.g. abnormal 
hemoglobin production in thalassemia [47] or extensive cellular remodeling towards a 
cancerous phenotype [502]). In this respect, quantitative knowledge of a proteome is very 
important for the unraveling of the development and progression of diseases and the 
identification of biomarkers, amongst others. It is fair to state that the transcriptome and the 
translatome only reflect the proteins that can be or are being expressed, but largely fail to 
provide information on a protein’s activity, function, interaction partners, localization and 
modification state (see 1.2.3). As proteins and their modified variants are expressed over a 
large concentration range, accurate quantitative information is a must to distinguish different 
cellular and organismal conditions [503]. 

Label-free shotgun proteomics leads to the identification and quantification of thousands of 
peptides and proteins in a single experiment. Here, analysis of differential abundance of 
proteins is based on ratios derived from reconstructed elution profiles based on MS intensities 
for all PSMs pointing to the same protein or the same protein group in a sample (see section 
3.2). However, the data are highly hierarchical, and intensities can be strongly influenced by 
variations of peptide-specific properties. In addition, the number of peptides identified in all 
samples is usually limited, which leads to large numbers of missing values (Fig. 5.1), which do 
not occur at random. Some peptides are better detected than others and high-abundant 
peptide ions are more likely to yield higher numbers of fragmentation spectra. "Match between 
runs" algorithms can only partly compensate for this effect by reducing the number of missing 
values (see section 3.4). 

 
Figure 5.12. The missing value problem. Left: the number of unique peptides identified per protein in 
the CPTAC dataset [426]. Right: the number of samples in which each protein in the CPTAT dataset is 
identified. The number of proteins identified in 9, 18 and all 27 samples are markedly elevated (cyan 
bars). This is because of the higher numbers of proteins that are exclusively identified in all MS runs 
from 1, 2 or 3 labs respectively. 

Researchers have used a plethora of pipelines for the analysis of label-free shotgun 
proteomics data (see chapter 4). Indeed, since most mass spectrometry researchers do not 
have a background in statistics, different preprocessing and differential analysis methods are 
often combined ad hoc without a proper motivation. Many methods analyze the data protein 
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by protein by (a) filtering out proteins as soon as they are missing in a specified number of 
samples (see 4.1.2), (b) summarize the peptides for each protein in a sample and ignore 
missing values (see 4.1.5) or (c) impute missing values based on the observed peptides for 
the corresponding protein in other samples (see 4.1.4). Filtering out all proteins (a) leads to 
substantial information loss. Indeed, as demonstrated in Fig. 5.1, removing proteins that are 
only identified with more than a given number of peptides or requiring proteins to be identified 
in all of the samples would remove a substantial amount of proteins from the dataset. 
Summarization (b) needs to be executed such that it correctly takes the peptide-specific effects 
into account. A particular challenge here are the limited numbers of peptides that are identified 
across different samples. If summarization does not correctly take the differences in ionization 
efficiencies into account, it will introduce a bias because the final data will be based on different 
peptides. Moreover, summarization will always ignore differences in accuracy due to the 
different numbers of peptides on which each summary is based. Imputation (c) is even more 
tedious because missing values in proteomics are a combination of missing completely at 
random and intensity- and even context-dependent missingness. Since it is impossible to know 
the exact contributions of these different types of missingness, imputation according to 
incorrect assumptions will lead to biased quantifications. However, if missing values are simply 
ignored, low-abundant proteins will be over-estimated due to the limited linear dynamic range, 
which will reduce the power to detect differential abundance. 

In addition, a proteomics experiment typically consists of a relatively small number of biological 
repeats compared to the large number of proteins analyzed. This gives rise to unstable 
variance estimates for certain proteins, especially if these proteins are identified with only a 
few peptides. Indeed, a small sample drawn from a given population might display a variance 
that is much smaller (or much bigger) than the true population variance just by random chance. 
Therefore, some observations might be flagged as differentially abundant solely because of 
their low observed variances while other truly differentially abundant proteins might be missed 
due to their large observed variances. This data sparsity also leads to unstable fold change 
estimates: one or two outlying intensities, which can for example be caused by 
misidentifications or co-eluting peptides, can strongly influence a protein’s fold change. 

These unstable fold change and variance estimates may cause a significant increase in the 
number of false positives and false negatives (see e.g. the supplementary material of Doll et 
al. (2017) [504], where SERINC3 and PNMA1 were declared significantly altered with very 
weak evidence based on only a single peptide). It is therefore not surprising that a recent power 
calculation study on four biological repeats of Arabidopsis thaliana Col-0 samples analyzed in 
technical triplicate estimated that for MaxLFQ summaries, a minimal fold change of 1.4 is 
required to detect a statistically significant difference with 95% confidence and a power of 
80%[463]. 

State-of-the-art proteomics quantification methods only focus on some of the sub-problems 
mentioned above. They generally remain fairly sensitive to outliers and correct for missing 
observations only to a limited extent. In addition, they usually prune the number of potential 
hits by filtering out proteins which have few peptides in common across the majority of the 
samples. Methods that model peptide-level data are often more sensitive because they 
naturally correct for the correlation present within the same samples, as well as for the peptide 
effects and the number of detected peptides for a given protein in each sample [425, 471]. 

Like summarization-based methods, many peptide-based models still produce unstable 
estimates of differential abundance and variance components due to over-parameterization. 
This especially occurs when few peptides are identified per protein: many low-abundant 
proteins are then falsely labeled as differentially abundant. Filtering on the basis of the number 
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of identified peptide spectra can provide a solution, but there is a risk that real hits will also be 
filtered out. Moreover, most peptide-based models remain very sensitive to outliers. 

In addition, many methods are only suitable to analyze specific types of experimental designs. 
For example, in Perseus, it is possible to compare multiple groups to each other, but it is not 
possible to accurately analyze blocked designs, such as CPTAC. In MSstats, the user should 
annotate each experiment with a “Run”, “Condition” and “BioReplicate”. Hereby, “Run” refers 
to the MS run, “Condition” to the treatment of interest and “BioReplicate” to a grouping factor 
that is encoded as a random effect. While this set-up allows most simple experimental designs 
to be analyzed in a correct way, it is insufficiently flexible to correctly analyze more complicated 
designs with multiple confounding effects. 

Finally, state-of-the-art data analysis methods, such as published models at the peptide level, 
do not always find their way to proteomic labs [474, 475]. This is a non-negligible problem! 
Indeed, many groups only demonstrated proof-of-concept, but never developed their method 
into a usable software package. And, those who did often lack a convenient graphical user 
interface that is appealing to less-experienced users. Availability, user-friendliness, 
documentation, support and maintenance of software tools are very important for new methods 
to be effective for end users. 

5.2. Aims of my PhD work 
Based on the previous section, it is clear that state-of-the-art proteomics quantification 
methods do not yet make optimal use of the data, resulting in suboptimal protein 
quantifications. The development of robust data analysis tools for quantitative proteomics is 
therefore essential for the further development of the proteomics research field because, with 
the current data-analytical methods, many proteins remain under the radar [505]. The overall 
aim of my work was to develop a more robust, easy-to use proteomics quantification method 
that is also usable for the analysis of proteins with a limited overlap in identified peptides.  

More specifically, this method should: 

- account for the hierarchical nature of the data,  
- handle missing peptides in a more correct way,  
- derive strength from the massive parallel availability of peptides to estimate variance 

components more correctly, 
- be robust to outliers, 
- and be able to handle complex experimental designs. 

In such a method, it is important that a random effect for run is included in order to allow to 
correct for within-run correlation. In this respect, it is tempting to build upon the link between 
mixed models and ridge regression, to make use of robust regression with M estimation and 
to allow for empirical Bayes variance estimation. Implementing this method is expected to 
increase the number of truly differentially abundant proteins identified in screening 
experiments. The method should also be implemented and distributed in a user-friendly 
software tool for differential proteomics with the possibility of a graphical user interface to 
maximize the impact of the research. 

To develop such a method, it is first necessary to thoroughly benchmark the most promising 
and most commonly used quantification methods. This will shed light on how preprocessing, 
standardization and differential analysis in a label-free proteomics quantification workflow 
influence a method’s performance. 
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6. OUTLINE 

The remainder of my thesis is constructed as follows: first, I will present each of my published 
papers. In my first paper, I demonstrate how I compared different data analysis methods for 
differential quantification in label-free shotgun proteomics. My second paper presents the 
rationale behind MSqRob, the algorithm I developed to improve quantification in label-free 
shotgun proteomics. In my third paper, I provide a tutorial on experimental design and data 
analysis with MSqRob. In my fourth, unpublished paper, I make use of the additional 
information of peptide counts to boost MSqRob’s power and to indicate whether a protein’s 
significance is mainly driven by differential abundance, differential detection or both. 

In the discussion, I explore the significance of my work and place it in a broader context. In the 
future research perspectives, I give some indications on how my research could go on from 
here. 
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8. SUMMARIZATION VS PEPTIDE-BASED MODELS IN 
LABEL-FREE QUANTITATIVE PROTEOMICS: 
PERFORMANCE, PITFALLS, AND DATA ANALYSIS 
GUIDELINES 

In chapter 8, we show that peptide-based models outperform summarization-based pipelines 
for the analysis of quantitative proteomics data. We also demonstrate that the predefined false 
discovery rate cut-offs for the detection of differentially regulated proteins can become 
problematic when differentially abundant (DA) proteins are highly abundant in one or more 
samples. We also show that care should be taken when data are interpreted from samples 
with spiked-in internal controls and from samples that contain a few very highly abundant 
proteins. For this work, I performed most of the data analysis and wrote the manuscript 
together with my co-authors. 

Goeminne L.J.E.*, Argentini A.*, Martens L. and Clement L. (2015). Summarization vs 
Peptide-Based Models in Label-Free Quantitative Proteomics: Performance, Pitfalls, 
and Data Analysis Guidelines. Journal of Proteome Research. 14(6), 2457-2465 

* equal contributions 

 

 

8.1. Abstract 
Quantitative label-free mass spectrometry is increasingly used to analyze the proteomes of 
complex biological samples. However, the choice of appropriate data analysis methods 
remains a major challenge. We therefore provide a rigorous comparison between peptide-
based models and peptide-summarization-based pipelines. We show that peptide-based 
models outperform summarization-based pipelines in terms of sensitivity, specificity, accuracy, 
and precision. We also demonstrate that the predefined FDR cutoffs for the detection of 
differentially regulated proteins can become problematic when differentially expressed (DE) 
proteins are highly abundant in one or more samples. Care should therefore be taken when 
data are interpreted from samples with spiked-in internal controls and from samples that 
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contain a few very highly abundant proteins. We do, however, show that specific diagnostic 
plots can be used for assessing differentially expressed proteins and the overall quality of the 
obtained fold change estimates. Finally, our study also illustrates that imputation under the 
“missing by low abundance” assumption is beneficial for the detection of differential expression 
in proteins with low abundance, but it negatively affects moderately to highly abundant 
proteins. Hence, imputation strategies that are commonly implemented in standard proteomics 
software should be used with care. 

8.2. Keywords 

data analysis; differential proteomics; linear model 

8.3. Introduction 

Current high throughput mass spectrometry (MS) experiments enable the simultaneous 
identification and quantification of thousands of peptides and proteins in biological samples 
under various experimental conditions. These methods allow us to extend our understanding 
of biological processes and are important for the identification of biomarkers for the early 
detection, diagnosis, and prognosis of disease. Quantitative proteomics workflows broadly fall 
into two categories: labeled approaches and label-free approaches.(1) Labeled workflows rely 
on the labeling of proteins or peptides with isobaric or isotopic mass tags and are currently 
more commonly used. Label-free proteomics workflows, however, do not require these 
additional labor intensive and expensive sample processing steps.(2) Label-free approaches 
can perform quantitative proteome comparisons among an unlimited number of samples and 
can also be applied retroactively to previously acquired data.(3) Although label-free 
quantifications tend to have slightly higher coefficients of variation compared to SILAC labeling, 
label-free quantifications are more reproducible and can identify up to 60% more proteins than 
labeled quantifications.(4, 5) 

A typical label-free shotgun MS-based proteomics workflow consists of (a) a protein extraction 
step followed by enzymatic digestion, (b) reverse phase high performance liquid 
chromatography (HPLC) separation, (c) mass spectrometry (MS), (d) a data analysis step 
involving the identification and quantification of peptides and proteins, and (e) a statistical 
analysis for assessing differential protein abundance.(6, 7) In a typical data-dependent 
analysis, selected peptides are isolated and fragmented, generating a fragmentation spectrum 
that is then used for peptide identification.(8) Technological constraints, however, limit the 
number of peptides in each fraction that can be selected for fragmentation. As the selection 
criteria typically involve the MS peak intensities in a particular time window, the identifications 
in MS-based experiments are inherently associated with the abundance of ionized peptides. 
Moreover, the steric effects of digestion enzymes(9) and differences in ionization efficiency 
favor particular peptides. Coeluting peptides heavily influence the observed MS intensities.(10) 
Hence, proteomics data suffer from nonrandom missing values and a large variability, 
rendering the development of reliable data analysis pipelines for quantitative proteomics a 
challenging task.(11) 

The current data analysis strategies for label-free quantitative proteomics are typically based 
on spectral counting or peak intensities.(1) In the former approach, the number of peptide-to-
spectrum matches (PSMs) for a given peptide are counted, and these are then accumulated 
over all peptides from a given protein.(12) Even though these methods are very intuitive and 
easy to apply, they remain controversial.(13, 14) Moreover, these methods necessarily ignore 
a large part of the information available in high precision mass spectra and are not very efficient 
in detecting low fold changes.(15) Peak-intensity-based methods, however, use the maximum 
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intensity or the area under the peak as a proxy for peptide abundance and tend to produce 
more precise protein abundance estimates.(15) We therefore focus on these latter 
approaches. 

Many peak-based data analysis methods for the preprocessing and differential analysis of 
quantitative label-free proteomics data have been described in the literature. Modular 
approaches consisting of a separate normalization, summarization, and data analysis step are 
commonly used.(16, 17) Peptides originating from the same protein can indeed be considered 
technical replicates and theoretically should lead to similar abundance estimates. However, 
the summarization of the peptide intensities into protein expression values is cumbersome, 
and most summarization-based methods do not correct for differences in peptide 
characteristics or for the between-sample differences in the number of peptides that are 
identified per protein. This might introduce bias and differences in uncertainty between the 
aggregated protein expression values, which are typically ignored in downstream data analysis 
steps. The aforementioned nonrandom character of missing peptides further exacerbates 
these issues. 

In response, linear regression approaches have been developed that immediately estimate the 
differential abundance between the proteins from observed peptide intensities, and their 
authors have made bold claims on their performance.(18, 19) Objective comparisons and 
general guidelines for the practitioner are, however, still lacking, which impedes the 
dissemination of more efficient data analysis pipelines into the proteomics community. 

In this paper, we therefore present a rigorous comparison among modular and peptide-based 
regression methods for analyzing label-free quantitative proteomics data. We exploit the 
availability of the benchmark data sets to provide insight into the performance differences and 
technological artifacts that often arise in label-free proteomics experiments. It should also be 
noted that the benchmark data used here present a range of concentration differences, which 
enables us to analyze the suitability of different methods for different situations (e.g., small 
abundance differences versus large abundance differences or few missing peptides versus 
many missing peptides across analyses). In section 2 we present the benchmark data, the 
different data analysis methods, and the performance criteria that will be used in our 
comparison. The results are presented and discussed in sections 3 and 4. 

8.4. Materials and methods 

We used the publicly available data set from Study 6 of the Clinical Proteomic Technology 
Assessment for Cancer (CPTAC) Network(20) for assessing the performance of different data 
analytic workflows for quantitative label-free proteomics. In the CPTAC study, a mixture of 48 
human proteins from the Sigma-Aldrich Universal Proteomics Standard 1 (UPS) was spiked 
into a 60 ng of protein/μL resuspended yeast lysate of Saccharomyces cerevisiae strain 
BY4741 (MATa, leu2Δ0, met15Δ0, ura3Δ0, and his3Δ1). Spike-ins were performed at five 
different concentrations: 0.25 fmol of UPS protein/μL (A), 0.74 fmol of UPS protein/μL (B), 2.22 
fmol of UPS protein/μL (C), 6.67 fmol of UPS protein/μL (D), and 20 fmol of UPS protein/μL 
(E). The prepared samples were then sent to five different laboratories and analyzed on four 
different mass spectrometry platforms. 

We identified peptides by searching the data using MaxQuant v1.5 against the yeast 
UniprotKB/Swiss-Prot protein database (v 15.14) to which the 48 UPS protein sequences were 
added. Detailed search settings can be found in the Supporting Information. A general 
overview of the number of identified peptides and proteins in our search can be found in Table 
S1, Supporting Information. Statistical analyses were implemented in RStudio version 
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0.98.978 (RStudio, Boston, MA) interfacing R 3.1.0 (“Spring Dance”). Standard Perseus 
analysis workflows were executed in Perseus version 1.5. We introduce two Perseus 
workflows in section 8.4.1, two different modular pipelines that aggregate peptide intensities 
into protein expression values in section 8.4.2, and three different peptide-based regression 
methods in section 8.4.3. The performance criteria used to compare the different methods can 
be found in section 8.4.4. 

8.4.1. Perseus-based workflows 

We used a typical workflow implemented in the software package Perseus. The analysis starts 
from (a) the LFQ intensities given in the MaxQuant’s proteinGroups.txt file, which consist of 
normalized and summarized intensities at protein level. The MaxLFQ procedure then proceeds 
as follows: for all pairwise comparisons of a protein between samples, the median ratio for the 
common peptides in both samples is calculated. Next, the abundance protein profile that 
optimally satisfies these protein ratios is reconstructed with a least-squares regression model. 
The whole profile is then rescaled to the cumulative intensity across the samples with 
preservation of the total summed intensity for a protein across the samples. As the resulting 
LFQ intensities are already normalized by the MaxLFQ procedure,(21) no additional 
normalization step is required. In (b), the LFQ protein intensities are read into Perseus. The 
proteins that are only identified by a modification site, the contaminants, and the reversed 
sequences are removed from the data set, and the remaining intensities are log2-transformed. 
Next, (c) involves the imputation of missing values using Perseus’ standard settings.(22) 
Finally, (d) consists of inference by pairwise two-sample t tests. The multiple testing problem 
is addressed using the Benjamini–Hochberg False Discovery Rate (FDR) procedure.(23) The 
(a)–(d) pipeline is referred to as perseusImp. We also consider a second variant, 
perseusNoImp, in which the imputation step (c) is omitted. 

8.4.2. Summarization-based workflows 

A typical modular workflow for quantitative proteomics consists of a normalization, 
summarization, and statistical analysis step.(6, 7) In our contribution, we assess two 
customized pipelines that build upon popular mean and median summarization strategies for 
the summarization of peptide intensities into protein expression values. The following steps 
are considered in the analysis pipelines: (a) the intensities from MaxQuant’s peptides.txt output 
file are log2-transformed and normalized using quantile normalization (with the peptides 
mapping to reversed sequences or mapping to multiple proteins being removed from the data), 
(b) peptide intensities are aggregated into protein expression values using mean or median 
summarization, and (c) summarized protein expression values are further analyzed using 
empirical Bayes moderated t tests implemented in the R/Bioconductor package “limma”.(24) 
The Benjamini–Hochberg FDR procedure is used to correct for multiple testing. The two 
resulting methods are referred to as limmaMean and limmaMedian. 

In the limma analysis, the following model is considered for each protein i: 

𝑦𝑖𝑘𝑙 = 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 + 𝑒𝑥𝑝𝑖𝑙 + 𝜀𝑖𝑘𝑙, (1) 

with 𝑦𝑖𝑘𝑙 being the aggregated protein intensity for the k-th treatment (treat) and the l-th 
experiment (exp) correcting for (lab × instrument × repeat) batch effects. εikl is a random error 
term that is assumed to be normally distributed with mean 0 and variance 𝜎𝑖2. Note that the 
treat effect is the effect of interest. Contrasts between treat parameters can be interpreted as 
log2 fold changes for protein i. For instance, k = A indicates condition A (spike-in concentration 
of 0.25 fmol of UPS protein/μL) and k = E indicates condition E (spike-in concentration of 20 
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fmol of UPS protein/μL). If so, then 𝑡𝑟𝑒𝑎𝑡𝑖𝐸 − 𝑡𝑟𝑒𝑎𝑡𝑖𝐴 indicates the expected log2 difference in 
concentration for protein i between group E and group A. The statistical significance of the 
contrasts can be addressed by using t tests. The limma analysis exploits the massively parallel 
nature of quantitative proteomics experiments and allows for the borrowing of strength across 
proteins to estimate the error variance, i.e., makes use of a moderated empirical Bayes 
variance estimator �̃�𝑖2:  

�̃�𝑖2 =
𝑑0𝑠02 + 𝑑𝑖𝑠𝑖2

𝑑0 + 𝑑𝑖
 

with 𝑠𝑖 and 𝑑𝑖 being the standard deviation and the residual degrees of freedom for protein i, 
respectively, 𝑠0 the estimated prior standard deviation, and 𝑑0 the prior degrees of freedom. 
Both the prior standard deviation and the prior degrees of freedom are estimated using 
empirical Bayes by pooling information across all proteins. Hence, the protein-based variance 
𝑠𝑖2 is shrunk toward a common variance 𝑠02, leading to more stable variance estimates (�̃�𝑖2). 
Note that the degrees of freedom from the moderated t test also increase to d0 + di. Detailed 
information can be found in the work of Smyth.(24) 

8.4.3. Peptide-based models 

Peptide-based models use the MaxQuant peptides.txt file as input. In (a), the extracted peptide 
intensities are log2-transformed and quantile normalized (Figures S8 and S9, Supporting 
Information), and peptides mapping to reversed sequences or mapping to multiple proteins are 
removed from the data. In (b), the peptide data are modeled with three different candidate 
models. In (c), inference is done by pairwise contrast testing. Multiple testing is addressed 
using the Benjamini–Hochberg FDR. 

Linear Model without Sample Effect 

For each protein i, the following model is proposed: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝑝𝑒𝑝𝑖𝑗 + 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 + 𝑒𝑥𝑝𝑖𝑙 + 𝜀𝑖𝑗𝑘𝑙𝑚, (2) 

with 𝑦𝑖𝑗𝑘𝑙𝑚 being the log2-transformed intensity for the j-th peptide sequence 𝑝𝑒𝑝𝑖𝑗 of the k-th 
treatment 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 and the l-th experiment 𝑒𝑥𝑝𝑖𝑙. 𝜀𝑖𝑗𝑘𝑙𝑚 is a normally distributed error term with 
mean 0 and variance σi

2. The index m refers to multiple spectra that are identified for the same 
peptide in the same experiment and the same treatment. Contrasts in 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 parameters can 
again be interpreted as log2 fold changes for protein i. The model also incorporates a 𝑝𝑒𝑝𝑖𝑗 
effect to account for peptide-specific fluctuations around the mean protein intensity, which 
originate from differences in digestion and ionization efficiency, among others.(9) 

Linear Model with Sample Effect 

Model 2 is extended by incorporating an additional sample effect, 𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑘𝑙, to capture 
deviations specific to each MS run (lab × instrument × treatment × repeat): 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝑝𝑒𝑝𝑖𝑗 + 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 + 𝑒𝑥𝑝𝑖𝑙 + 𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑘𝑙 + 𝜀𝑖𝑗𝑘𝑙𝑚. (3) 

Note that all remaining effects are similar to those of model 2. 

Mixed Model with Random Sample Effect 

The mixed model extends the linear model 3 by putting a normal prior on the sample effect, 
𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑘𝑙 ∼ 𝑁(0, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒,𝑖

2 ). This model accounts for the correlation within samples and 
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incorporates both within- and between-sample variability when inference is performed on 
contrasts in the 𝑡𝑟𝑒𝑎𝑡𝑖𝑘 effects. The degrees of freedom of the t tests are approximated using 
the Satterthwaite approximation,(25) and the Benjamini–Hochberg FDR procedure is used to 
account for multiple testing.(23) 

8.4.4. Performance 

For each method, p values are converted to q values using the Benjamini–Hochberg FDR 
procedure,(23) and a cutoff is set at 5% FDR. At this level, the number of false positives (FP), 
true positives (TP), false negatives (FN), and true negatives (TN) are recorded, and the 
nominal FDR level is compared to the observed false discovery rate FDR̅̅ ̅̅ ̅̅  = FP/(FP + TP). Note 
that the observed FDR equals 1 minus the positive predictive value, PPV = TP/(FP + TP). 

The ROC curves are constructed on the basis of the ordering of the p values. Bias (Figures S4 
and S5, Supporting Information), standard deviation (sd), median absolute deviation (mad), 
and root mean squared error (RMSE) (Figures S6 and S7, Supporting Information) are 
calculated both for yeast and for UPS proteins. We also calculated the F1 score, which is 
defined as the harmonic mean of the PPV and the sensitivity. Higher F1 scores indicate that a 
method provides a good balance between the PPV and the recall (Figures S1 and S2, 
Supporting Information). 

8.5. Results 

We investigated the sensitivity, specificity, and F1 score of the test procedure as well as the 
accuracy and the precision of the fold change (FC) estimates for three peptide-based methods 
and four summarization-based data analysis pipelines using the CPTAC Study 6 data set.(20) 
This data set consists of samples with a uniform yeast proteome background in which human 
UPS peptides are spiked at five different concentrations (0.25, 0.74, 2.22, 6.67, and 20 
fmol/μL). All 10 pairwise comparisons are assessed in each analysis. The following peptide-
based methods are considered: a linear model without sample effect (lmNoSamp), a linear 
model with sample effect (lmSamp), and a mixed model with a random sample effect 
(mixedSamp). The summarization-based approaches consist of mean and median 
summarizations of peptides into protein expression values followed by limma analyses 
(limmaMean and limmaMedian) as well as the more advanced MaxLFQ summarization(21) 
followed by a standard Perseus workflow with and without imputation (perseusImp and 
perseusNoImp). All peptide identifications and intensities were based on MaxQuant so as to 
avoid biases due to the search engine or peak intensity calculation algorithm. 

Receiver operating characteristic (ROC) curves for the four comparisons with the smallest 
differences in spiked-in protein abundance (B–A, C–B, D–C, and E–D) are shown in Figure 1. 
Detecting the differential abundance of UPS proteins is most challenging in these comparisons 
as they only involve fold changes (FCs) very close to 3. ROC curves for the six remaining 
comparisons can be found in Figure S1 in the Supporting Information. Figure 1 shows that the 
lmNoSamp and mixedSamp models clearly outperform the other methods. The lmNoSamp, 
mixedSamp, and perseusImp workflows do control the FDR at 5% for comparisons B–A, C–A, 
and C–B, but perseusNoImp could only control the FDR for comparisons B–A and C–B, and 
both limmaMean and limmaMedian could only control the FDR for comparison B–A (see 
Tables S2–S8 and S12 in the Supporting Information). The lmSamp method is unable to 
control the FDR. When differences in spiked-in concentrations increase, however, none of the 
methods are able to control the FDR correctly (Tables S2–S8 and S12 in the Supporting 
Information). lmSamp is more conservative but cannot control its FDR at 5%, either. The ROC 
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curves also show that the mean summarization outperforms the more robust but less efficient 
median summarization. 

 
Figure 8.1. Receiver operating characteristic (ROC) curves for the seven analysis methods in 
comparisons B–A, C–B, D–C, and E–D. The UPS proteins in these comparisons were spiked in at a 
ratio close to 3:1. Dots denote the estimated cutoff for each method at 5% FDR. The termination of the 
curve before the point (1, 1) indicates either that proteins are prematurely removed from the analysis 
(e.g., for the Perseus workflows) or that there is an inability of the models to fit a protein with too few 
observations (e.g., for peptide-based models). 

As only a part of the ROC curve is relevant in practice, i.e., that experimenters typically want 
to restrict the number of candidate proteins for validation in follow-up experiments, we also 
compared the relative partial areas under the curve (rpAUC) for FPR <0.1. Relative pAUCs 
(Table 8.1) are obtained by dividing pAUC values (Table S13, Supporting Information) by the 
maximum pAUC value of 0.1. Table 8.1 also demonstrates that the lmNoSamp and 
mixedSamp models are superior to the competing pipelines in terms of pAUC. Their power is 
higher in spite of the fact that no information is borrowed across proteins for estimating the 
variance (as compared to the limma workflows) and that there is an absence of imputation (as 
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compared to the standard Perseus method). perseusImp outperforms limmaMean and 
limmaMedian in terms of pAUC when differential expression in very-low-abundance proteins 
needs to be detected (e.g., comparison B–A). In these situations, imputation under the 
assumption of low abundance strongly boosts the performance of the method. The perseusImp 
workflow outperforms the perseusNoImp workflow for all comparisons involving A, i.e., when 
very-low-abundance differentially expressed (DE) proteins are involved in the comparison. But 
in comparisons with more abundant UPS spikes, the opposite is observed, and perseusImp 
shows a suboptimal performance compared to that of perseusNoImp. 

Table 8.1. Relative Partial Area under the Curve (rpAUC) for FPR <0.1 for All Seven Models for Each 
of the Ten Comparisons34. 

CP lm 
NoSamp 

lmSamp mixed 
Samp 

perseus 
Imp 

perseus 
NoImp 

limma 
Mean 

limma 
Median 

B-A 83.01% 12.41% 83.93% 69.65% 55.70% 68.14% 56.21% 
C-A 98.33% 49.31% 98.60% 85.93% 59.76% 87.22% 77.26% 
D-A 99.20% 72.65% 99.26% 86.31% 63.42% 96.79% 95.18% 
E-A 99.72% 89.06% 99.72% 89.62% 63.79% 97.92% 95.93% 
C-B 95.10% 77.81% 94.60% 52.45% 70.08% 61.79% 50.54% 
D-B 97.05% 89.60% 96.72% 71.00% 72.06% 89.21% 83.54% 
E-B 96.98% 93.50% 95.90% 77.68% 72.41% 90.94% 87.69% 
D-C 96.51% 84.85% 96.01% 64.48% 67.09% 59.77% 54.25% 
E-C 97.34% 94.48% 96.21% 72.92% 74.85% 81.94% 79.23% 
E-D 94.06% 79.45% 92.76% 71.13% 78.02% 74.16% 71.21% 

Mean 95.73% 74.31% 95.37% 74.12% 67.72% 80.79% 75.11% 

 

When the F1 score is examined, the lmNoSamp and mixedSamp models show very 
comparable patterns (Figure S2, Supporting Information). In comparisons E–A, E–B, E–C, and 
D–B, the lmSamp is superior to the other peptide-based models. This is most likely due to its 
more conservative nature. lmNoSamp and mixedSamp suffer from many false positives for 
these comparisons. For the summarization-based models (Figure S3, Supporting Information), 
we notice that perseusNoImp outperforms the other summarization-based methods for most 
comparisons. In comparisons D–A, D–B, E–A, E–B, and E–C, perseusImp shows a higher F1 
score than Perseus without imputation. Again, the mean summarization method almost 
consistently outperforms the median summarization in terms of F1 score, although the 
differences are generally not very large. 

The accuracy and precision of the pipelines are assessed by comparing the differential 
expression estimates to the true log2 fold changes of the spiked UPS peptides [log2 FC ≈ 
log2(3), log2(9), log2(27), and log2(80)] and the yeast peptides (log2 FC = 0). Figures 8.2 and 
8.3 show boxplots of the different DE estimates of the different methods for UPS and yeast 
proteins, respectively. The actual log2 FC is also indicated in the plot. 

                                                
34 The UPS proteins were spiked in at concentrations ranging from 0.25–20 fmol/μL (conditions A–E). 
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Figure 8.2. Boxplots showing the distributions of the DE estimates of the UPS proteins for each of the 
seven methods in each of the 10 comparisons. Outliers are not shown. The actual fold changes of the 
spikes are indicated with the yellow horizontal lines. 

 

Figure 8.3. Boxplots showing the distributions of the DE estimates of the yeast proteins for each of the 
seven methods in each of the 10 comparisons. Outliers are not shown. All samples consisted of the 
same yeast background. Hence, no differential expression should occur for these proteins. 

Figure 8.2 illustrates that the lmNoSamp and mixedSamp models are superior to the other 
methods in terms of both the accuracy and the precision of the FC estimates for the 
differentially abundant UPS proteins. The mean and median summarization methods 
systematically show a downward bias (Figure S4, Supporting Information). The bias is more 
pronounced in comparisons involving condition A. In condition A, the lowest concentration UPS 
(0.25 fmol/μL) is spiked in and, consequently, fewer UPS peptides are identified. Missingness, 
however, can be expected to involve peptides with a lower ionization efficiency, which typically 
display lower peak intensities than other peptides of the same protein. The simple mean and 
median summarization methods do not correct for differences in peptide characteristics, 
leading to an overestimation of the expression value for UPS proteins in condition A. This leads 
to moderation of the log2 fold change estimates involving condition A. Peptide-based pipelines 
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correcting for peptide effects also suffer from a slight negative bias in comparisons that involve 
condition A. Note that imputation has a severe impact on the precision. Figure S7 in the 
Supporting Information also shows that summarization-based limmaMean and limmaMedian 
methods give the highest root mean squared error (RMSE = [bias2/variance]1/2) among all 
methods that were evaluated. 

Figure 8.3 confirms that the lmNoSamp and the mixedSamp models are favorable in terms of 
accuracy and precision. For the yeast proteins (non-DE), the median and mean summarization 
methods show a bias similar to that of competing methods. An increasing downward bias of 
the log2 FC estimates can be observed for the null proteins (yeast) in comparisons involving 
increasing UPS concentrations. This becomes very apparent for comparisons that involve 
condition E. In this condition, a very high fraction of the total protein mass in the sample 
consists of UPS proteins. Hence, yeast peptides are likely to be masked by UPS, leading to 
an underestimation of the abundance of yeast peptides in the D and E mix. Most false positive 
yeast proteins had negative log2 FC estimates as opposed to the spiked UPS proteins, which 
show positive log2 FC estimates in each comparison. Therefore, issues involving the FDR are 
likely to be linked to the extreme sample composition under conditions D and E, which invokes 
an MS bias.(10) The F1 score masks this artifact, as it combines PPV and sensitivity. The 
same trend is also visible in MA plots for the linear model without sample effect (Figures S10 
and S11, Supporting Information). In these graphs, the average FC is plotted in function of the 
average protein expression for a particular comparison. These graphs are therefore very 
helpful for screening for artifacts induced by the technical and data analysis workflows. Figure 
8.3 also illustrates that the precision reduces with increasing FC, i.e., for comparisons involving 
conditions D and E. Finally, the lmSamp method shows a dramatic decrease in precision for 
comparison B–A. This is a data analysis artifact; the model is overidentified for many proteins, 
leading to the aliasing of sample and treatment effects. Due to the specific model 
parametrization, the overidentification has a larger impact on comparisons involving condition 
A. 

We also investigated alternative data analysis strategies to alleviate this problem. For the 
peptide-based lmNoSamp method, we assessed the impact of testing against the median log2 
FC of all proteins instead of testing against 0. This slightly improves the observed FDR except 
for comparisons C–A and D–B and improves the rpAUC except for comparisons D–A, D–B, 
D–C, and E–C (Table S14, Supporting Information). However, the method still returns too 
many false positives for the comparisons involving high concentrations (Table S9, Supporting 
Information). For the summarization-based methods, we assessed the impact of switching the 
order of the normalization and summarization steps. When the quantile normalization is 
performed after summarization, the observed FDR improved for comparisons involving D and 
E, but the performance decreased dramatically for comparisons B–A and C–A (Tables S10–
S12. Supporting Information). The ROC curves also suggest that switching the order of the 
normalization and summarization steps deteriorates the performance of the limmaMean and 
limmaMedian workflows (Figure S12, Supporting Information). 

8.6. Discussion 

Our analysis showed that peptide-based models perspicuously outperform summarization-
based methods. Both the linear model without sample effect and the mixed model outperform 
the other methods in terms of accuracy, precision, sensitivity, and specificity. The ROC curves 
clearly indicate that these methods produce a more reliable ordering of DE proteins than the 
competing methods. The linear model with sample effect has a suboptimal performance but 
still outperforms the other methods in comparisons that do not involve A. Due to selective and 
periodic sampling in both MS stages, not all peptides are being observed or identified in all 
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samples. Moreover, intensities from different peptides of the same protein vary considerably 
due to differences in cleavage and ionization efficiency among others.(26, 27) Summarization 
thus typically involves different peptides and a different number of peptides in each sample. 
This leads to protein expression values with distinct characteristics, which induces bias and 
incorrect precision of the fold change estimates. 

Peptide-based models are superior in correcting for individual peptide effects, which are 
typically quite strong(18, 19) and accounting for the different number of peptides in each 
sample. Thus, bias is reduced and improved precision estimates are provided, leading to 
higher sensitivity and specificity. The mixed model can also account for the correlation that is 
present in peptides from the same protein within a sample. The peptide-based models with a 
fixed sample effect suffer from the unstable estimation of fold changes and variance 
components due to the overfitting of sparse proteins identified by a few peptides. Moreover, 
the inclusion of a fixed sample effect eliminates the between-sample variability from the 
analysis. Inference between the samples will be based on an underestimated variance, leading 
to a higher number of false positives in a top list. In the linear model without sample effect, 
fewer parameters have to be estimated, and the variances within and between samples are 
combined in the error term. Hence, the method is less prone to overfitting and incorporates 
both within- and between-sample variability in the test statistics, leading to a better control of 
the number of false positives. However, the method does not account for the correlation 
between peptides from a particular protein within a sample. The mixed modeling approach with 
a random sample effect does incorporate within- and between-sample variances as well as the 
within-sample correlation between peptides of the same protein. The mixed model and the 
linear model without sample effect are more or less on par in terms of all assessed 
performance criteria. Hence, the increased computational complexity of the mixed model 
cannot be justified for this particular application. However, in real experiments, more 
correlation can be expected due to the additional biological variation among samples. 

We also showed that the use of FDR thresholds might be flawed under certain experimental 
conditions. This was observed for comparisons involving conditions D and E, i.e., the samples 
with the highest spiked-in UPS concentrations. Under these conditions, the UPS proteins 
correspond to a considerable fraction of the total protein mass in the sample. The ROC curves 
show that peptide-based methods still produce reliable top lists with a superb ordering, but the 
use of a 5% FDR threshold was too liberal. Hence, long protein lists are produced with many 
false positives. The majority of these false positives, however, had FC estimates in the 
opposite direction as those of spiked UPS proteins. This was due to a systematic downward 
bias in the FC estimates of nondifferentially expressed yeast proteins. Competitive ionization 
makes the identification and quantification of yeast peptides cumbersome in samples with 
highly concentrated UPS spikes. Thus, the majority of false positives originate from 
technological artifacts rather than from flaws in the data analysis pipeline. We therefore 
recommend that researchers who are planning to use internal controls in their MS experiments 
avoid overspiking, as this can have detrimental effects on the quantification of the proteins of 
interest. Moreover, artifacts similar to those from spiked UPS proteins are bound to occur in 
certain experimental setups (e.g., undepleted blood plasma proteomic samples are known to 
be dominated by a few highly abundant proteins, and undepleted green tissue samples from 
plants will suffer from the omnipresence of RuBisCo). Our analysis showed that experimenters 
should interpret proteins further down the DE list with care. We therefore advise data analysts 
to use diagnostic plots based on all fold change estimates for assessing the quality of the FC 
estimates and for detecting potential artifacts. MA plots and boxplots were shown to be well 
suited for evaluating candidate DE proteins, to flag critical experimental conditions as well as 
flaws in the data analysis pipeline. 
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The myriad missing values in quantitative proteomic experiments present severe challenges 
to the data analysis. The standard MaxQuant pipeline therefore utilizes the match-between 
runs option to boost the number of peptide intensities that different samples have in common. 
Moreover, Perseus also incorporates imputation-based routines to deal with missing protein 
expression values. We showed that imputation is beneficial for detecting differentially 
expressed proteins with low abundance but performs suboptimally for moderately to highly 
abundant proteins. Perseus’ standard imputation algorithm assumes that missing values 
originate from lower intensity values. Hence, the imputation can lead to a downward bias for 
more abundant proteins. Moreover, experimenters should also be aware that imputation 
comes at the cost of a decreased precision for the FC estimates. 

In general, the current peptide-based methods are prone to overfitting and rely on protein-by-
protein variance estimates. Hence, the development of robust methods that can borrow 
information across peptides and proteins would enable proteomics researchers to further 
deploy label-free quantitative proteomics. 

In summary, we have shown that issues inherent to the methodology create challenges in 
quantitative proteomics, even in highly controlled and standardized samples such as the 
CPTAC ones. We then go on to show that downstream statistical data analysis approaches 
differ in their ability to cope with these different issues, and that the importance of these issues 
depends on the characteristics of the sample under study (e.g., the dominance of a few highly 
abundant proteins or large protein concentration ratio differences between two samples). 
Crucial, perhaps, is the fact that although peptide-based approaches fare better than 
summarization methods, no single method currently exists that can easily tackle all possible 
issues in quantitative proteomics data. Hence, more sophisticated data processing approaches 
that recognize these various issues are needed and can compensate for such issues more 
successfully across the board. 

8.7. Conclusion 

In this paper, we compared the performance of peptide-based linear models, mean and median 
summarization followed by limma analysis, and the standard MaxQuant/Perseus workflow for 
assessing differential abundance in label-free quantitative proteomics experiments. The 
evaluation of the performance was assessed using the CPTAC benchmark data set. Peptide-
based models outperformed the competing data analysis pipelines in terms of sensitivity, 
specificity, accuracy, and precision. Modeling quantitative proteomics data at the peptide level 
allows for the correction of strong peptide-specific effects, which avoids the bias associated 
with summarization-based methods that aggregate different types of peptide intensities into a 
single value. Moreover, peptide-based models also improve the precision estimates by 
accounting for the different numbers of peptides that are identified in a sample. We have also 
shown that the FDR cutoffs used to determine the length of lists with significant differentially 
expressed (DE) proteins could become problematic in experimental setups with samples that 
are dominated by a few very abundant proteins. Technological artifacts might induce bias in 
the non-DE proteins, which can inflate the number of false positives that are returned at a 
particular FDR level. However, the ordering of the top DE proteins in the lists was shown to 
remain valid. We therefore advise proteomics researchers to be careful when spiking internal 
controls, to deplete the highly abundant proteins, and to use diagnostic plots for assessing the 
candidate DE proteins as well as the overall quality of the obtained fold change estimates. 
Finally, standard proteomics software provides experimenters with the ability to impute missing 
values. Perseus’ imputation strategy was shown to be beneficial for detecting DE proteins with 
low abundance but at the cost of reduced precision as well as a suboptimal performance for 
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moderately to highly abundant DE proteins. Hence, we advise proteomics data analysts to use 
imputation strategies with care. 

8.8. Supporting information 

Figures showing the receiver operating characteristic (ROC) curves for the seven analysis 
methods in comparisons, F1 scores for the studied models, comparison of the bias terms for 
yeast and UPS proteins, comparisons of the root mean squared error for yeast and UPS 
proteins, boxplots showing log2 peptide intensities, MA plots for linear models, and ROC curves 
for normalization on the peptide and protein level with mean and median aggregation. Tables 
showing a general overview per spike-in conditions for UPS and yeast proteins, characteristics 
for various models and workflows, an explanation of the outlined characteristics, partial areas 
under the curves for a false positive rate, and relative partial areas under the curves for a false 
positive rate. The Supporting Information is available free of charge on the ACS Publications 
website at DOI: 10.1021/pr501223t. 

pr501223t_si_001.pdf (1.38 MB) 
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9. ROBUST QUANTIFICATION FOR LABEL-FREE  
MASS SPECTROMETRY-BASED PROTEOMICS 

Chapter 9 describes MSqRob, our R software package for improved differential protein 
abundance analysis in label-free MS-based proteomics. MSqRob is freely available on GitHub 
(https://github.com/statOmics/MSqRob) and is implemented in a "Shiny" user-friendly 
graphical interface. 

In section 9.1, I introduce MSqRob as a new algorithm for the analysis of quantitative 
proteomics data that improves protein quantification by combining three innovative statistical 
approaches: ridge regression, empirical Bayes variance estimation, and M-estimation with 
Huber weights. MSqRob is both more precise and more accurate than state-of-the-art tools. I 
developed and implemented MSqRob as an R package and wrote the manuscript together 
with my supervisors. 

Section 9.2 is published as an invited tutorial paper in which I outline key statistical concepts 
to help researchers to design proteomics experiments and showcases of quantitative 
proteomics data analysis with MSqRob. For this manuscript, I designed and performed 
analyses, set up the GitHub repository and wrote the paper together with my supervisors. 

9.1. Peptide-level Robust Ridge Regression Improves Estimation, 
Sensitivity, and Specificity in Data-dependent Quantitative Label-free 
Shotgun Proteomics 
Goeminne L.J.E., Gevaert K. and Clement L. (2016). Peptide-level Robust Ridge 
Regression Improves Estimation, Sensitivity, and Specificity in Data-dependent 
Quantitative Label-free Shotgun Proteomics. Molecular & Cellular Proteomics. 15(2), 657-
668 
 
9.1.1. Associated data 

Supplementary Materials 

Supplemental Data  

supp_15_2_657__index.html (2.4K) 

GUID: 9B15C066-3091-4E71-980A-55F4B6EE0B27 

10.1074_M115.055897_mcp.M115.055897-1.pdf (7.0M) 

GUID: 401B1F9E-2C1B-4FA6-9374-9048987008F2 

10.1074_M115.055897_mcp.M115.055897-2.xlsx (208K) 

GUID: B2490BE1-84E1-49D7-8951-5CB1D9597D83 
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9.1.2. Abstract 

Peptide intensities from mass spectra are increasingly used for relative quantitation of proteins 
in complex samples. However, numerous issues inherent to the mass spectrometry workflow 
turn quantitative proteomic data analysis into a crucial challenge. We and others have shown 
that modeling at the peptide level outperforms classical summarization-based approaches, 
which typically also discard a lot of proteins at the data preprocessing step. Peptide-based 
linear regression models, however, still suffer from unbalanced datasets due to missing 
peptide intensities, outlying peptide intensities and overfitting. Here, we further improve upon 
peptide-based models by three modular extensions: ridge regression, improved variance 
estimation by borrowing information across proteins with empirical Bayes and M-estimation 
with Huber weights. We illustrate our method on the CPTAC spike-in study and on a study 
comparing wild-type and ArgP knock-out Francisella tularensis proteomes. We show that the 
fold change estimates of our robust approach are more precise and more accurate than those 
from state-of-the-art summarization-based methods and peptide-based regression models, 
which leads to an improved sensitivity and specificity. We also demonstrate that ionization 
competition effects come already into play at very low spike-in concentrations and confirm that 
analyses with peptide-based regression methods on peptide intensity values aggregated by 
charge state and modification status (e.g. MaxQuant's peptides.txt file) are slightly superior to 
analyses on raw peptide intensity values (e.g. MaxQuant's evidence.txt file). 

9.1.3. Introduction 

High-throughput LC-MS-based proteomic workflows are widely used to quantify differential 
protein abundance between samples. Relative protein quantification can be achieved by stable 
isotope labeling workflows such as metabolic (1, 2) and postmetabolic labeling (3–6). These 
types of experiments generally avoid run-to-run differences in the measured peptide (and thus 
protein) content by pooling and analyzing differentially labeled samples in a single run. Label-
free quantitative (LFQ)1 workflows become increasingly popular as the often expensive and 
time-consuming labeling protocols are omitted. Moreover, LFQ proteomics allows for more 
flexibility in comparing samples and tends to cover a larger area of the proteome at a higher 
dynamic range (7, 8). Nevertheless, the nature of the LFQ protocol makes shotgun proteomic 
data analysis a challenging task. Missing values are omnipresent in proteomic data generated 
by data-dependent acquisition workflows, for instance because of low-abundant peptides that 
are not always fragmented in complex peptide mixtures and a limited number of modifications 
and mutations that can be accounted for in the feature search. Moreover, the overall 
abundance of a peptide is determined by the surroundings of its corresponding cleavage sites 
as these influence protease cleavage efficiency (9). Similarly, some peptides are more easily 
ionized than others (10). These issues not only lead to missing peptides, but also increase 
variability in individual peptide intensities. The discrete nature of MS1 sampling following 
continuous elution of peptides from the LC column leads to increased variability in peptide 
quantifications. Finally, competition for ionization and co-elution of other peptides with similar 
m/z values may cause biased quantifications (11). However, note that in this respect, using 
data-independent acquisition (DIA), all peptide ions (or all peptide ions within a certain m/z 
range, depending on the method used) are fragmented simultaneously, resulting in multiplexed 
MS/MS spectra (12, 13). Hence, issues of missing fragment spectra are less a problem with 
DIA, however, some of its challenges lie in deconvoluting MS/MS spectra and mapping their 
features to their corresponding peptides (14). 

Standard data analysis pipelines for DDA-LFQ proteomics can be divided into two groups: 
spectral counting techniques, which are based on counting the number of peptide features as 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B3
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B14
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a proxy for protein abundance (15), and intensity-based methods that quantify peptide features 
by measuring their corresponding spectral intensities or areas under the peaks in either MS or 
MS/MS spectra. Spectral counting is intuitive and easy to perform, but, the determination of 
differences in peptide and thus protein levels is not as precise as intensity-based methods, 
especially when analyzing rather small differences (16). More fundamentally, spectral counting 
ignores a large part of the information that is available in high-precision mass spectra. Further, 
dynamic exclusion during LC-MS/MS analysis, meant to increase the overall number of 
peptides that are analyzed, can worsen the linear dynamic range of these methods (17). Also, 
any changes in the MS/MS sampling conditions will prevent comparisons between runs. 
Intensity-based methods are more sensitive than spectral counting (18). Among intensity-
based methods, quantification on the MS-level is somewhat more accurate than summarizing 
the MS/MS-level feature intensities (19). Therefore, we further focus on improving data 
analysis methods for MS-level quantification. 

Typical intensity-based workflows summarize peptide intensities to protein intensities before 
assessing differences in protein abundances (20). Peptide-based linear regression models 
estimate protein fold changes directly from peptide intensities and outperform summarization-
based methods by reducing bias and generating more correct precision estimates (21, 22). 
However, peptide-based linear regression models suffer from overfitting due to extreme 
observations and the unbalanced nature of proteomics data; i.e. different peptides and a 
different number of peptides are typically identified in each sample. We illustrate this using the 
CPTAC spike-in data set where 48 human UPS1 proteins were spiked at five different 
concentrations in a 60 ng protein/μl yeast lysate. Thus, when comparing different spike-in 
concentrations, only the human proteins should be flagged as differentially abundant (DA), 
whereas the yeast proteins should not be flagged as DA (null proteins). Fig. 9.1 illustrates the 
structure of missing data in label-free shotgun proteomics experiments using a representative 
DA UPS1 protein from the CPTAC spike-in study: missing peptides in the lowest spike-in 
condition tend to have rather low log2 intensity values in higher spike-in conditions compared 
to peptides that were not missing in both conditions, which supports the fact that the missing 
value problem in label-free shotgun proteomic data is largely intensity-dependent (23). 

 
Figure 9.1. Missing peptides are often low abundant. The boxplots show the log2 intensity 
distributions for each of the 33 identified peptides corresponding to the human UPS1 protein cytoplasmic 
Histidyl-tRNA synthetase (P12081) from the CPTAC dataset in conditions 6A (spike-in concentration 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B16
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B23
https://www.ncbi.nlm.nih.gov/protein/P12081
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0.25 fmol UPS1 protein/μl) and 6B (spike-in concentration 0.74 fmol UPS1 protein/μl). Vertical dotted 
lines indicate peptides present in both conditions. Note, that most peptides that were not detected in 
condition 6A exhibit low log2 intensity values in condition 6B (colored in red). 

Fig. 9.2 shows the quantile normalized log2 intensity values for the peptides corresponding to 
the yeast null protein CG121 together with average log2 intensity estimates for each condition 
based on protein-level MaxLFQ intensities, as well as estimates derived from a peptide-based 
linear model. Here, three important remarks can be made:  

(1) CG121 is a yeast background protein, for which the true concentration is thus equal in 
all conditions, which appears to be monitored as such by MaxLFQ, except in conditions 6B 
and 6E (for the latter, no estimate is available). The LM estimate, however, is more reliable 
but seems to suffer from overfitting. 

(2) A lot of shotgun proteomic datasets are very sparse, causing a large sample-to-sample 
variability. Constructing a linear model based on a limited number of observations will thus 
lead to unstable variance estimates. Intuitively, a small sample drawn from a given 
population might “accidentally” show a very small variance while another small sample 
from the same population might display a very large variance just by random chance. This 
effect is clear from the sizes of the boxes. The interquartile range is twice as large in 
condition 6E compared to condition 6C. This issue leads to false positives since some 
proteins with very few observations are flagged as DA with very high statistical evidence 
solely due to their low observed variance (24). 

(3) Two observed features at log2 intensities 14.0 and 14.3 in condition 6B have a strong 
influence on the parameter estimate for this condition. Without these extreme observations, 
the 6B estimate lies closer to the estimates in the other conditions. As missingness is 
strongly intensity-dependent, these low intensity values could easily become missing 
values in subsequent experiments. More generally, a strong influence of only one or two 
peptides on the average protein level intensity estimate for a condition is an unfavorable 
property. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B24
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Figure 9.2. Effect of outliers, variability, and sparsity of peptide intensities on abundance 
estimations. The figure shows log2 transformed quantile normalized peptide intensities for the yeast 
null protein CG121 from the CPTAC data set for spike-in conditions 6A, 6B, 6C, 6D, and 6E. Each color 
denotes a different condition. Connected crosses: average protein log2 intensity estimates for each 
condition are provided for a traditional protein level workflow where the mean of the protein-level 
MaxLFQ values was calculated (MaxLFQ, blue), the estimates of the peptide-based regression model 
fitted with ordinary least squares (LM, black) and the estimates of the peptide based ordinary least 
squares fit after omitting the two lowest observations in condition 6B (LM-extremes, orange). In condition 
6E there were not enough data points to provide a MaxLFQ protein-level estimate. Boxes denote the 
interquartile range (IQR) of the log2 transformed quantile normalized peptide intensities in each condition 
with the median indicated as a thick horizontal line inside each box. Whiskers extend to the most extreme 
data point that lies no more than 1.5 times the IQR from the box. Points lying beyond the whiskers are 
generally considered as outliers. Note, that the presence of two low-intensity peptide observations in 
concentration 6B has a strong effect on the estimates for both MaxLFQ and LM. 

These issues illustrate that state-of-the-art analysis methods experience difficulties in coping 
with peptide imbalances that are inherent to DDA LFQ proteomics data. We here propose 
three modular improvements to deal with the problems of overfitting, sample-to-sample 
variability and outliers:  

(1) Ridge regression, which penalizes the size of the model parameters. Shrinkage 
estimators can strongly improve reproducibility and overall performance as they have a 
lower overall mean squared error compared to ordinary least squares estimators (25–27). 

(2) Empirical Bayes variance estimation, which shrinks the individual protein variances 
toward a common prior variance, hence stabilizing the variance estimation. 

(3) M-estimation with Huber weights, which will make the estimators more robust toward 
outliers (28). 

We illustrate our method on the CPTAC Study 6 spike-in data and a published ArgP knock-out 
Francisella tularensis proteomics experiment and show that our method provides more stable 
log2 FC estimates and a better DA ranking than competing methods. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B28
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9.1.4. Experimental procedures 

 

CPTAC Spike-in Data Set  

The publicly available Study 6 of the Clinical Proteomic Technology Assessment for Cancer 
(29) is used to evaluate the performance of our method. Raw data can be accessed at 
https://cptac-data-portal.georgetown.edu/cptac/public?scope=Phase+I. In this study, the 
Sigma Universal Protein Standard mixture 1 (UPS1, Sigma-Aldrich, St. Louis, MO) containing 
48 different human proteins was spiked into a 60 ng protein/μl Saccharomyces cerevisiae 
strain BY4741 (MATa, leu2Δ0, met15Δ0, ura3Δ0, his3Δ1) lysate in five different concentrations 
(6A: 0.25 fmol UPS1 proteins/μl; 6B: 0.74 fmol UPS1 proteins/μl; 6C: 2.22 fmol UPS1 
proteins/μl; 6D: 6.67 fmol UPS1 proteins/μl; and 6E: 20 fmol UPS1 proteins/μl). These samples 
were sent to five independent laboratories and analyzed on seven different instruments. For 
convenience, we limited ourselves to the data originating from the LTQ-Orbitrap at site 86, 
LTQ-Orbitrap O at site 65 and LTQ-Orbitrap W at site 56. Samples were run three times on 
each instrument. The used dataset thus features five different samples, each analyzed in 
threefold on three different instruments. Raw data files were searched using MaxQuant version 
1.5.2.8 (30) with the following settings. As variable modifications we allowed acetylation 
(protein N terminus), methionine oxidation (to methionine-sulfoxide) and N-terminal glutamine 
to pyroglutamate conversion. As a fixed modification, we selected carbamidomethylation on 
cysteine residues as all samples were treated with iodoacetamide. We used the enzymatic rule 
of trypsin/P with a maximum of 2 missed cleavages and allowed MaxQuant to perform 
matching between runs with a match time window of 0.7 min and an alignment time window of 
20 min. The main search peptide tolerance was set to 4.5 ppm and the ion trap MS/MS match 
tolerance was set to 0.5 Da. Peptide-to-spectrum match level was set at 1% FDR with an 
additional minimal Andromeda score of 40 for modified peptides as these settings are most 
commonly used by researchers. Protein FDR was set at 1% and estimated by using the 
reversed search sequences. We performed label-free quantitation with MaxQuant's standard 
settings. The maximal number of modifications per peptide was set to 5. As a search FASTA 
file we used the 6718 reviewed proteins present in the Saccharomyces cerevisiae (strain ATCC 
204508/S288c) proteome downloaded from Uniprot at March 27, 2015 supplemented with the 
48 human UPS1 protein sequences. Potential contaminants present in the contaminants.fasta 
file that comes with MaxQuant were automatically added to the search space by the software. 
For protein quantification in the proteinGroups.txt file, we used unique and razor peptides and 
allowed all modifications as all samples originate in essence from the same yeast lysate and 
the same UPS1 spike-in sample. 

Francisella tularensis Data Set  

The data of Ramond et al. (31) is used to illustrate our method on a real biological experiment. 
Both raw and processed data are publicly available and can be found in the PRIDE repository 
at http://www.ebi.ac.uk/pride/archive/projects/PXD001584. The authors explored changes in 
the proteome of the facultative intracellular pathogenic coccobacillus Francisella tularensis 
after gene deletion of a newly identified arginine transporter, ArgP. Both wild-type and ArgP 
mutants were grown in biological triplicate. Each biological replicate was analyzed in technical 
triplicate via label-free LC-MS/MS. Data were processed with MaxQuant version 1.4.1.2 and 
potential contaminants and reverse sequences were removed. In addition, only proteins 
present with at least two peptides in at least 9 out of the 18 replicates were retained. 
Subsequent data analysis via t-tests on imputed LFQ intensities was performed. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B29
https://cptac-data-portal.georgetown.edu/cptac/public?scope=Phase+I
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.ebi.ac.uk/pride/archive/projects/PXD001584


137 

 

Summarization-based Analysis  

MaxLFQ+Perseus  

This is a standard summarization-based analysis pipeline that is available in the popular 
MaxQuant-Persues software package (21). Briefly, the MaxQuant ProteinGroups.txt file was 
loaded into Perseus version 1.5.1.6, potential contaminants that did not correspond to any 
UPS1 protein as well as reversed sequences and proteins that were only identified by site 
(thus only by a peptide carrying a modified residue) were removed from the data set. MaxLFQ 
intensities (32) were log2 transformed and pairwise comparisons between conditions were 
done via t-tests. 

MaxLFQ+limma  

The MaxQuant ProteinGroups.txt file is used as input for R version 3.1.2 (Pumpkin Helmet) 
(33). Potential contaminants and reversed sequences (see above) were removed from the 
data set. The MaxLFQ intensities were log2 transformed and analyzed in limma, an 
R/Bioconductor package for the analysis of microarray and next-generation sequencing data 
(34). Limma makes use of posterior variance estimators to stabilize the naive variance 
estimator by borrowing strength across proteins (see also below). 

Peptide-based Model Analysis  

Data Preprocessing  

MaxQuant's peptides.txt file was read into R version 3.1.2, the peptide intensities were log2 
transformed and quantile normalized (35, 36). Many other normalization approaches do exist, 
however, comparing them is beyond the scope of this paper (24, 36–38). Reversed sequences 
and potential contaminants were removed from the data. For the CPTAC dataset, we only 
removed potential contaminants that did not map to any UPS1 protein. MaxQuant assigns 
proteins to protein groups using an Occam's razor approach. However, to avoid the added 
complexity of proteins mapped to multiple protein groups, we discarded peptides belonging to 
protein groups that contained one or more proteins that were also present in a smaller protein 
group. Next, peptides were grouped per protein group in a data frame. Finally, values 
belonging to peptide sequences that appeared only once were removed as the model 
parameter for the peptide effect for these sequences is unidentifiable. For notational 
convenience, a unique protein or protein group is referred to as a protein in the remainder of 
this article. 

Benchmark Peptide-based Model  

We start from the peptide-based linear regression models as proposed by Daly et al. (39) 
Clough et al. (22) and Karpievitch et al. (40), of which we have independently proven their 
superior performance compared to summarization-based workflows (21). In general, the 
following model is proposed:  

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝛽𝑖𝑗
𝑡𝑟𝑒𝑎𝑡 + 𝛽𝑖𝑘

𝑝𝑒𝑝 + 𝛽𝑖𝑙
𝑏𝑖𝑜𝑟𝑒𝑝 + 𝛽𝑖𝑚

𝑡𝑒𝑐ℎ𝑟𝑒𝑝 + 𝜀𝑖𝑗𝑘𝑙𝑚𝑛  

(Eq. 1) 

with yijklmn the nth log2-transformed normalized feature intensity for the ith protein under the jth 
treatment (treat), the kth peptide sequence (pep), the lth biological repeat (biorep) and the mth 
technical repeat (techrep) and εijklmn a normally distributed error term with mean zero and 
protein specific variance σi

2. The 𝛽's denote the effect sizes for treat, pep, biorep and techrep 
for the ith protein. 
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Robust Ridge Model  

Our novel approach improves the estimation of the model parameters in (Eq. 1) via three 
extensions: (1) ridge regression, which leads to shrunken yet more stable log2 fold change 
(FC) estimates, (2) Empirical Bayes estimation of the variance, which further stabilizes 
variance estimators, and (3) M-estimation with Huber weights, which reduces the impact of 
outlying peptide intensities. For the robust ridge model, degrees of freedom are calculated 
using the trace of the hat matrix. 

1. Ridge Regression  

The ordinary least squares (OLS) estimates for protein i are defined as the parameter 
estimates that minimize the following loss function:  

∑ 𝑒𝑖𝑗𝑘𝑙𝑚𝑛
2

𝑗𝑘𝑙𝑚𝑛

= ∑ (𝑦𝑖𝑗𝑘𝑙𝑚𝑛 − 𝛽𝑖𝑗
𝑡𝑟𝑒𝑎𝑡 − 𝛽𝑖𝑘

𝑝𝑒𝑝 − 𝛽𝑖𝑙
𝑏𝑖𝑜𝑟𝑒𝑝 − 𝛽𝑖𝑚

𝑡𝑒𝑐ℎ𝑟𝑒𝑝)
2

𝑗𝑘𝑙𝑚𝑛

 

(Eq. 2) 

With eijklmn the residual errors and Xijklmn the row of the design matrix corresponding to 
observation yijklmn. 

Ridge regression shrinks the regression parameters by imposing a penalty on their magnitude. 
The ridge regression estimator is obtained by minimizing a penalized least squares loss 
function:  

∑ 𝑒𝑖𝑗𝑘𝑙𝑚𝑛
2

𝑗𝑘𝑙𝑚𝑛

+ 𝜆𝑖
𝑝𝑒𝑝 ∑𝛽𝑖𝑘

𝑝𝑒𝑝2

𝑘

+ 𝜆𝑖
𝑏𝑖𝑜𝑟𝑒𝑝 ∑𝛽𝑖𝑙

𝑏𝑖𝑜𝑟𝑒𝑝2

𝑙

+ 𝜆𝑖
𝑡𝑒𝑐ℎ𝑟𝑒𝑝 ∑𝛽𝑖𝑚

𝑡𝑒𝑐ℎ𝑟𝑒𝑝2

𝑚

 

(Eq. 3) 

With each 𝜆 a ridge penalty for the parameter estimator �̂� corresponding to an effect in Eq. 1. 
When the 𝜆s are larger than zero, the ridge estimators for �̂� will be shrunken toward 0. This 
introduces some bias but reduces the variability of the parameter estimator, which makes 
shrinkage estimators theoretically more stable and more accurate (i.e. they tend to have a 
lower root mean squared error (RMSE) compared to the OLS estimator) (25–27). On the one 
hand, �̂�'s estimated by only a few observations will experience a strong correction toward 0, 
protecting against overfitting. On the other hand, �̂�'s that can be estimated based on many 
observations will exhibit a negligible bias because the ridge penalty will be dominated by the 
sum of the squared errors, which reflects that these �̂�'s can be estimated more reliably. We 
choose to tune each 𝜆 separately because the variability on the peptide effect seems generally 
much larger than the variability on the other effect terms. 𝜆 penalties can be tuned via cross-
validation, but in this work, we exploit the link between mixed models and ridge regression (41) 
and estimate the penalties by implementing ridge regression within the lme4 package (42) in 

R. 𝜆𝑡𝑟𝑒𝑎𝑡 then equals �̂�𝑖
2

�̂�𝛽𝑡𝑟𝑒𝑎𝑡,𝑖
2  with �̂�𝑖 the estimated residual variance and �̂�𝛽𝑡𝑟𝑒𝑎𝑡,𝑖

2  the estimated 

variance captured by the treatment effect for peptide intensities from protein i (Chapter 5, 41). 
The standard errors of the parameter estimators and contrasts of interest are based on the 
bias-adjusted variance estimator (Chapter 6, 41). 

2. Empirical Bayes Variance Estimations  

In the introduction we argued that data sparsity can lead to unstable variance estimates. In 
order to stabilize the residual variance estimation, we shrink the estimated protein specific 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#FD1
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B41
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variances toward a pooled estimate over all proteins using an empirical Bayesian approach 
(43) implemented in the limma R/Bioconductor-package (44). In that way, the information 
contained in all proteins is borrowed to stabilize the variance estimates of proteins with few 
observations. Hence, the small variances will increase, while large variances will decrease. 
This avoids that proteins that exhibit a small FC and a tiny variance will appear highly 
significantly. Also, the number of degrees of freedom for all these so-called moderated t-tests 
will increase compared to normal t-tests. 

3. M-estimation With Huber Weights  

As we have shown in the introduction (see Fig. 9.2), outlying peptides might have a severe 
impact on the parameter estimates, especially in conditions with few identified features. We 
therefore propose to adopt M-estimation with Huber weights to diminish the impact of outlying 
observations. Combining ridge regression with M-estimation leads to the following penalized 
weighted least squares loss function:  

∑ 𝑤𝑖𝑗𝑘𝑙𝑚𝑛𝑒𝑖𝑗𝑘𝑙𝑚𝑛
2

𝑗𝑘𝑙𝑚𝑛

+ 𝜆𝑖
𝑡𝑟𝑒𝑎𝑡 ∑𝛽𝑖𝑗

𝑡𝑟𝑒𝑎𝑡2

𝑗

+ 𝜆𝑖
𝑝𝑒𝑝 ∑𝛽𝑖𝑘

𝑝𝑒𝑝2

𝑘

+ 𝜆𝑖
𝑏𝑖𝑜𝑟𝑒𝑝 ∑𝛽𝑖𝑙

𝑏𝑖𝑜𝑟𝑒𝑝2

𝑙

+ 𝜆𝑖
𝑡𝑒𝑐ℎ𝑟𝑒𝑝 ∑𝛽𝑖𝑚

𝑡𝑒𝑐ℎ𝑟𝑒𝑝2

𝑚

 

(Eq. 4) 

Herein, wijklmn is a Huber weight that weighs down observations with high residuals. 

False Discovery Rate  

For both peptide-based models and MaxLFQ+limma, p values are adjusted for multiple testing 
with the Benjamini-Hochberg FDR procedure (45). Perseus uses a permutation-based FDR 
that turns out to be very close to the Benjamini-Hochberg procedure. The FDR is controlled at 
the 5% level in all analyses. 

9.1.5. Results 

We decided to compare our method to three competing methods using data from the CPTAC 
spike-in benchmark study. Additionally, its advantages are demonstrated in a case study that 
was originally analyzed with a standard summarization-based approach. For peptide-based 
models the use of MaxQuant's peptides.txt file, which contains summed up peptide level data, 
slightly increased the discriminative power as compared to analyses using the MaxQuant's 
evidence.txt file, which contains individual intensities for each identified feature (supplemental 
Fig. S7, File S1). Therefore, all peptide-based models are based on the peptides.txt file. 

1. Evaluation Using Data From a Spike-in Benchmark Study  

The performances of the different methods are assessed by comparing different spike-in 
concentrations in the CPTAC Study 6 data set. This data set consists of identical samples 
containing a trypsin-digested Saccharomyces cerevisiae proteome spiked with different 
concentrations (0.25, 0.74, 2.22, 6.67, and 20 fmol/μl) of a trypsin-digested UPS1 mix 
containing 48 human proteins. As the high spike-in concentrations are known to suffer from 
ionization competition effects (18, 21), we focus mainly on comparing 6B-6A, 6C-6A and 6C-
6B, which have the lowest spike-in concentrations. 

We compared our robust ridge approach to three competing approaches: (1) MaxLFQ-
Perseus, (2) MaxLFQ-limma, and (3) a petide based linear model (LM). (1) MaxLFQ-Perseus 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B43
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is a standard summarization-based approach where MaxLFQ normalized log2 protein 
intensities are compared between conditions by FDR-corrected t-tests. (2) MaxLFQ-limma is 
a summarization-based approach in which MaxLFQ protein level data are analyzed via limma 
(34), an R/Bioconductor package that can stabilize variance estimation by borrowing 
information across proteins via an empirical Bayesian approach. (3) The linear model (LM) is 
a peptide-based linear regression model (Eq. 1) that is known to outperform summarization-
based approaches (21). This model contains a treatment effect, a peptide effect and an 
instrument effect, and its structure is motivated in supplemental File S1. Note, that our robust 
ridge method (RR) is an improvement of the LM approach by implementing ridge regression, 
empirical Bayes variance estimation and M-estimation with Huber weights. We compared the 
results of the four methods in terms of precision and accuracy of the log2 fold change estimates, 
as well as sensitivity and specificity. 

Precision and Accuracy  

Log2 fold change (FC) estimates using our robust ridge model for yeast null proteins are clearly 
more precise compared to the other methods; the interquartile range of the log2 FC estimates 
is on average three times smaller compared to the LM fit and 4.5 times smaller for comparison 
6B-6A; Fig. 9.3). The accuracy is also increased as most DA estimates for yeast null proteins 
are estimated very close to zero. This is due to an effect of the ridge penalty, which strongly 
shrinks the estimates for null proteins identified by a few peptides toward zero. Fig. 9.3 also 
shows a general trend for each method: as spike-in concentration differences increase, a 
negative bias of the log2 FC estimates appears. This likely reflects ionization suppression 
effects (18, 21). Note that for our method, the log2 FC distributions in all comparisons (including 
6B versus 6A) in Fig. 9.3 are skewed toward negative fold changes and that the skewness 
increases with higher spike-in concentrations, suggesting that ionization suppression effects 
already occur at very low spike-in concentrations. 

 
Figure 9.3. Precision and accuracy of fold change (FC) estimates for null proteins in the CPTAC 
study. The boxplots show the distributions of the FC estimates of the null yeast proteins for each of the 
ten comparisons for 4 different approaches. Outliers (here defined as data points that lie more than 1.5 
times the interquartile range from the box) are not shown. The horizontal dotted green line denotes the 
true log2 fold change for the yeast proteins (log2 FC = 0). Blue (MaxLFQ+Perseus): protein-level analysis 
consisting of MaxLFQ normalization followed by t-tests in Perseus, yellow (MaxLFQ+limma): protein-
level analysis consisting of MaxLFQ normalization followed by limma analysis, black (LM): peptide-
based linear regression model containing treatment, peptide and instrument effects, purple (RR): 
peptide-based ridge regression model containing treatment, peptide and instrument effects with 
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empirical Bayes variance estimator and M-estimation with Huber weights. An identical figure with outliers 
is provided in supplemental Fig. S12, File S1. 

When assessing the DA UPS1 proteins (Fig. 9.4), the log2 FC estimates for the summarization-
based approaches MaxLFQ-Perseus and MaxLFQ-limma are always more biased and more 
variable compared to the LM and RR methods, except in condition 6B-6A, where MaxLFQ-
limma has the lowest bias of all approaches. Median log2 FC estimates for UPS proteins are 
very comparable between our RR and the LM method. For eight out of ten comparisons, the 
RR estimates are even closer to the true log2 FC. The interquartile range of the log2 FC 
estimates of the DA proteins for RR is on average 1.2 times smaller compared to those of the 
LM model. Thus, shrinkage estimation does not negatively affect estimates for proteins with a 
strong evidence for DA. 

 
Figure 9.4. Precision and accuracy of fold change (FC) estimates for differential abundant 
proteins in the CPTAC study. The boxplots show the distributions of the FC estimates of the spiked-
in UPS1 proteins for each of the ten comparisons for four different approaches. Outliers (here defined 
as data points that lie more than 1.5 times the interquartile range from the box) are not shown. The 
horizontal dotted green lines denote the true log2 FC for the UPS1 proteins in each comparison. Blue 
(MaxLFQ+Perseus): protein-level analysis consisting of MaxLFQ normalization followed by t-tests in 
Perseus, yellow (MaxLFQ+limma): protein-level analysis consisting of MaxLFQ normalization followed 
by limma analysis, black (LM): peptide-based linear regression model containing treatment, peptide and 
instrument effects, purple (RR): peptide-based ridge regression model containing treatment, peptide 
and instrument effects with empirical Bayes variance estimator and M-estimation with Huber weights. 
An identical figure with outliers is provided in supplemental Fig. S13, File S1. 

Sensitivity and Specificity  

The sensitivity and specificity of the different methods are assessed using receiver operator 
characteristics (ROC) curves (Fig. 9.5, Tables 9.1 and 9.2). For the summarization-based 
approaches, it turns out that MaxLFQ+limma outperforms MaxLFQ+Perseus. This is not 
surprising, as it has been shown that limma outperforms standard t-tests, also in proteomics 
data sets (46). As we have shown before, both peptide-based regression models outperform 
the summarization-based approaches (21). Our RR method further improves on the LM model 
in comparison 6B-6A, in which the detection of DA is most challenging since it involves the two 
lowest spike-in concentrations. For all other comparisons LM and RR have a similar 
performance (Table 9.2), which was expected because the ROC curves of the LM method for 
these comparisons are already very steep. 
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Figure 9.5. Comparison of sensitivity and specificity. Receiver operator characteristic (ROC) curves 
show the superior performance of our robust ridge approach compared to other standard data analysis 
techniques for comparisons of conditions 6B-6A, 6C-6A, and 6C-6B in the CPTAC spike in study. Stars 
denote the cut-offs at an estimated 5% FDR level. Blue (MaxLFQ+Perseus): protein-level analysis 
consisting of MaxLFQ normalization followed by t-tests in Perseus, yellow (MaxLFQ+limma): protein-
level analysis consisting of MaxLFQ normalization followed by limma analysis, black (LM): peptide-
based linear regression model containing treatment, peptide and instrument effects, purple (RR): 
peptide-based ridge regression model containing treatment, peptide and instrument effects with 
empirical Bayes variance estimator and M-estimation with Huber weights. 

 

Table 9.1. Total areas under the curve (AUC) for three standard approaches and our robust ridge 
method for comparisons 6B-6A, 6C-6A and 6C-6B in the CPTAC spike-in study. MaxLFQ+Perseus: 
protein-level analysis consisting of MaxLFQ normalization followed by t-tests in Perseus, 
MaxLFQ+limma: protein-level analysis consisting of MaxLFQ normalization followed by limma analysis, 
LM: peptide-based linear regression model containing treatment, peptide and instrument effects, RR: 
peptide-based ridge regression model containing treatment, peptide and instrument effects with 
empirical Bayes variance estimator and M-estimation with Huber weights. 

Comparison MaxLFQ+Perseus MaxLFQ+limma LM RR 
6B-6A 0.536 0.634 0.817 0.862 
6C-6A 0.583 0.672 0.877 0.869 
6D-6A 0.583 0.680 0.880 0.878 
6E-6A 0.564 0.660 0.883 0.880 
6C-6B 0.607 0.655 0.860 0.861 
6D-6B 0.618 0.657 0.858 0.859 
6E-6B 0.601 0.644 0.863 0.863 
6D-6C 0.654 0.680 0.856 0.860 
6E-6C 0.663 0.678 0.864 0.864 
6E-6D 0.683 0.685 0.836 0.837 
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Table 9.2. Partial areas under the curve (pAUC) for a false positive rate (FPR) < 0.1 for three standard 
approaches and our robust ridge method by comparing conditions 6B-6A, 6C-6A and 6C-6B in the 
CPTAC spike-in study. MaxLFQ+Perseus: protein-level analysis consisting of MaxLFQ normalization 
followed by t-tests in Perseus, MaxLFQ+limma: protein-level analysis consisting of MaxLFQ 
normalization followed by limma analysis, LM: peptide-based linear regression model containing 
treatment, peptide and instrument effects, RR: peptide-based ridge regression model containing 
treatment, peptide and instrument effects with empirical Bayes variance estimator and M-estimation with 
Huber weights. 

Comparison MaxLFQ+Perseus MaxLFQ+limma LM RR 
6B-6A 0.061 0.075 0.083 0.091 
6C-6A 0.076 0.088 0.096 0.097 
6D-6A 0.077 0.089 0.098 0.097 
6E-6A 0.076 0.089 0.097 0.097 
6C-6B 0.081 0.086 0.096 0.097 
6D-6B 0.082 0.086 0.096 0.096 
6E-6B 0.081 0.087 0.096 0.096 
6D-6C 0.076 0.083 0.094 0.095 
6E-6C 0.088 0.090 0.095 0.095 
6E-6D 0.090 0.092 0.092 0.093 

 

FDR Control  

None of the adopted methods are able to control the true FDR at the nominal 5% level in the 
majority of the comparisons (Table 9.3). MaxLFQ+Perseus can only control the FDR at the 5% 
level in comparisons 6C-6A and 6C-6B. MaxLFQ+limma only controls the FDR accurately in 
comparison 6C-6B and both LM and RR can control the FDR only in comparisons 6B-6A and 
6C-6B. When comparing RR and LM, RR does a better job in controlling the FDR in 
comparisons 6B-6A, 6C-6A, 6D-6B and 6D-6C, but not for the other comparisons. 
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Table 9.3. Observed FDR when using a 5% FDR cut-off level for each of the three standard approaches 
and our robust ridge method for all pairwise comparisons between conditions 6A, 6B, 6C, 6D and 6E. 
MaxLFQ+Perseus: protein-level analysis consisting of MaxLFQ normalization followed by t-tests in 
Perseus, MaxLFQ+limma: protein-level analysis consisting of MaxLFQ normalization followed by limma 
analysis, LM: peptide-based linear regression model containing treatment, peptide and instrument 
effects, RR: peptide-based ridge regression model containing treatment, peptide and instrument effects 
with empirical Bayes variance estimator and M-estimation with Huber weights. This table shows that 
most methods are unable to control the FDR at 5%, especially for comparisons involving higher spike-
in concentrations (e.g. 6D and 6E). 

Comparison MaxLFQ+Perseus MaxLFQ+limma LM RR 
6B-6A 0.071 0.048 0.034 0.030 
6C-6A 0.040 0.083 0.095 0.050 
6D-6A 0.456 0.794 0.466 0.050 
6E-6A 0.917 0.922 0.870 0.883 
6C-6B 0.037 0 0 0.024 
6D-6B 0.640 0.879 0.528 0.494 
6E-6B 0.918 0.924 0.863 0.870 
6D-6C 0.429 0.799 0.481 0.434 
6E-6C 0.886 0.906 0.842 0.848 
6E-6D 0.321 0.584 0.386 0.561 

 

2. Case Study  

We further illustrate the performance of our novel method on true biological data in which a 
single trigger was expected to have an impact on several tightly regulated, but highly 
interconnected pathways. Thus, contrary to a spike-in data set where differential abundance 
typically heads in one direction (either up or down-regulated) and stays limited to the spiked-
in proteins, a biological dataset consists of a plethora of both strongly as well as weakly 
differentially regulated proteins. Moreover, in the CPTAC data set, the same sample was 
always used to spike in different amounts of UPS1 proteins in the same yeast background 
instead of isolating a new yeast proteome each time. Hence, variability in biological repeats 
will be much larger compared to the spike-in data set. Although detection of differential 
abundance in real biological data is the ultimate goal, there is no known ground truth available 
for these data sets and our evaluation is based on visual inspection of selected findings. 

We made use of the publicly available data published by Ramond et al. (31) in which the 
authors compared the proteome of Francisella tularensis mutant for the arginine transporter 
ArgP to wild-type (WT) bacteria in biological triplicate. For each biological repeat, three 
technical replicates were also available. We compared the authors' results with the results of 
our RR method based on the authors-supplied peptides.txt instead of re-searching the raw 
spectra. In their study, Ramond et al. (31) performed the analysis at the protein level using 
intensities of at least two different peptides and keeping those proteins with at least 9 out of 18 
valid values, and as such analyzed 842 proteins in total. With our approach—analysis at the 
peptide level and filtering out peptides that appeared only once in the data set—we were able 
to analyze a total of 989 proteins. Both the results of our ranking as well as the ranking from 
the original Francisella article can be found in supplemental File S2. When we compared the 
top 100 proteins with the lowest p values in both methods, only 52 proteins overlapped. 
Ramond et al. (31) found 309 DA proteins at the 5% FDR level, whereas we only found 159 
proteins significantly DA at the same FDR level. Thus, our method appears to be more 
conservative. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
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We evaluated the differential abundance of the ten proteins that were present in the RR DA 
list, but not in the original DA list, as well as the ten highest ranked proteins from the original 
DA list missing in our list. The ten proteins that were only discovered with our method were all 
lost during the preprocessing procedure of Ramond et al. (31). Among those proteins, six are 
more highly abundant in the mutant: exodeoxyribonuclease V subunit gamma and ABC 
transporter membrane protein, as well as four hypothetical proteins (the membrane protein 
FTN_0835, an AAA+ superfamily member FTN_0274, an alpha/beta hydrolase FTN_0721 and 
FTN_1244). Four out of the ten proteins that were only discovered by our method have a lower 
abundance in the mutant. These proteins are Radical SAM superfamily protein, DNA helicase 
II, C32 tRNA thiolase and the hypothetical protein FTN_0400. Log2 intensity plots of the 
individual peptide intensities suggest a differential abundance for most of these proteins 
(supplemental Figs. S14-S23, File S1). 

Eight out of the ten highest-ranked proteins in the original DA list all seem to be highly abundant 
gauged by the number of peptides identified (supplemental Figs. S24-S33, File S1). Further 
inspection reveals that most of these proteins do not appear to bear strong evidence for DA 
between WT and mutant. Except for the hypothetical protein FTN_1397 and the Mur ligase 
family protein, all variance estimates are smaller than 0.01, which leads to extreme T statistics. 
Empirical Bayesian variance estimation does increase these small variances, but not enough 
to make them insignificant at the 5% significance level. There seems to be a relatively clear 
effect for hypothetical protein FTN_1397 (supplemental Fig. S31, File S1), which in our method 
just did not pass the 5% FDR level (p value of 9.4*10−3 and FDR adjusted p value 0.057). The 
Mur ligase family protein shows no strong visual DA (supplemental Fig. S32, File S1), but 
combines a moderate DA estimate (-0.34) with a small variance (0.01). The two other proteins 
only present in the list of Ramond et al. (31) are rather low-abundant. DNA-binding protein HU-
beta (supplemental Fig. S30, File S1) shows no visual evidence for DA at all, but hypothetical 
protein FTN_1199 (supplemental Fig. S33, File S1) might possess weak evidence for DA. 

Ramond et al. (31) also noted that several protein modules had an increased enrichment in 
DA proteins. In fact, all ribosomal proteins and all proteins involved in branched-chain amino 
acid (BCAA) synthesis were either unchanged (as the p value did not reach the 5% FDR cut-
off) or present in lower amounts in the mutant. Based on their data, one could also suspect an 
up-regulation of several tricarboxylic acid (TCA) cycle proteins (nine out of 12) in the mutant. 

Ribosomal Proteins  

It is known that a global down-regulation of ribosome synthesis is a common response to 
nutrient starvation in Bacteria and Eukarya (47, 48). One might thus expect a similar drop in 
abundance in the arginine transporter-mutated F. tularensis as its delay in phagosomal escape 
can be fully restored by supplementation of the medium with excess arginine (31). When 
considering all 30S and 50S ribosomal proteins (both significant and insignificant in terms of 
DA), both our method and the original article report log2 FC estimates for 49 ribosomal proteins. 
As expected, all log2 FC estimates from our method pointed toward down-regulation in the 
mutant. Contrary, in the analysis of Ramond et al. (31), two proteins, ribosomal protein L7/L12 
and 30S ribosomal protein S18 showed, although deemed insignificant, quite large log2 FCs 
(0.12 resp. 0.54) in favor of up-regulation in the mutant. This again suggest a more stable log2 
FC estimation by our method (supplemental Fig. S34, File S1). 

BCAA Synthesis Proteins  

Based on KEGG, we could only identify nine proteins as BCAA synthesis proteins although 
the authors report on 12 BCAA synthesis proteins. As we were unable to find the remaining 3 
proteins in this pathway, we further focus on nine proteins only. Supplemental Fig. S35, File 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
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S1 shows the distribution of the log2 FC estimates for both the methodology of Ramond et al. 
(31) and our method. Here, one insignificant protein, dihydroxy-acid dehydratase shows a log2 
FC of 0.22. Using our method, all log2 FCs indicate either down-regulation in the mutant (i.e. 
log2 FCs smaller than 0) or no change at all (log2 FCs smaller than 1*10−17). On average, log2 
FC estimates for BCAA synthesis proteins are more negative in our method. Thus, our method 
provides stronger evidence for down-regulation of some BCAA synthesis proteins in the mutant 
compared to the method of the original article. 

TCA Cycle Proteins  

Based on KEGG, we identified 13 TCA cycle proteins, while Ramond et al. (31) reported 12 
proteins. When assessing the log2 FC estimates of these authors for the 13 proteins, 10 TCA 
cycle proteins appear to be up-regulated in the mutant (supplemental Fig. S36, File S1), 8 of 
which are declared significant. Contrary, in our method, only 1 protein of the TCA cycle (2-
oxoglutarate dehydrogenase complex, E2 component, dihydrolipoyltranssuccinase) is found 
significant. Strikingly, 8 out of 13 TCA cycle proteins even show log2 FC estimates that are in 
absolute value smaller than 1× 10−9. We therefore zoomed in onthe individual log2 FC 
estimates of the peptides mapping to these proteins (supplemental Figs. S37-S50, File S1). 

2-oxoglutarate dehydrogenase complex, E2 component, dihydrolipoyltranssuccinase 
(supplemental Fig. S37, File S1) is the only TCA cycle protein that is found at significantly 
different levels by our analysis. It is also denoted as significant in the original paper's 
methodology. Nonetheless, the evidence does not seem to be very strong. 2-oxoglutarate 
dehydrogenase E1 component, dihydrolipoamide acetyltransferase and succinate 
dehydrogenase iron-sulfur subunit are also denoted as significant in the original analysis with 
p values of 5.3 × 10−10, 8.1 × 10−4 and 1.1 × 10−3 respectively, although the spectral evidence 
also appears quite weak (supplemental Figs. S38, S40, and S41, File S1). In our opinion, any 
visual evidence for differential abundance for malate dehydrogenase, aconitate hydratase, 
succinyl-CoA synthetase, alpha subunit and isocitrate dehydrogenase is negligible. 
Nonetheless, p values corresponding to DA for these proteins are estimated at 7.4 × 10−4, 3.6 
× 10−3, 0.02 and 0.02 respectively in the paper of Ramond et al. (31) (supplemental Figs. S42, 
S43, and S47, File S1). 

9.1.6. Discussion 

In this work, we introduced three extensions to existing peptide-based linear models that 
significantly improve stability and precision of fold change estimates. These extensions include 
minimizing a penalized least squares loss function (ridge regression), weighing down outliers 
via M-estimation with Huber weights and variance stabilization via empirical Bayes. Our 
estimation approach is inevitably computationally more complex than the linear regression 
model, albeit much faster than fully Bayesian approaches that have to be fitted by 
computationally intensive Markov chain Monte Carlo algorithms (49). In this contribution, we 
normalized log2 transformed peptide intensities using quantile normalization. Many other types 
of transformation and normalization exist and can be adopted prior to applying our method. 
Our focus however, is on robust estimation procedures for peptide-based linear models. 
Therefore, a thorough comparison of preprocessing methods is beyond the scope of this paper. 

We compared our novel estimation method to three other methods: a standard protein-level 
summarization followed by t-tests (MaxLFQ+Perseus), a standard protein-level summarization 
followed by limma (MaxLFQ+limma) and a peptide-based linear regression model. Evaluation 
was done based on the CPTAC Study 6 data set, where the ground truth is known as well as 
on a biological data set, where ArgP mutated versus wild-type Francisella tularensis proteomes 

http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B49
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are compared. For the CPTAC dataset, we found our method to give more precise and more 
stable log2 FC estimates for both the yeast null proteins and the spiked-in UPS1 proteins. Thus, 
our method sufficiently shrinks abundance estimates that are driven by data sparsity in the null 
proteins, while retaining good DA estimates when sufficient evidence is present (such as for 
most UPS1 proteins in the CPTAC spike-in study). These findings are supported by theory as 
ridge regression shrinkage indeed reduces the variability of the estimator and generates 
overall more precise FC estimates (lower overall RMSE compared to ordinary least squares 
estimators) (25–27). Furthermore, empirical Bayes variance estimation squeezes the 
individual residual variances of all models toward a pooled variance which stabilizes the 
variance estimation. Finally, M-estimation with Huber weights weakens the impact of individual 
outliers. 

The systematic underestimation of the log2 FC estimates provided by our method, even in 
comparison 6B-6A (Fig. 3), suggests that ionization competition effects can already come into 
play at spike-in concentration levels of 0.74 fmol/μl (condition 6B). These effects might partly 
explain why none of the considered methods performs well in controlling the FDR at the 
nominal 5% level. When analyzing the Francisella dataset, RR is more conservative than the 
method used by Ramond et al. (31), which might suggest a better protection against false 
positives. Indeed, ionization competition effects are also relevant for true biological data sets 
as an increase in a number of highly abundant proteins in a certain condition might generate 
a downwards bias in peptide intensities corresponding to non-DA proteins in this condition. 
Researchers should thus carefully reflect whether a low log2 fold change is truly biologically 
relevant, as ionization suppression effects already seem to appear at low differences in 
concentration. Indeed, even when disregarding these effects, the abundance of a protein 
typically has to differ by a reasonable amount to be of interest to a researcher. Therefore, we 
suggest testing against a minimal log2 FC value that is biologically interesting in a particular 
experiment; e.g. 0.5 or 1 (50). A similar approach can be easily adopted within our framework, 
but we have chosen to test against an FC of 0 to make our results comparable with the analysis 
of Ramond et al. (31). 

In practice, only a handful of true positives will typically be selected for further experimental 
validation. Therefore, the ranking that is produced by a method is more important than its 
capability to accurately control the FDR at the 5% level. Here, RR produces superior ranking 
lists compared to all other methods except in comparisons 6D-6A, 6E-6A and 6E-6B, where 
large ionization suppression effects are expected due to huge spike-in concentration 
differences. Hence, it will be very difficult to discern the ionization bias from real DA for these 
comparisons. Each component of our model contributes to an improvement in performance. 
ROC curves in supplemental Fig. S4, File S1 show that empirical Bayesian variance estimation 
slightly but consistently improves the performance of the LM model, while M-estimation seems 
to cause the largest gain (supplemental Fig. S5, File S1). Ridge regression clearly improves 
the LM model, EB variance estimation slightly improves the ridge regression model while M-
estimation again seems to deliver the largest gain in performance. Corresponding AUC and 
pAUC values can be found in (supplemental Tables S7-S10, File S1). 

In the CPTAC case study, we also confirmed that a peptide-based model starting from summed 
up intensities over different charge states and modifications but corresponding to identical 
peptide sequences in the same sample (peptides.txt file) tends to have a higher discriminative 
ability than a model starting from the individual feature intensities (evidence.txt file, see 
supplemental Fig. S7, File S1). Others have also shown that analysis on the lowest level of 
summarization does not automatically lead to the best performance (18). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B18
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We also applied our method on a biological dataset and compared our results to the 
performance of the MaxLFQ summarization-based method used in the original publication 
(31). Proteins identified as DA by our method that were missed in the original publication were 
all filtered out because too few peptides were identified. Most of these proteins contain 
relatively strong evidence for DA based on visual inspection of the individual quantile 
normalized peptide intensities, illustrating that our method can reliably discover DA in proteins 
that suffer considerably from missing peptides across samples. Proteins which were denoted 
as DA in the original article but not by our method were typically identified by a lot of peptides 
but with a weak visual evidence for DA. Indeed, when a lot of peptide intensities are present, 
modeling at the peptide level does not contribute much to stabilize the overall log2 FC estimate. 
Mostly though, these small fold changes are not biologically relevant. However, when one 
seeks DA in sparse data, as is the case in most experiments, our method clearly outperforms 
classical approaches. We indeed identify possibly interesting effects in low abundant proteins 
without overfitting, omitting the need for extensive a priori data filtering (e.g. dropping proteins 
with less than two peptides present in at least nine out of 18 samples as done by Ramond et 
al. (31)). Consequently, our ability to detect DA in low abundant proteins combined with 
robustness against irrelevant changes in high abundant proteins is a favorable property. 

We also showed that our fold change estimates are more stable for both the ribosomal and the 
BCAA synthesis modules, which are denoted as DA by Ramond et al. (31). For TCA cycle 
proteins, nine out of 12 were described as significantly more abundant in the mutant by these 
authors, while in our method, eight out of 13 TCA cycle proteins have log2 FC estimates that 
are in absolute value smaller than 1 × 10−9. Upon visual inspection, most of these proteins 
indeed contain very limited evidence for DA. Our method thus appears to provide more reliable 
data for follow-up analysis, thereby aiding researchers in drawing more correct conclusions. 
The fact that almost 82% of the proteins in our DA list of Francisella proteins indeed contain 
less peptides in the condition with the lowest abundance of this protein, advocates the inclusion 
of imputation or censoring approaches, or even the combination of our method with estimates 
derived from spectral counting, which could be used as a rough but very simple validation 
technique. For example, hypothetical protein FTN_0400 could be a false positive because 
more peptides are identified in the mutant, although it appears to be less abundant 
(supplemental Fig. S18, File S1). This could be an indication of intensity-dependent censoring 
in the WT. Just like the peptide-based linear regression model, our RR model can handle 
missing values. The models we presented here assume missingness completely at random, 
an assumption that is flawed when analyzing shotgun proteomics data. Note, however, that 
peptide-based models partially correct for this by incorporating peptide-specific effects. 
Moreover, our strategies to improve robustness of the estimators can be easily plugged into 
censored regression methods or estimation approaches that adopt advanced imputation 
techniques for handling missing data (40). 

Another interesting outlook is to model all proteins together by incorporating pathway or 
module level effects in the model in order to make stronger inferences on individual proteins 
belonging to a certain pathway. Finally, we want to stress the importance of data exploration. 
Plots of log2 peptide intensities for proteins that are flagged as differential abundant are very 
useful for assessing the biological relevance and the degree of belief one can have in the DA 
proteins that are returned by a method. 

We are currently preparing an R/Bioconductor package for our method. Meanwhile, all code 
and data needed to repeat the data analysis in this manuscript is available in Supplemental 
File 3. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B31
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739679/#B40
http://www.mcponline.org/cgi/content/full/M115.055897/DC1
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9.1.9. Appendix 

Ridge regression 

The untransformed, preprocessed intensities for each peptide 𝑝 in each run 𝑟 are assumed to 
follow a log-normal distribution. After log-transformation, these intensities become normally 
distributed. In all generality, for each protein, we propose the following peptide-based 
regression model that has also been proposed by Daly et al. (2008) [1]: 

𝑦𝑝𝑟 =  𝒙𝑝𝑟𝜷 + 𝛽𝑝
peptide + 𝑢𝑟

run + 𝜀𝑝𝑟 

Herein, 𝒙𝑝𝑟 is a row matrix with the covariate pattern related to peptide 𝑝 in run 𝑟, 𝜷 =

[𝛽0, 𝛽1
1 … , 𝛽𝑚1

1 … , 𝛽𝑀1
1 , … , 𝛽𝑚𝑔

𝑔 ,… , 𝛽𝑀𝑔
𝑔 , … , 𝛽𝑀𝐺

𝐺 ]
T
 is a vector with 1 + 𝑀 = 1 + ∑ 𝑀𝑔

𝐺
𝑔=1  

parameters denoting the effects of 𝑀 predictors corresponding to 𝐺 covariates. 𝛽𝑝
peptide is a 

peptide-specific effect for peptide 𝑝, 𝑢𝑟
run a random run effect to account for within-run 

correlation, with 𝑢𝑟
run~N(0, 𝜎𝑢

2). 𝜀𝑝𝑟~N(0, 𝜎2) is a random error term. 

We now want to introduce an extra penalization on the fixed effects beta by exploiting the link 
between ridge regression and mixed models (see section 4.2.4). Except for a fixed intercept 
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𝛽0, we penalize the parameters corresponding to each covariate group 𝑔 by assuming: 
𝛽𝑚𝑔

𝑔 ~N(0, 𝜎2 𝜆𝑔⁄ ) for 𝑚𝑔 = 1,… ,𝑀𝑔. Herein, 𝑔 refers to the 𝑔th covariate and accounts for 
the fact that certain covariates are modeled with more than one parameter. For example, a 
treatment effect with three levels will be modeled with three dummy parameters 𝛽1

treatment, 
𝛽2

treatment, and 𝛽3
treatment whereby 𝛽1

treatment + 𝛽2
treatment + 𝛽3

treatment = 0. We also assume 

𝛽𝑝
peptide~N(0, 𝜎2 𝜆peptide⁄ ). Therefore, the BLUP estimator for [

𝜷
𝜷peptide

𝒖run
] can be written as 

follows: 

[
�̂�

�̂�peptide

�̂�run
] = (𝑪T𝑪 + 𝑩)−1𝑪T𝒚 

With 𝒚 =

[
 
 
 
 
 
 
𝑦11…
𝑦1𝑅…
𝑦𝑝𝑟
…
𝑦𝑃1…
𝑦𝑃𝑅]

 
 
 
 
 
 

 and 𝑪 =

[
 
 
 
 
 
 
 
 𝒙11…
𝒙1𝑅…
𝒙𝑝𝑟
…

𝒙𝑃1…
𝒙𝑃𝑅

𝒙1
peptide
…

𝒙1
peptide
…

𝒙𝑝
peptide

…
𝒙𝑃

peptide
…

𝒙𝑃
peptide

𝒙1
run
…

𝒙𝑅
run
…

𝒙𝑟
run

…
𝒙1

run
…

𝒙𝑅
run

]
 
 
 
 
 
 
 
 

. Herein 𝒙𝑝
peptide is a row vector of dummies, for 

which the 𝑝th element is equal to 1 and all other elements equal to 0. 𝒙𝑟
run is a row vector of 

dummies with the 𝑟th element equal to 1 and all other elements equal to 0. 𝑩 is an (1 + 𝑀 +
𝑃 + 𝑅) × (1 + 𝑀 + 𝑃 + 𝑅) diagonal matrix with diagonal elements [0  𝒈 𝒑 𝒓], with 𝒈 a vector of 
length 𝑀 containing the 𝜆𝑔 that corresponds to each parameter estimate �̂�𝑚𝑔

𝑔  for 𝑚𝑔 = 1,… ,𝑀𝑔 
and 𝑔 = 1,… , 𝐺, 𝒑 a vector of length 𝑃 containing the 𝜆peptide that corresponds to each 

parameter estimate �̂�𝑝
peptide for 𝑝 = 1,… , 𝑃 and 𝒓 a vector of length 𝑅 containing the �̂�𝑢

2

�̂�2 that 
corresponds to each parameter estimate �̂�𝑟

run for 𝑟 = 1,… , 𝑅. 

Robust regression with M estimation 

To robustify our procedure against outliers, we use a weighted maximum likelihood method 
with Huber weights, as proposed by Zhou (2009) [2].  

∑𝑤𝑗

𝐽

𝑗=1

l(𝑦𝑗, 𝜷, 𝒖), 

with 𝑗 = 1,… , 𝐽 an indicator for observation. This weighted log-likelihood is solved iteratively. 
The mixed model is fitted while the weights are kept constant. Then, the weights are 
recomputed using Huber’s weight function on the residuals scaled with the residual standard 
deviation. This procedure is repeated until convergence. After convergence, the weighted 
BLUP estimator is given by: 

[
�̂�

�̂�peptide

�̂�run
] = (𝑪T𝑾𝑪 + 𝑩)−1𝑪T𝑾𝒚, 

with 𝑾 = [𝑤1 …𝑤𝑗 …𝑤𝐽]𝑰𝐽×𝐽 and 𝑤1 to 𝑤𝐽 the weights corresponding to these observations and 
𝑰𝐽×𝐽 a 𝐽 × 𝐽 unity matrix. Zhou (2009) [2] showed that the weighted BLUP estimator is better 
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than the unweighted one in terms of bias and efficiency when the data contains some outliers 
but provides the same asymptotic efficiency when the model is correctly specified. Robust M 
estimation with Huber weights has also been used to robustify the negative binomial model in 
the popular RNA sequencing R package EdgeR [3]. 

Empirical Bayes variance estimation 

Finally, we robustify our inference with limma’s empirical Bayes variance estimation (see 
section 4.2.2). In brief, limma assumes the following prior distribution on the error variance 𝜎𝑖

2 
for each protein 𝑖 (𝑖 = 1,… , 𝐼): 

1
𝜎𝑖

2 ~
1

𝑑0𝜎0
2 𝜒𝑑0

2 , 

with 𝜎0
2 a prior variance and 𝜒𝑑0

2  a 𝜒2 distribution with 𝑑0 degrees of freedom. A maximum a 
posteriori residual standard deviation �̃�𝑖 for each protein is given by: 

�̃�𝑖 = √𝑑𝑖�̂�𝑖
2 + 𝑑0�̂�0

2

𝑑𝑖 + 𝑑0
 

We then plug in this posterior residual standard deviation in the estimator for the standard 
deviation of the model parameter of interest, �̂�𝑚𝑔

𝑔  (suppressing the indicator 𝑖 for notational 
convenience): 

�̃��̂�𝑚𝑔
𝑔 = �̃�√(𝑪T𝑾𝑪 + 𝑩)𝑚𝑔,𝑚𝑔

−1  

Herein, 𝑚𝑔,𝑚𝑔 denotes the 𝑚𝑔th diagonal element of the matrix. This enables statistical 
inference with a moderated t-test with 𝑑𝑖 + 𝑑0 degrees of freedom: 

�̃�𝑖𝑚𝑔 =
�̂�𝑖𝑚𝑔

𝑔

�̃��̂�𝑖𝑚𝑔
𝑔

 

Herein, 𝑑𝑖 is calculated as 𝐽 − 𝑡𝑟(𝑯), with 𝐽 the total number of observations and 𝑯 the hat 
matrix, which is calculated as follows: 

𝑯 = 𝑪(𝑪T𝑾𝑪 + 𝑩)−1𝑪T𝑾 

Implementation 

MSqRob builds on the lme4 R package for parameter estimation and statistical inference [4]. 
Shrinkage on fixed effect parameters is obtained by encoding them as random effects. To 
allow for robust M-estimation, a loop is placed around the model fitting procedure: after model 
fitting, Huber weights are calculated on the residuals scaled with the residual standard 
deviation. These weights are provided as arguments to the lmer function of the lme4 package, 
which allows to estimate the parameters via weighted log-likelihood. This procedure is 
repeated until convergence.  
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