Part II: Statistical Inference

Lieven Clement

Proteomics Data Analysis Shortcourse

Label-free Quantitative Proteomics Data Analysis Pipelines

Statistical Inference

(1) Francisella tularensis Example
(2) Hypothesis testing
(3) Multiple testing
(9) Moderated statistics
(6) Experimental design

Francisella tularensis experiment

- Pathogen: causes tularemia
- Metabolic adaptation key for intracellular life cycle of pathogenic microorganisms.
- Upon entry into host cells quick phasomal escape and active multiplication in cytosolic compartment.
- Francisella is auxotroph for several amino acids, including arginine.
- Inactivation of arginine transporter delayed bacterial phagosomal escape and intracellular multiplication.
- Experiment to assess difference in proteome using 3 WT vs 3 ArgP KO mutants

Summarized data structure

- WT vs KO
- 3 vs 3 repeats
- 882 proteins

Protein	WT_{1}	WT_{2}	WT_{3}	KO_{1}	KO_{2}	KO_{3}
gi $\mid 118496616$	29.83	29.77	29.91	29.70	29.86	29.80
gi $\mid 118496617$	31.28	31.23	31.51	31.30	31.51	31.76
gi $\mid 118496635$	32.39	32.27	32.24	32.25	32.14	32.22
gi $\mid 118496636$	30.74	30.54	30.64	30.65	30.49	30.60
gi $\mid 118496637$	29.56	29.35	29.56	29.30	29.24	29.14
gi $\mid 118498323$	31.38	30.52	30.62	31.04	27.38	NA
\vdots						

Hypothesis testing: a single protein

$$
\begin{gathered}
\Delta=\bar{z}_{p 1}-\bar{z}_{p 2} \\
T_{g}=\frac{\Delta}{s_{s}} \\
T_{g}=\frac{\widehat{\text { signal }}}{\text { Noise }}
\end{gathered}
$$

If we can assume equal variance in both treatment groups:

$$
\operatorname{se}_{\Delta}=\operatorname{SD} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Hypothesis testing: a single protein

Francisella (gi|118497015)

$t=\frac{\log _{2} \widehat{\mathrm{FC}}}{\mathrm{Se}_{\log _{2} \widehat{\mathrm{FC}}}}=\frac{-1.4}{0.118}=-11.9$
Is $t=-11.9$ indicating that there is an effect?

How likely is it to observe
$t=-11.8$ when there is no effect of the argP KO on the protein expression?

Null hypothesis and alternative hypothesis

- In general we start from alternative hypothese H_{A} : we want to show an effect of the KO on a protein
- On average the protein abundance in WT is different from that in KO

Null hypothesis and alternative hypothesis

- In general we start from alternative hypothese H_{A} : we want to show an effect of the KO on a protein
- On average the protein abundance in WT is different from that in KO
- But, we will assess it by falsifying the opposite: null hypothesis H_{0}
- On average the protein abundance in WT is equal to that in KO

```
Two Sample t-test
data: z by treat
t = -11.449, df = 4, p-value = 0.0003322
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -1.031371 -1.691774
sample estimates:
mean in group D8 mean in group WT
    29.26094 30.62251
```

- How likely is it to observe an equal or more extreme effect than the one observed in the sample when the null hypothesis is true?
- When we make assumptions about the distribution of our test statistic we can quantify this probability: p-value. The p-value will only be calculated correctly if the underlying assumptions hold!
- When we repeat the experiment, the probability to observe a fold change more extreme than a 2.6 fold $\left(\log _{2} F C=-1.36\right)$ down or up regulation by random change (if H_{0} is true) is 3 out of 10.000 .
- If the p-value is below a significance threshold α we reject the null hypothesis. We control the probability on a false positive result at the α-level (type I error)

Hypothesis testing: a single protein

Multiple hypothesis testing

Problem of multiple hypothesis testing

- Consider testing DA for all $m=882$ proteins simultaneously
- What if we assess each individual test at level α ?
\rightarrow Probability to have a false positive among all m simultatenous test $\ggg \alpha=0.05$

Suppose that 600 proteins are non-DA, then we could expect to discover on average $600 \times 0.05=30$ false positive proteins. Hence, we are bound to call false positive proteins each time we run the experiment.

FDR: False discovery rate

- FDR: Expected proportion of false positives on the total number of positives you return.
- An FDR of 1% means that on average we expect 1% false positive proteins in the list of proteins that are called significant.
- Defined by Benjamini and Hochberg in 1995

$$
\begin{gathered}
\mathrm{FDR}\left(\left|t_{\text {thres }}\right|\right)=\mathrm{E}\left[\frac{F P}{F P+T P}\right]=\frac{\pi_{0} \operatorname{Pr}\left(|T| \geq t_{\text {thres }} \mid H_{0}\right)}{\operatorname{Pr}\left(|T| \geq t_{\text {thres }}\right)} \\
\operatorname{FDR}_{\mathrm{BH}}\left(\left|t_{\text {thres }}\right|\right)=\frac{1 \times p_{t_{\text {thres }}}}{\frac{\#\left|t_{i}\right| \geq t_{\text {thres }}}{m}}
\end{gathered}
$$

- FDR adjusted p-values can be calculated (e.g. Perseus, R, ...)

Ordinary t-test

Moderated Statistics

Problems with ordinary t-test

Ordinary t-test

Problems with ordinary t-test

Original t-test

Shrinkage of the variance and moderated t-statistics

Shrinkage of Standard Deviations

The data decides whether $\tilde{\mathbb{t}}_{\boldsymbol{g}}$ should be closer to $t_{g, \text { pooled }}$ or to t_{g}

Shrinkage of the variance with limma

Problems with ordinary t-test solved by moderated EB t-test

Problems with ordinary t-test solved by moderated EB t-test

Experimental Design

Power?

$$
\begin{gathered}
\Delta=\bar{z}_{p 1}-\bar{z}_{p 2} \\
T_{g}=\frac{\Delta}{\text { se }_{\Delta}} \\
T_{g}=\frac{\widehat{\text { signal }}}{\sqrt{\text { Noise }}}
\end{gathered}
$$

If we can assume equal variance in both treatment groups:

$$
\operatorname{se}_{\Delta}=\operatorname{SD} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

\rightarrow Design: if number of bio-repeats increases we have a higher power!

- Study on tamoxifen treated Estrogen Receptor (ER) positive breast cancer patients
- Proteomes for tumors of patients with good and poor outcome upon recurrence.
- Assess difference in power between 3vs3, 6vs6 and 9vs9 patients.

Experimental Design: Blocking

Sources of variability

$$
\sigma^{2}=\sigma_{\text {bio }}^{2}+\sigma_{\text {lab }}^{2}+\sigma_{\text {extraction }}^{2}+\sigma_{\text {run }}^{2}+\ldots
$$

- Biological: fluctuations in protein level between mice, fluctations in protein level between cells, ...
- Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, ...

Blocking Example: mouse T-cells

FIG. 1. Label-free quantitative analysis of conventional and regulatory T cell proteomes. General analytical workflow based on cell sorting by flow cytometry using the DEREG mouse model and parallel proteomic analysis of Tconv and Treg cell populations by nanoLCMS/MS and label-free relative quantification.

Blocking Example: mouse T-cells

Figure 2 | Blocking improves sensitivity by isolating variation in samples that is independent from treatment effects. (a) Measurements from treatment aliquots derived from different cell cultures are differentially offset (e.g., $1,0.5,-0.5$) because of differences in cultures. (b) When aliquots are derived from the same culture, measurements are uniformly offset (e.g., 0.5). (c) Incorporating blocking in data collection schemes. Repeats within blocks are considered technical replicates. In an incomplete block design, a block cannot accommodate all treatments.

Blocking

$$
\sigma^{2}=\sigma_{\text {within mouse }}^{2}+\sigma_{\text {between mouse }}^{2}
$$

Blocking

$$
\sigma^{2}=\sigma_{\text {within mouse }}^{2}+\sigma_{\text {between mouse }}^{2}
$$

\rightarrow All treatments of interest are present within block!
\rightarrow We can estimate the effect of the treatment within block!
\rightarrow We can isolate the between block variability from the analysis
\rightarrow linear model:

$$
y \sim \text { type }+ \text { mouse }
$$

\rightarrow Not possible with Perseus!

Power gain of blocking

- Completely randomized design (CRD): 8 mice, 4 conventional T-cells, 4 regulatory T-cells.
- Randomized complete block desigh (RBC): 4 mice, for each mouse conventional and regulatory T-cells.

Power gain of blocking
 CRD

$$
y \sim \text { type }
$$

CRD-design:
29 proteins significant

RCB
$y \sim$ type + mouse

RCB
$y \sim$ type

Anova table: P24452, Capg, Macrophage-capping protein

\#\#\# RCB design \#\#\#						
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
type	1	15.2282	15.2282	3720.035	$9.71 \mathrm{e}-06$	$* * *$
mouse	3	0.2179	0.0726	17.747	$0.02058 *$	
Residuals	3	0.0123	0.0041			

\#\#\# RCB design: no mouse effect \#\#\#
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
type $\quad 1 \quad 15.2282 \quad 15.2282 \quad 396.87 \quad 1.038 \mathrm{e}-06$ ***
Residuals 60.23020 .0384
\#\#\# CRD design \#\#\#
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
type $\quad 111.635011 .6350 \quad 122.86 \quad 3.211 \mathrm{e}-05$ ***
Residuals 60.56820 .0947

Anova table: P24452, Capg, Macrophage-capping protein

Comparison residual variance

RCB without mouse effect vs CRD

