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(R)evolution in high throughput experiments
Higher throughput and
Declining costs →
experiments with complex
designs

Complex designs → multiple
hypotheses of interest:

1 Is protein DA in different
heart regions?

2 Does the DA pattern
changes left to right?

→ To be assessed for
thousands of proteins!
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State-of-the-art RNA-seq tools allow transcript-level
analysis
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Power Issue Transcript Level Analysis

Van den Berge et al. Genome Biology  (2017) 18:151 Page 2 of 14

A B

Fig. 1 Performance curves for DTU analysis based on two simulation studies. The false discovery proportion (FDP, x-axis) is the fraction of false
positive hypotheses over all rejected hypotheses. The true positive rate (TPR, y-axis) represents the fraction of false null hypotheses that have indeed
been rejected. The three points on each curve represent working points on a nominal 1%, 5% and 10% FDR. The left panel a shows the results from a
simulation performed in Soneson et al. (2016) [24] based on the Drosophila melanogaster transcriptome and clearly shows the increased sensitivity
for tests that aggregate all transcript hypotheses on a gene level (green curve) in comparison to transcript-level tests (blue curve). The right panel
b shows the results from a simulation based on the human transcriptome used in Soneson et al. (2016) [10]. Here, aggregated hypothesis tests show
an even larger increase in sensitivity, possibly due to the higher complexity of the human transcriptome and thus a higher expected number of
transcripts per gene for human

are differentially used; thus, higher sensitivity comes at the
cost of a lower biological resolution.
In differential expression (DE) studies with complex

designs, it is common practice to adopt multiple testing
at the hypothesis level. This results in low power for dis-
covering interaction effects since their standard error is
typically much larger than for the main effects. Testing the
treatment-time interaction effect in the cross-sectional
time-series RNA-seq study from Hammer et al. (2010)
[11] with limma-voom [12], for instance, returns no sig-
nificant genes at a 5% FDR level, while more than 6000
genes are flagged when testing for treatment effects within
a particular timepoint. Hence, the higher resolution on
the hypothesis level comes at the expense of a low power
for the interaction effect. In addition, FDR control on the
hypothesis level does not guarantee FDR control on the
gene level, because multiple hypotheses are assessed per
gene, and the expected ratio of the number of genes with
at least one false positive (false positive genes) to all pos-
itive genes in the union across hypotheses will be larger
than the target FDR. For example, if three hypotheses are
assessed with 5% false positives in the top-list for every
contrast, then the aggregated top-lists will still contain 5%
false positives. However, since the false positives in the
different contrasts may be derived from different genes,
the number of genes with false positives will increase with
the number of hypotheses tested, while the total number
of genes remains fixed. Thus, the gene-level FDR will be
inflated if multiple hypotheses are of interest. This can
lead to lower success rates of subsequent validation, since

many genes without true treatment effects may be con-
sidered significant. In the RNA-seq literature, however,
there is no consensus on how to combine the enhanced
power of aggregation with an adequate resolution for the
biological problem at hand. We argue that the multiple
hypotheses at the gene level can be exploited in a two-
stage testing procedure (Fig. 2) [13–15]. In the screening
stage, genes with effects of interest are prioritised using an
omnibus test, e.g. a global F test, a global likelihood ratio
test or by aggregating p values. Assessing the aggregated
null hypothesis has the advantages of (1) high sensitivity
in a DTU/DTE context; (2) enriching for genes with sig-
nificant interaction effects in complex DE studies, thereby
boosting power; and (3) providing gene-level FDR con-
trol. In the confirmation stage, individual hypotheses are
assessed for genes that pass the screening stage. Hence,
it has the merit to combine the high power of aggre-
gated hypothesis tests in stage I with the high resolution
of individual hypothesis testing in stage II.
The suggested strategy positions itself in the larger

framework of stage-wise testing procedures for high-
throughput experiments. Lu et al. [16] previously pro-
posed a two-stage strategy for microarrays based on
mixed models, which is inapplicable to HTS data due
to the violation of the distributional assumptions. Jiang
and Doerge [13] proposed a generic two-stage DE anal-
ysis procedure where the first stage corresponds to test-
ing a global null hypothesis, i.e. testing whether at least
one hypothesis is false, after which post hoc tests are
considered only for the significant genes. Their algorithm,
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Human: > 38000 genes and > 173000 transcripts

5 / 17



Single cell transcriptomics
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Single cell transcriptomics

2

Introduction
Advances in single cell RNA quantification techniques have enabled 
comprehensive study of cell subpopulations within a heterogeneous 
population. We developed the GemCode™ Technology, which 
combines microfluidics with molecular barcoding and custom 
bioinformatics software to enable 3’ mRNA counting from thousands 
of single cells. 

The Chromium™ Single Cell 3’ Solution
Single cells, reagents and a single Gel Bead containing barcoded 
oligonucleotides are encapsulated into nanoliter-sized GEMs (Gel 
Bead in emulsion) using the GemCode Technology. Lysis and 
barcoded reverse transcription of polyadenylated mRNA from single 
cells are performed inside each GEM. High-quality next generation 
sequencing libraries are finished in single bulk reaction. Finally, the 
Chromium™ Software Suite is utilized for processing, analysis and 
visualization of single cell gene expression data.

Figure 1. Chromium™ Single Cell 3’ Solution. (a) Workflow schematic overview. (b) Formation of GEMs, RT takes place inside each GEM, which is then pooled for cDNA amplification and 
library construction in bulk. (c) v2 Single Cell Assay schematic overview.
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Kang et al. Nat. Biotechnol. 2018 36(1):89-94
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> 29000 cells

Two channels of 10x
genomics chip

Two lanes of hiseq
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individuals via SNPs
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DE stimulated vs
control in each cell
type (6 tests/gene)

Different stimulus
effect across cell
types (15 tests/gene)
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Many hypotheses per gene/protein in contemporary high
throughput studies

Transcript-level analysis, single cell experiments and complex
designs result in multiple hypotheses of interest per gene/protein.

The conventional strategy

1 assess each hypothesis separately

2 on FDR level α

3 provide the biologist with list of top-genes for every contrast

However,

Shortlist of interesting genes when we assess multiple
hypotheses per gene/protein?

Post-hoc tests for each hypothesis within a gene/protein if
omnibus null hypothesis is rejected?

Gene/protein-level FDR control required because downstream
analysis and validation is done at the gene/protein-level.
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Simulation study conventional analysis in sequencing
applications
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Example
Based on Hammer et al. (2010), Genome Research
Two conditions (control - SNL)
Two timepoints (2 weeks - 2 months)

Interested in:
1 DE between conditions at 2 weeks (> 7000 DE genes)
2 DE between conditions at 2 months (> 6500 DE genes)
3 Different FC between timepoints (interaction, 0 ∆FC genes)

control

treatment

2	weeks 2	months
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Example: Gene-level tests

False discovery rate cut-off
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Example transcript level analysis: control FDR on gene
level by aggregated testing

A simple strategy would be to

1 Aggregate p-values across hypotheses (i.e. omnibus test)

2 Control FDR on level αI on the aggregated p-values

Additionally takes advantage of aggregated tests with higher
sensitivity

Van den Berge et al. Genome Biology  (2017) 18:151 Page 2 of 14
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Fig. 1 Performance curves for DTU analysis based on two simulation studies. The false discovery proportion (FDP, x-axis) is the fraction of false
positive hypotheses over all rejected hypotheses. The true positive rate (TPR, y-axis) represents the fraction of false null hypotheses that have indeed
been rejected. The three points on each curve represent working points on a nominal 1%, 5% and 10% FDR. The left panel a shows the results from a
simulation performed in Soneson et al. (2016) [24] based on the Drosophila melanogaster transcriptome and clearly shows the increased sensitivity
for tests that aggregate all transcript hypotheses on a gene level (green curve) in comparison to transcript-level tests (blue curve). The right panel
b shows the results from a simulation based on the human transcriptome used in Soneson et al. (2016) [10]. Here, aggregated hypothesis tests show
an even larger increase in sensitivity, possibly due to the higher complexity of the human transcriptome and thus a higher expected number of
transcripts per gene for human

are differentially used; thus, higher sensitivity comes at the
cost of a lower biological resolution.
In differential expression (DE) studies with complex

designs, it is common practice to adopt multiple testing
at the hypothesis level. This results in low power for dis-
covering interaction effects since their standard error is
typically much larger than for the main effects. Testing the
treatment-time interaction effect in the cross-sectional
time-series RNA-seq study from Hammer et al. (2010)
[11] with limma-voom [12], for instance, returns no sig-
nificant genes at a 5% FDR level, while more than 6000
genes are flagged when testing for treatment effects within
a particular timepoint. Hence, the higher resolution on
the hypothesis level comes at the expense of a low power
for the interaction effect. In addition, FDR control on the
hypothesis level does not guarantee FDR control on the
gene level, because multiple hypotheses are assessed per
gene, and the expected ratio of the number of genes with
at least one false positive (false positive genes) to all pos-
itive genes in the union across hypotheses will be larger
than the target FDR. For example, if three hypotheses are
assessed with 5% false positives in the top-list for every
contrast, then the aggregated top-lists will still contain 5%
false positives. However, since the false positives in the
different contrasts may be derived from different genes,
the number of genes with false positives will increase with
the number of hypotheses tested, while the total number
of genes remains fixed. Thus, the gene-level FDR will be
inflated if multiple hypotheses are of interest. This can
lead to lower success rates of subsequent validation, since

many genes without true treatment effects may be con-
sidered significant. In the RNA-seq literature, however,
there is no consensus on how to combine the enhanced
power of aggregation with an adequate resolution for the
biological problem at hand. We argue that the multiple
hypotheses at the gene level can be exploited in a two-
stage testing procedure (Fig. 2) [13–15]. In the screening
stage, genes with effects of interest are prioritised using an
omnibus test, e.g. a global F test, a global likelihood ratio
test or by aggregating p values. Assessing the aggregated
null hypothesis has the advantages of (1) high sensitivity
in a DTU/DTE context; (2) enriching for genes with sig-
nificant interaction effects in complex DE studies, thereby
boosting power; and (3) providing gene-level FDR con-
trol. In the confirmation stage, individual hypotheses are
assessed for genes that pass the screening stage. Hence,
it has the merit to combine the high power of aggre-
gated hypothesis tests in stage I with the high resolution
of individual hypothesis testing in stage II.
The suggested strategy positions itself in the larger

framework of stage-wise testing procedures for high-
throughput experiments. Lu et al. [16] previously pro-
posed a two-stage strategy for microarrays based on
mixed models, which is inapplicable to HTS data due
to the violation of the distributional assumptions. Jiang
and Doerge [13] proposed a generic two-stage DE anal-
ysis procedure where the first stage corresponds to test-
ing a global null hypothesis, i.e. testing whether at least
one hypothesis is false, after which post hoc tests are
considered only for the significant genes. Their algorithm,

However, we lose resolution on the biology
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it has the merit to combine the high power of aggre-
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The suggested strategy positions itself in the larger
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throughput experiments. Lu et al. [16] previously pro-
posed a two-stage strategy for microarrays based on
mixed models, which is inapplicable to HTS data due
to the violation of the distributional assumptions. Jiang
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Solution: Stage-wise testing procedure: aggregate and
split evidence

Hg1 …

Screening stage

Confirmation stage

Hg1 …

Aggregate evidence 
(Omnibus test or by  
aggregating p-values) 

Control FDR on  
aggregated tests 
across all genes 

Only retain 
significant genes 

Control error rate within 
a gene on the FDR 
adjusted significance 
level from screening 
stage 

Assess each 
hypothesis separately 

Hgng

Hgng

13 / 17



Stage-wise testing procedure1

1 Screening Stage:
Assess the screening hypothesis HS

g / global null hypothesis for
all genes/proteins in the set G .
Apply the Benjamini Hochberg (BH) FDR procedure to the
screening p-values at FDR level α. Let R be the number of
rejected screening hypotheses.

2 Confirmation Stage: For all R genes/proteins that pass the
screening stage.

Let αII = Rα/G be FDR-adjusted significance level from the
first stage.
Adopt a multiple testing procedure to assess all ng hypotheses
while controlling the within gene error rate at the adjusted
level αII .

1Heller et al. 2009, Bioinformatics.
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DGE experiments with complex designs

Our procedure correctly controls the FDR at gene-level

The omnibus test enriches for genes with interaction effects

While maintaining equivalent power for main effects
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Stage-wise testing unlocks powerful transcript-level analysis
Naturally unites high gene-level power with transcript-level
resolution of the results
Equal or better power at transcript level
Better FDR control
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METHOD Open Access

stageR: a general stage-wise method for
controlling the gene-level false discovery rate
in differential expression and differential
transcript usage
Koen Van den Berge1,2, Charlotte Soneson3,4, Mark D. Robinson3,4 and Lieven Clement1,2*

Abstract
RNA sequencing studies with complex designs and transcript-resolution analyses involve multiple hypotheses per
gene; however, conventional approaches fail to control the false discovery rate (FDR) at gene level. We propose
stageR, a two-stage testing paradigm that leverages the increased power of aggregated gene-level tests and allows
post hoc assessment for significant genes. This method provides gene-level FDR control and boosts power for testing
interaction effects. In transcript-level analysis, it provides a framework that performs powerful gene-level tests while
maintaining biological interpretation at transcript-level resolution. The procedure is applicable whenever individual
hypotheses can be aggregated, providing a unified framework for complex high-throughput experiments.

Keywords: RNA-sequencing, Stage-wise testing, Differential transcript usage, Differential expression

Background
High-throughput sequencing (HTS) technology has
become the dominant platform for transcriptome pro-
filing. It is agnostic of genomic annotation, has a broad
dynamic range and allows data aggregation on different
biological levels (basepair, exon, gene) [1–4]. Recent
developments in read alignment provide fast transcript-
level quantification [3, 5, 6], opening the way to assess
differential transcript expression (DTE) and differential
transcript usage (DTU), which for instance has been
shown to be associated with Parkinson’s disease [7] and
resistance to prostate cancer treatment [8]. In DTE,
differential expression between conditions is assessed at
the individual transcript level, while in DTU the rela-
tive expression of the isoforms of a gene are compared
between conditions; i.e. a DTU analysis aims at discov-
ering differences in the proportions of the expressed
isoforms of a gene.
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1Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Krijgslaan 281, S9, 9000 Ghent, Belgium
2Bioinformatics Institute Ghent, Ghent University, 9000 Ghent, Belgium
Full list of author information is available at the end of the article

The dramatic sequencing cost reduction has also
enabled researchers to set up studies with complex exper-
imental designs involving many samples [9]. Analysis of
DTU, DTE or traditional RNA-seq studies with complex
designs typically involves multiple hypotheses of interest
for each gene, e.g. for each transcript in a DTU and DTE
context or for every treatment effect at each timepoint and
the treatment-time interactions in time course differential
gene expression (DGE) studies. The current consensus is
to control the false discovery rate (FDR) on the hypoth-
esis level, which we argue to be suboptimal with respect
to statistical power and the downstream biological inter-
pretation and validation that typically occur on a gene
level. Soneson et al. [10] have shown that DTE analysis has
higher performance when evidence on all individual tran-
scripts is aggregated at the gene level due to the different
null hypothesis and the larger amount of data that is avail-
able than for tests at the individual hypothesis level. This
also occurs for DTU (see Fig. 1). Inference using p values
of a DEXSeq [2] analysis on transcript counts also has a
lower power than aggregating transcript-level p values to
the gene level prior to FDR calculation. But, the latter does
not provide identification of the specific transcripts that

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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