

・ロト ・西ト ・ヨト ・ヨー うへで

Omnibus testing and post-hoc tests for high throughput experiments

Lieven Clement

Proteomics and transcriptomics data analysis

(R)evolution in high throughput experiments

- Higher throughput and Declining costs → experiments with complex designs
- Complex designs → multiple hypotheses of interest:
 - Is protein DA in different heart regions?
 - Obes the DA pattern changes left to right?
 - \rightarrow To be assessed for thousands of proteins!

(R)evolution in high throughput experiments

State-of-the-art RNA-seq tools allow transcript-level analysis

State-of-the-art RNA-seq tools allow transcript-level analysis

https://en.wikibooks.org/wiki/Proteomics/Protein_Primary_Structure/Alternative_Splicing

Power Issue Transcript Level Analysis

Van den berge et al. 2017 Genome Biology 18:151

Human: > 38000 genes and > 173000 transcripts

Single cell transcriptomics

ARTICLE

Received 20 Sep 2016 | Accepted 23 Nov 2016 | Published 16 Jan 2017

DOI: 10.1038/ncomms14049 OPEN

Massively parallel digital transcriptional profiling of single cells

Grace X.Y. Zheng¹, Jessica M. Terry¹, Phillip Belgrader¹, Paul Ryvkin¹, Zachary W. Bent¹, Ryan Wilson¹, Solongo B. Ziraldo¹, Tobias D. Wheeler¹, Geoff P. McDermott¹, Junjie Zhu¹, Mark T. Gregory², Joe Shuga¹, Luz Montesclaros¹, Jason G. Underwood^{1,3}, Donald A. Masquelier¹, Stefanie Y. Nishimura¹, Michael Schnall-Levin¹, Paul W. Wyatt¹, Christopher M. Hindson¹, Rajiv Bharadwaj¹, Alexander Wong¹, Kevin D. Ness¹, Lan W. Beppu⁴, H. Joachim Deeg⁴, Christopher McFarland⁵, Keith R. Loeb^{4,6}, William J. Valente^{2,7,8}, Nolan G. Ericson², Emily A. Stevens⁴, Jerald P. Radich⁴, Tarjei S. Mikkelsen¹, Benjamin J. Hindson¹ & Jason H. Bielas^{2,6,6,9}

Single cell transcriptomics

Transcriptome profile for each individual cell

Kang et al. Nat. Biotechnol. 2018 36(1):89-94

- peripheral blood mononuclear cells
- from 8 individuals
- Stimulated vs control
- \bullet > 29000 cells

Stimulated	Control
NK cells	NK cells
FCGR3A+ Monocytes	FCGR3A+ Monocytes
CD8 T cells	CD8 T cells
CD4 T cells	CD4 T cells
CD14+ Monocytes	CD14+ Monocytes
B cells	B cells

Kang et al. Nat. Biotechnol. 2018 36(1):89-94

- peripheral blood mononuclear cells
- from 8 individuals
- Stimulated vs control
- > 29000 cells
- Two channels of 10x genomics chip
- Two lanes of hiseq run
- Demultiplexing individuals via SNPs

- DE stimulated vs control in each cell type (6 tests/gene)
- Different stimulus effect across cell types (15 tests/gene)

Kang et al. Nat. Biotechnol. 2018 36(1):89-94

Many hypotheses per gene/protein in contemporary high throughput studies

Transcript-level analysis, single cell experiments and complex designs result in multiple hypotheses of interest per gene/protein.

The conventional strategy

- assess each hypothesis separately
- $\textbf{@ on FDR level } \alpha$
- oprovide the biologist with list of top-genes for every contrast

Many hypotheses per gene/protein in contemporary high throughput studies

Transcript-level analysis, single cell experiments and complex designs result in multiple hypotheses of interest per gene/protein.

The conventional strategy

- assess each hypothesis separately
- $\textbf{@ on FDR level } \alpha$
- oprovide the biologist with list of top-genes for every contrast

However,

- Shortlist of interesting genes when we assess multiple hypotheses per gene/protein?
- Post-hoc tests for each hypothesis within a gene/protein if omnibus null hypothesis is rejected?
- Gene/protein-level FDR control required because downstream analysis and validation is done at the gene/protein-level.

イロン イロン イヨン イヨン 二日 二

Simulation study conventional analysis in sequencing applications

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Example

- Based on Hammer et al. (2010), Genome Research
- Two conditions (control SNL)
- Two timepoints (2 weeks 2 months)

Interested in:

- DE between conditions at 2 weeks (> 7000 DE genes)
- OE between conditions at 2 months (> 6500 DE genes)
- \odot Different FC between timepoints (interaction, 0 Δ FC genes)

Example: Gene-level tests

★ dP ★ E ★ E → E → Q ↔ 11/17

Example transcript level analysis: control FDR on gene level by aggregated testing

- A simple strategy would be to
 - Aggregate p-values across hypotheses (i.e. omnibus test)
 - **②** Control FDR on level α_I on the aggregated p-values

Example transcript level analysis: control FDR on gene level by aggregated testing

- A simple strategy would be to
 - Aggregate p-values across hypotheses (i.e. omnibus test)
 - **2** Control FDR on level α_I on the aggregated p-values

Additionally takes advantage of aggregated tests with higher sensitivity

However, we lose resolution on the biology

Solution: Stage-wise testing procedure: aggregate and split evidence

Stage-wise testing procedure¹

O Screening Stage:

- Assess the screening hypothesis $H_g^S/$ global null hypothesis for all genes/proteins in the set G.
- Apply the Benjamini Hochberg (BH) FDR procedure to the screening p-values at FDR level *α*. Let *R* be the number of rejected screening hypotheses.

Stage-wise testing procedure¹

O Screening Stage:

- Assess the screening hypothesis $H_g^S/$ global null hypothesis for all genes/proteins in the set G.
- Apply the Benjamini Hochberg (BH) FDR procedure to the screening p-values at FDR level *α*. Let *R* be the number of rejected screening hypotheses.
- Confirmation Stage: For all R genes/proteins that pass the screening stage.
 - Let $\alpha_{II} = R\alpha/G$ be FDR-adjusted significance level from the first stage.
 - Adopt a multiple testing procedure to assess all n_g hypotheses while controlling the within gene error rate at the adjusted level α_{II} .

¹Heller et al. 2009, Bioinformatics.

DGE experiments with complex designs

- Our procedure correctly controls the FDR at gene-level
- The omnibus test enriches for genes with interaction effects
- While maintaining equivalent power for main effects

Stage-wise testing unlocks powerful transcript-level analysis

- Naturally unites high gene-level power with transcript-level resolution of the results
- Equal or better power at transcript level
- Better FDR control

16/17

Van den Berge et al. Genome Biology (2017) 18:151 DOI 10.1186/s13059-017-1277-0

METHOD

Genome Biology

Open Access

stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage

Koen Van den Berge^{1,2}, Charlotte Soneson^{3,4}, Mark D. Robinson^{3,4} and Lieven Clement^{1,2*} (

Abstract

RNA sequencing studies with complex designs and transcript-resolution analyses involve multiple hypotheses per gene; however, conventional approaches fail to control the false discovery rate (FDR) at gene level. We propose stageR, a two-stage testing paradigm that leverages the increased power of aggregated gene-level tests and allows post hoc assessment for significant genes. This method provides gene-level FDR control and boosts power for testing interaction effects. In transcript-level analysis, it provides a framework that performs powerful gene-level tests while maintaining biological interpretation at transcript-level resolution. The procedure is applicable whenever individual hypotheses can be aggregated, providing a unified framework for complex high-throughput experiments.

Keywords: RNA-sequencing, Stage-wise testing, Differential transcript usage, Differential expression