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Omnibus testing and post-hoc tests for high
throughput experiments

Lieven Clement

Proteomics and transcriptomics data analysis



(R)evolution in high throughput experiments

o Higher throughput and
Declining costs —
experiments with complex
designs

o Complex designs — multiple
hypotheses of interest:
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(R)evolution in high throughput experiments

Cost per Raw Megabase of DNA Sequence

Moore's Law
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State-of-the-art RNA-seq tools allow transcript-level
analysis

Cost per Raw Megabase of DNA Sequence
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Near-optimal RNA-Seq quantification

Nicolas Bray, Harold Pimentel, Pall Melsted, Lior Pachter
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New Results View current version of this article

Salmon: Accurate, Versatile and Ultrafast Quantification from
RNA-seq Data using Lightweight-Alignment

Rob Patro, Geet Duggal, Carl Kingsford
doi: hteps://doi.org/10.1101/021592
Now published in Nature Methods doi: 10.1038/nmeth.4197
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State-of-the-art RNA-seq tools allow transcript-level
analysis
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Power Issue Transcript Level Analysis
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Van den berge et al. 2017 Genome Biology 18:151

Human: > 38000 genes and > 173000 transcripts
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Single cell transcriptomics
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Massively parallel digital transcriptional
profiling of single cells
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Single cell transcriptomics

Cell Barcoding & Library Sequence Transcriptome
Suspension Construction
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@ peripheral blood
mononuclear cells

o from 8 individuals
@ Stimulated vs control
@ > 29000 cells

Stimulated Control

NK cells

FCGR3A+ Monocytes

« CD8Tcells « CD8Tcells
« CD4Tecells

« CD14+ Monocytes « CD14+ Monocytes
« Beells

Kang et al. Nat. Biotechnol. 2018 36(1):89-94
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Kang et al. Nat. Biotechnol. 2018 36(1):89-94

peripheral blood
mononuclear cells

from 8 individuals
Stimulated vs control
> 29000 cells

Two channels of 10x
genomics chip

Two lanes of hiseq
run

Demultiplexing
individuals via SNPs
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@ DE stimulated vs
control in each cell
type (6 tests/gene)

o Different stimulus
effect across cell
types (15 tests/gene)

Kang et al. Nat. Biotechnol. 2018 36(1):89-94
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Many hypotheses per gene/protein in contemporary high
throughput studies

Transcript-level analysis, single cell experiments and complex
designs result in multiple hypotheses of interest per gene/protein.

The conventional strategy
@ assess each hypothesis separately
Q@ on FDR level a

© provide the biologist with list of top-genes for every contrast



Many hypotheses per gene/protein in contemporary high
throughput studies

Transcript-level analysis, single cell experiments and complex
designs result in multiple hypotheses of interest per gene/protein.

The conventional strategy
@ assess each hypothesis separately
Q@ on FDR level a
© provide the biologist with list of top-genes for every contrast

However,

@ Shortlist of interesting genes when we assess multiple
hypotheses per gene/protein?

@ Post-hoc tests for each hypothesis within a gene/protein if
omnibus null hypothesis is rejected?

o Gene/protein-level FDR control required because downstream
analysis and validation is done at the gene/protein-level.
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Simulation study conventional analysis in sequencing
applications
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Example

o Based on Hammer et al. (2010), Genome Research

e Two conditions (control - SNL)

e Two timepoints (2 weeks - 2 months)

Interested in:

@ DE between conditions at 2 weeks (> 7000 DE genes)
@ DE between conditions at 2 months (> 6500 DE genes)
@ Different FC between timepoints (interaction, 0 AFC genes)

B X XX

CX XX

N X X X

2 weeks

CX XX

2 months
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Example: Gene-level

Empirical false discovery proportion
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Example transcript level analysis: control FDR on gene
level by aggregated testing
A simple strategy would be to
@ Aggregate p-values across hypotheses (i.e. omnibus test)

Q@ Control FDR on level a; on the aggregated p-values
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Example transcript level analysis: control FDR on gene
level by aggregated testing
A simple strategy would be to
O Aggregate p-values across hypotheses (i.e. omnibus test)
Q@ Control FDR on level a; on the aggregated p-values
Additionally takes advantage of aggregated tests with higher
sensitivity
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However, we lose resolution on the biology
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Solution: Stage-wise testing procedure: aggregate and
split evidence

Hg1 Han,g
Aggregate evidence
\ } (Omnibus test or by
Y aggregating p-values)
Control FDR on

aggregated tests ‘ Screening stage ‘
across all genes

Only retain
significant genes

Control error rate within L
a gene on the FDR A
sdjusted significance | Confirmation stage
level from screening
stage

Assess each
v hypothesis separately

Hor H

gng
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Stage-wise testing procedure!

Q Screening Stage:
o Assess the screening hypothesis Hg/ global null hypothesis for
all genes/proteins in the set G.
o Apply the Benjamini Hochberg (BH) FDR procedure to the
screening p-values at FDR level a. Let R be the number of
rejected screening hypotheses.

"Heller et al. 2009, Bioinformatics.
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Stage-wise testing procedure!

Q Screening Stage:

o Assess the screening hypothesis Hg/ global null hypothesis for
all genes/proteins in the set G.

o Apply the Benjamini Hochberg (BH) FDR procedure to the
screening p-values at FDR level a. Let R be the number of
rejected screening hypotheses.

@ Confirmation Stage: For all R genes/proteins that pass the
screening stage.

o Let ayy = Ra/G be FDR-adjusted significance level from the

first stage.
o Adopt a multiple testing procedure to assess all ng hypotheses
while controlling the within gene error rate at the adjusted

level ajf.

Heller et al. 2009, Bioinformatics.
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DGE experiments with complex designs

@ Our procedure correctly controls the FDR at gene-level
@ The omnibus test enriches for genes with interaction effects

@ While maintaining equivalent power for main effects

© |
- S -
j
o}
B g =
o I - = B
= oo j
o =]
=
P Q
8 < -
= g o B
o - D
c I = T
s = o H
14 5 £
2 © o - T O
64 & 23 Ee
8 = £ 8
S ] 3
o
z €3
£ o
@]
<]
. )
+ < H
- - = o ﬁ
g b == —~ Conventional T —~ Conventional 1 — Conventional
Stage-wise © Stage-wise - Stage-wise
; r T ; r T ; r T
1% 5% 10% 1% 5% 10% 1% 5% 10%

False discovery rate cut-off

15 /17



Stage-wise testing unlocks powerful transcript-level analysis

@ Naturally unites high gene-level power with transcript-level

resolution of the results
o Equal or better power at transcript level
o Better FDR control
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Van den Berge et al. Genome Biology (2017) 18:151
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METHOD Open Access

stageR: a general stage-wise method for ®ereer
controlling the gene-level false discovery rate

in differential expression and differential
transcript usage

Koen Van den Berge'?, Charlotte Soneson*#, Mark D. Robinson®* and Lieven Clement!?" ®

Abstract

RNA sequencing studies with complex designs and transcript-resolution analyses involve multiple hypotheses per
gene; however, conventional approaches fail to control the false discovery rate (FDR) at gene level. We propose
stageR, a two-stage testing paradigm that leverages the increased power of aggregated gene-level tests and allows
post hoc assessment for significant genes. This method provides gene-level FDR control and boosts power for testing
interaction effects. In transcript-level analysis, it provides a framework that performs powerful gene-level tests while
maintaining biological interpretation at transcript-level resolution. The procedure is applicable whenever individual
hypotheses can be aggregated, providing a unified framework for complex high-throughput experiments.

Keywords: RNA-sequencing, Stage-wise testing, Differential transcript usage, Differential expression
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