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single-cell RNA-sequencing (scRNA-seq) is noisier than
bulk RNA-seq

ONE GENOME FROM MANY

Sequencing the genomes of single Cells is similar o sequencing
those from mutiple Cells — bt errors are more lily.

» Standard genome sequencing

A sample containing thousands to DINA is. extracted froen all the nuciel DNA is broken into eagmmnts The sequences are assembled to gve
milkons of cels is isolated and then sequenced. COMANGA, “CONMNITS’ HQUENCE.

» Single-cell sequencing
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Single-cell RNA-seq protocols

» Full-length protocols (e.g., SMART-Seq2)
» Cells must be isolated (manually, FACS, ...).
> Library prep is typically plate-based; one well contains one cell.

» Droplet-based protocols (e.g., 10X, drop-seq)

» Cells do not need to be isolated!
> Cell-containing medium is mixed with bead-containing oil

droplets.

Drop-seq single cell analysis
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https://www.youtube.com/watch?v=vL7ptq2Dcf0

single-cell RNA-sequencing (scRNA-seq) is noisier than
bulk RNA-seq
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data from [Pickrell et al. 2010, Fletcher et al. 2017, Zheng et al. 2017]



Bulk RNA-seq differential expression (DE) analysis

Popular methods (edgeR, DESeq2) adopt negative binomial (NB)

models
Ygi ~ NB(Ngi7¢g)
log(1gi) = gi
Ngi inBg + |0g( Oi)

with y,; the expression count of gene g in sample i.
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Bulk RNA-seq DE not worse than bespoke scRNA-seq tools

Jaakkoola et al. (2016), Bioinformatics:
“Our evaluations did not reveal systematic benefits of the currently
available single-cell-specific methods.”

Soneson & Robinson (2018), Nat. Meth.:
“We found that bulk RNA-seq analysis methods do not generally
perform worse than those developed specifically for scRNA-seq.”



Bulk RNA-seq methods still break down due to ZI
Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework
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Bulk RNA-seq methods still break down due to ZI
Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework

o Simulated RNA-seq scRNA-seq: Buettner (2015)
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Observation weights unlock bulk RNA-seq tools towards
zero inflation

Excess zeros observed — zero inflation
We propose to model counts with a zero inflated negative binomial
(ZINB) distribution

fzing (Vgis Hgis Pg> Tgi) = Tgid + (1 — mgi) fng(Veis tgir 0g)- (1)



Observation weights unlock bulk RNA-seq tools towards
zero inflation

Excess zeros observed — zero inflation
We propose to model counts with a zero inflated negative binomial
(ZINB) distribution

fzing (Vgis Hgis Pg> Tgi) = Tgid + (1 — mgi) fng(Veis tgir 0g)- (1)

A ZINB model corresponds to a weighted NB where observation
weights are posterior probabilities

Wi — (1 — 7gi) g (Vei: Heis Pg) (2)
& fzing (Vi tgis Pg> Tgi)



Observation weights unlock bulk RNA-seq tools towards
zero inflation

Excess zeros observed — zero inflation
We propose to model counts with a zero inflated negative binomial
(ZINB) distribution

fzing (Vgis Hgis Pg> Tgi) = Tgid + (1 — mgi) fng(Veis tgir 0g)- (1)

A ZINB model corresponds to a weighted NB where observation
weights are posterior probabilities

Wi — (1 — 7gi) g (Vei: Heis Pg) (2)
& fzing (Vi tgis Pg> Tgi)

Weights are used to unlock RNA-seq NB models (edgeR, DESeq2)
for zero inflation [Van den Berge*, Perraudeau* et al., 2018].



zinbwave can be used to fit ZINB models in scRNA-seq

Estimation of the ZINB parameters using penalized likelihood
implemented in the ZINB-WaVE model [Risso et al. 2018]

Bioconductor: http://bioconductor.org/packages/zinbwave/
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http://bioconductor.org/packages/zinbwave/

zinbwave can be used to fit ZINB models in scRNA-seq

Estimation of the ZINB parameters using penalized likelihood
implemented in the ZINB-WaVE model [Risso et al. 2018]

Bioconductor: http://bioconductor.org/packages/zinbwave/

Known samp\e -level covarlates Known gene-level covanates Unknown sample -level covanates

n samples.
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random parameter parameter random random parameter
variable variable variable

cific scaling factor  V intercept acts as a sample-specific scaling factor

X intercept acts as

n samples.

Alternatively: EM-algorithm (see last couple of slides)
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Downweighting excess zeros recovers mean-variance trend,

resulting in high power
Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework

o Simulated RNA-seq scRNA-seq: Buettner (2015)
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Downweighting excess zeros recovers mean-variance trend,

resulting in high power
Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework

o Simulated RNA-seq scRNA-seq: Buettner (2015) o Downweighted
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High power, good FDR control in scRNA-seq simulations

Full-length protocols
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High power, good FDR control in scRNA-seq simulations
Droplet-based protocols, e.g. 10X Genomics, Drop-seq
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Mock comparisons on real data show good FPR control
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Non-UMI dataset on 622 neuronal cells from [Usoskin et al. 2015].
45 vs. 45 mock comparisons.
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Downweighting leads to biologically meaningful results

10X Genomics PBMC dataset, preprocessed using tutorial from

Seurat.
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Method is implemented in zinbwave Bioc package

» computeObservationalWeights for weights calculation
> edgeR:glmWeightedF for Zl-adjusted inference

» DESeq2:nbinomWaldTest and nbinomLRT for Zl-adjusted
inference

» Tutorial available in zinbwave vignette

METHOD Open Access

Observation weights unlock bulk RNA-seq @
tools for zero inflation and single-cell

applications
Koen Van den Bergemf, Fanny Perraudeau3T, Charlotte Soneson*®, Michael I. Love®,
Davide Risso’, Jean-Philippe Vert&®1911, Mark D. Robinson*?, Sandrine Dudoit?'2

and Lieven Clement'?"" @

zinbwave
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What follows are some slides on the EM algorithm used in the
zingeR method.

zingeR: unlocking RNA-seq tools for zero-inflation and single cell applications

Koen Van den Berge, Charlotte Soneson, Michael I. Love, Mark D. Robinson, Lieven Clement
doi: https://doi.org/10.1101/157982

This article is a preprint and has not been peer-reviewed [what does this mean?].
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A zero-inflated negative binomial model

Distribution of counts y for gene g over samples i

Ygi ™~ 7T,'(5 + (1 - Wi)fNB(Mgi7¢g)

i.e. mixture distribution between point-mass at zero and negative
binomial

Log-likelihood

(ygi) = Z log {mi6 + (1 — ) fne(1igi, bg)}

does not factorize
— very difficult to maximize!
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Fitting a mixture distribution with EM

Estimate mixture using EM-algorithm: introduce latent variable
Zgi ~ B(7gi) to assign zeros to the zero-inflation or count
component. The joint density becomes

f(Vais Zgi) = f(Veilzai)f (2gi) = [mi0]7 [(1 — 77) v (gis ¢g)](1_2gi)
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Fitting a mixture distribution with EM

Estimate mixture using EM-algorithm: introduce latent variable
Zgi ~ B(7gi) to assign zeros to the zero-inflation or count
component. The joint density becomes

F(Veir 28i) = F(Vail2i ) (2ei) = [76]7 [(1 — 7)) v (pagis b))
Maximization of expected log-likelihood given the data:
Q = E(/(Ygi» zgi)|Yai)
= E(zgi|ygi)logmi + E(2gi|ygi)logd + [1 — E(zgi|yei)]log(1 — mi)+
[1 — E(Zgilygi)]loglfne (1gis 9g)]

1. E-step: Calculate expected likelihood
2. M-step: Maximize expected likelihood
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EM-algorithm

E-step
» Calculate posterior probability that a zero belongs to zero-inflation
component
Til(ys =0
Elzglye) = iy =0)

#il(ygi = 0) + (1 — 1) fnp (Vais flgis (Eg)
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EM-algorithm

E-step
» Calculate posterior probability that a zero belongs to zero-inflation
component
7il(ygi = 0)
E(zgilyei) = - £ ~ ~ 7
7il(ygi = 0) + (1 — i) fne (Veis figis 9g)
M-step

» Estimate NB component parameters iz and ¢, using edgeR
» Incorporate observation-level weights wg; = 1 — E,(zg) for
counts yg;
» Because maximizing ZINB likelihood for NB model parameters
is equivalent to maximizing a weighted NB likelihood.

» Estimate 7; using logistic regression model

/Og{lm } = Bo + B1N;

-

with N; log library size of sample i
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Why we use logistic regression with library size in the EM

Fraction of zeros

Buettner, 2015

Deng, 2014

Shalek, 2014

Kumar, 2014

Guo, 2015

Engel, 2016

Meyer, 2016

Log library size
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Case study: Islam et al. (2014)

Single-cell RNA-seq (scRNA-seq) allowed the study of ‘sparse’
cell populations.

One of the first datasets we worked with was from Islam et al.
(2014). It demonstrates scRNA-seq for 85 cells consisting of
two cell populations in mouse: embryonic stem cells and
fibroblasts.

This paper was one of the first scRNA-seq studies and
motivated our method development.

Link to paper:
https://www.ncbi.nlm.nih.gov/pubmed/21543516
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