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single-cell RNA-sequencing (scRNA-seq) is noisier than
bulk RNA-seq
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Single-cell RNA-seq protocols
I Full-length protocols (e.g., SMART-Seq2)

I Cells must be isolated (manually, FACS, ...).
I Library prep is typically plate-based; one well contains one cell.

I Droplet-based protocols (e.g., 10X, drop-seq)
I Cells do not need to be isolated!
I Cell-containing medium is mixed with bead-containing oil

droplets.
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https://www.youtube.com/watch?v=vL7ptq2Dcf0


single-cell RNA-sequencing (scRNA-seq) is noisier than
bulk RNA-seq

data from [Pickrell et al. 2010, Fletcher et al. 2017, Zheng et al. 2017]
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Bulk RNA-seq di↵erential expression (DE) analysis

Popular methods (edgeR, DESeq2) adopt negative binomial (NB)
models

ygi ⇠ NB(µgi ,�g )
log(µgi ) = ⌘gi

⌘gi = X

i

�
g

+ log(Oi )

with ygi the expression count of gene g in sample i .
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Bulk RNA-seq DE not worse than bespoke scRNA-seq tools

Jaakkoola et al. (2016), Bioinformatics:
“Our evaluations did not reveal systematic benefits of the currently
available single-cell-specific methods.”

Soneson & Robinson (2018), Nat. Meth.:
“We found that bulk RNA-seq analysis methods do not generally
perform worse than those developed specifically for scRNA-seq.”
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Bulk RNA-seq methods still break down due to ZI
Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework
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Observation weights unlock bulk RNA-seq tools towards
zero inflation

Excess zeros observed ! zero inflation
We propose to model counts with a zero inflated negative binomial
(ZINB) distribution

fZINB(ygi ;µgi ,�g ,⇡gi ) = ⇡gi� + (1� ⇡gi )fNB(ygi ;µgi ,�g ). (1)

A ZINB model corresponds to a weighted NB where observation

weights are posterior probabilities

wgi =
(1� ⇡gi )fNB(ygi ;µgi ,�g )

fZINB(ygi ;µgi ,�g ,⇡gi )
(2)

Weights are used to unlock RNA-seq NB models (edgeR, DESeq2)
for zero inflation [Van den Berge⇤, Perraudeau⇤ et al., 2018].
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zinbwave can be used to fit ZINB models in scRNA-seq

Estimation of the ZINB parameters using penalized likelihood
implemented in the ZINB-WaVE model [Risso et al. 2018]
Bioconductor: http://bioconductor.org/packages/zinbwave/
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Alternatively: EM-algorithm (see last couple of slides)
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Downweighting excess zeros recovers mean-variance trend,
resulting in high power

Simulated (ZI-)bulk RNA-seq data using [Zhou et al. 2014] framework
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High power, good FDR control in scRNA-seq simulations
Full-length protocols

DESeq2

MAST

ZINB-WaVE_DESeq2_common

ZINB-WaVE_edgeR_common

edgeR
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High power, good FDR control in scRNA-seq simulations
Droplet-based protocols, e.g. 10X Genomics, Drop-seq

13



Mock comparisons on real data show good FPR control

Non-UMI dataset on 622 neuronal cells from [Usoskin et al. 2015].
45 vs. 45 mock comparisons.
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Downweighting leads to biologically meaningful results

10X Genomics PBMC dataset, preprocessed using tutorial from
Seurat.
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Method is implemented in zinbwave Bioc package

I computeObservationalWeights for weights calculation

I edgeR:glmWeightedF for ZI-adjusted inference

I DESeq2:nbinomWaldTest and nbinomLRT for ZI-adjusted
inference

I Tutorial available in zinbwave vignette
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What follows are some slides on the EM algorithm used in the
zingeR method.
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A zero-inflated negative binomial model

Distribution of counts y for gene g over samples i

ygi ⇠ ⇡i� + (1� ⇡i )fNB(µgi ,�g )

i.e. mixture distribution between point-mass at zero and negative
binomial

Log-likelihood

l(ygi ) =
X

i

log {⇡i� + (1� ⇡i )fNB(µgi ,�g )}

does not factorize
! very di�cult to maximize!
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Fitting a mixture distribution with EM

Estimate mixture using EM-algorithm: introduce latent variable
Zgi ⇠ B(⇡gi ) to assign zeros to the zero-inflation or count
component. The joint density becomes

f (ygi , zgi ) = f (ygi |zgi )f (zgi ) = [⇡i�]
zgi [(1� ⇡i )fNB(µgi ,�g )]

(1�zgi )

Maximization of expected log-likelihood given the data:

Q = E (l(ygi , zgi )|ygi )

= E (zgi |ygi )log⇡i + E (zgi |ygi )log� + [1� E (zgi |ygi )]log(1� ⇡i )+

[1� E (zgi |ygi )]log [fNB(µgi ,�g )]

1. E-step: Calculate expected likelihood

2. M-step: Maximize expected likelihood
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EM-algorithm
E-step

I Calculate posterior probability that a zero belongs to zero-inflation
component

E (zgi |ygi ) =
⇡̂i I (ygi = 0)

⇡̂i I (ygi = 0) + (1� ⇡̂i )fNB(ygi ; µ̂gi , �̂g )

M-step

I Estimate NB component parameters µgi and �g using edgeR
I Incorporate observation-level weights wgi = 1� Ey (zgi ) for

counts ygi
I Because maximizing ZINB likelihood for NB model parameters

is equivalent to maximizing a weighted NB likelihood.

I Estimate ⇡i using logistic regression model

log

⇢
⇡i

1� ⇡i

�
= �

0

+ �
1

Ni

with Ni log library size of sample i
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Why we use logistic regression with library size in the EM
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Case study: Islam et al. (2014)

I Single-cell RNA-seq (scRNA-seq) allowed the study of ‘sparse’
cell populations.

I One of the first datasets we worked with was from Islam et al.
(2014). It demonstrates scRNA-seq for 85 cells consisting of
two cell populations in mouse: embryonic stem cells and
fibroblasts.

I This paper was one of the first scRNA-seq studies and
motivated our method development.

I Link to paper:
https://www.ncbi.nlm.nih.gov/pubmed/21543516
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