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Introduction

Central Dogma:

mRNA concentration ↑↓
↓

mRNA templates ↑↓
↓

protein production ↑↓
↓

protein concentration ↑↓
↓

protein activity ↑↓
↓

phenotype changes
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Introduction: overview of the RNA sequencing assay 
“After that it gets a bit complicated, and there’s all sort of stuff going on in dimensions thirteen to                                     

twenty­two that you really wouldn’t want to know about. All you really need to know for the                                 

moment is that the universe is a lot more complicated than you might think, even if you start                                   

from a position of thinking it’s pretty damn complicated in the first place.” ­  from Mostly Harmless                                 

by Douglas Adams 
 
Molecular biologists are using gene expression studies to get a snapshot of the set of RNA                               
molecules present in a biological system, which ultimately dictates what cells are doing or are                             
capable of. The original RNA sequencing (RNA­seq) protocols, describing the sequencing of                       
complementary DNA (cDNA) fragments on a large scale from a population of cells, were                           
published over 10 years ago  [1–5] . Since then, the system has been optimized for different                             
types and qualities of starting material, as well as different research questions, and many                           
distinct and mature protocols are available. 
 

 

Figure 1: Overview of the experimental steps in a RNA­seq protocol. The cDNA library is generated from isolated                                   

RNA targets, sequenced and the reads are mapped against a reference genome or transcriptome. Downstream                             

data analysis depends on the goal of the experiment and can include, among other things, assessing differential                                 

expression, variant calling or genome annotation. 

 
A basic overview of the main steps in a standard RNA­seq experiment is given in Figure 1. The                                   
first step is the extraction and purification of RNA from a sample of interest followed by an                                 
enrichment of target RNAs. Most commonly used is poly(A) capture, to select for polyadenylated                           
RNAs, or ribosomal depletion, to deplete ribosomal and transfer RNAs that are highly abundant                           
in a cell (approximately 95% of total RNA)  [6] and are usually not of primary interest  [7] . The                                   
selected RNAs are then chemically or enzymatically fragmented to molecules of appropriate                       
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tioned universal primer, and subsequent rounds of
ligation-mediated sequencing, and so on. An overview of
the SOLiD workflow is presented at http://marketing.
appliedbiosystems.com/images/Product/Solid_Knowledge/
flash/102207/solid.html. The unique attribute of this
ligation-based approach and the 8mer labeling is that an
extra quality check of read accuracy is enabled, so-called ‘2
base encoding’. This essentially relies on the known fixed
nucleotide identities in the 8mer sequences to identify mis-
calls from true nucleotide differences during the data
analysis step (see Figure 3 for details).

Given the amount of data that can be produced from a
single run and the cost per run ($5–$85 per Mb of
sequence; see Table 2 for comparisons) for these instru-

ments, one can envision a diverse range of applications.
The following sections profile recently published studies
that used these next-generation sequencers for appli-
cations including mutation discovery, metagenomic
characterization, noncoding RNA andDNA–protein inter-
action discovery.

Mutation discovery
The discovery of mutations that determine phenotypes is a
fundamental premise of genetic research and will be tre-
mendously facilitated by next-generation sequencing
approaches, both for focused and genome-wide discovery.
Conventional approaches to focused mutation discovery
have used directed PCR to amplify selected genomic

Figure 2. Illumina workflow. Starting from similar fragmentation and adapter ligation steps, the library is added to a flow cell for bridge amplification (an isothermal
process that amplifies each fragment into a cluster). The cluster fragments are denatured, annealed with a sequencing primer and subjected to sequencing by synthesis
using 30 blocked labeled nucleotides.

Table 2. AB SOLiD cycle number descriptions
Cycle number Universal primer position Base positions identified Probe seta Positions interrogated

1 n 4,5 NNNAA^NNN-fl 5,10,15,20,25
2 n-1 4,5 NNNAT^NNN-fl 4,9,14,19,24
3 n-2 4,5 NNNAC^NNN-fl 3,8,13,18,23
4 n 1,2 AANNN^NNN-fl 2,7,12,17,22
5 n-1 1,2 ATNNN^NNN-fl 1,6,11,16,21

a^, position of cleavage on each 8mer, whereas fl indicates the position of the fluorescent group on the 8mer.

Review Trends in Genetics Vol.24 No.3
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Potential Problems
read counts

↑ mapping, lane, flow cell, run bias
cDNA library

↑ RNA extraction, rRNA, DNA conversion,...
mRNA levels

↓ post transcriptional regulation, translation speed
protein levels

↓ post translational regulation, modification, activity regulation...
phenotype

Number of reads depends on many factors

expression level, total number of reads per library, transcript length
etc.

Here we focus on differences at gene level: transcripts have the
same length.

Systematic differences in read counts → systematic differences in
mRNA levels
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Alternative Splicing
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Alternative Splicing
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Alternative Splicing
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Single end vs paired end
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Naive vs Strand specific
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Steps in a RNA-seq Experiment

1 Experimental design

2 Experiment

3 Sampling

4 Library Prep

5 Sequencing/basecalling

6 Quality assessment of Reads

7 Read alignment to reference genome

8 Quality assessment of alignment

9 Summarization: read counts per feature (gene, exon, ...)

10 Gene Prioritization: Analysis of differential expression

11 Downstream Analysis
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RNA-seq Data Analysis work flow
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make formal distributional assumptions about the data observed. 
The advantage of parametric assumptions is the ability, through 
the wealth of existing statistical methodology, to make infer-
ences about parameters of interest (i.e., changes in expression). 
For genome-scale count data, including RNA-seq, a convenient 
and well-established approximation is the negative binomial 
(NB) model (Box 1), which represents a natural extension of the 
Poisson model (i.e., a mixture of gamma-distributed rates) that 
was used in early studies18; notably, Poisson variation can only 
describe technical (i.e., sampling) variation.

To analyze differential expression, this protocol focuses on 
DESeq and edgeR, which implement general differential analy-
ses on the basis of the NB model. These tools differ in their look 
and feel, and they estimate the dispersions differently but offer 
overlapping functionality (Box 2).

Variations and extensions of the protocol
This protocol presents a workflow built from a particular set of 
tools, but it is modular and extensible; thus, alternatives that offer 
special features (e.g., counting by allele) or additional flexibility 
(e.g., specialized mapping strategy) can be inserted as necessary. 
Figure 1 highlights straightforward alternative entry points to 
the protocol (orange boxes). The count-based pipeline discussed 
here can be used in concert with other tools. For example, for 
species without an available well-annotated genome reference, 
Trinity19 or other assembly tools can be used to build a reference 
transcriptome; reads can then be aligned and counted, followed 
by the standard pipeline for differential analysis20. Similarly, to 
perform differential analysis on novel genes in otherwise anno-
tated genomes, the protocol could be expanded to include merged 
per-sample assemblies (e.g., Cuffmerge within the Cufflinks pack-
age17,21,22) and used as input to counting tools.

The focus of this protocol is gene-level differential expres-
sion analysis. However, biologists are often interested in analyses 

beyond that scope, and many possibilities now exist as extensions 
of the count-based framework discussed here. The full details of 
such analyses are not covered here, and we make only a sketch of 
some promising approaches. First, an obvious extension to gene-
level counting is exon-level counting, given a catalog of tran-
scripts. Reads can be assigned to the exons that they align to and 
be counted. Reads spanning exon-exon junctions can be counted 
at the junction level. The DEXSeq package uses a generalized lin-
ear model (GLM) that tests whether particular exons in a gene 
are preferentially used in a condition, over and above changes in 
gene-level expression. In edgeR, a similar strategy is taken, except 
that testing is done at the gene level by effectively asking whether 

 Box 1 | The NB model 
The NB model has been shown to be a good fit to RNA-seq data7, yet it is flexible enough to account for biological variability. It provides 
a powerful framework (e.g., via GLMs) for analyzing arbitrarily complex experimental designs. NB models, as applied to genomic count 
data, make the assumption that an observation, say Ygj (observed number of reads for gene g and sample j), has a mean gj and a  
variance gj  +  g

2 , where the dispersion g  >  0 represents overdispersion relative to the Poisson distribution4. The mean  
parameters gj depend on the sequencing depth for sample j as well as on the amount of RNA from gene g in the sample. Statistical 
procedures can be formulated to test for changes in expression level between experimental conditions, possibly adjusting for batch 
effects or other covariates, and to estimate the log-fold changes in expression.

The dispersion g represents the squared coefficient of variation of the true expression levels between biologically independent RNA 
samples under the same experimental conditions, and hence the square root of g is called the biological coefficient of variation7.

Obtaining good estimates of each gene’s dispersion is critical for reliable statistical testing. Methods of estimating the genewise 
dispersion have received considerable attention3,4,31,59. Unless the number of samples is large, stable estimation of the dispersion 
requires some sort of sharing of information between genes. One can average the variability across all genes5, or fit a global trend to 
the dispersion3, or can seek a more general compromise between individual gene and global dispersion estimators4.

Sequence
data

Reference
genome

Sequence quality
checks

Collect metadata for
experiment

Mapping reads,
organize files,

inspect mapping

Feature counting

Data structures,
normalization,
fitness checks edgeR DESeq

Step 14

Step 15

Step 13

Steps 7–12

Steps 3–6

Steps 1 and 2

2-group differential
comparison

GLM-based differential
comparisons

Inspect and save
results

Additional sanity
checks

Alternative
alignment

(SAM/BAM files)

Alternative
counting

(count table)

Transcript
annotation

Software
setup

Figure 1 | Count-based differential expression pipeline for RNA-seq data 
using edgeR and/or DESeq. Many steps are common to both tools, whereas 
the specific commands are different (Step 14). Steps within the edgeR or 
DESeq differential analysis can follow two paths, depending on whether the 
experimental design is simple or complex. Alternative entry points to the 
protocol are shown in orange boxes.

Anders et al. (2013) Nature Protocols.
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Part I. Basecalling,
Alignment and
Summarization
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I.1. Basecalling

Most researchers use standard base caller:
Illumina → Cassava → fastq files
http://en.wikipedia.org/wiki/FASTQ_format
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FASTQ format

Combines sequence and base quality information

Four lines per sequence (read)

ID line (starting with @) sequence

another ID line (starting with +) base qualities

For paired-end sequencing: one file for ”first” reads and one
for ”second” reads of the read pairs
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Line 1

D7MHBFNI: unique instrument name
202: run ID
D1BUDACXX: flowcell ID
4: flowcell lane
1101: tile number within lane
1340: x-coordinate of cluster within tile
1967: y-coordinate of cluster within tile
1: member of pair (1 or 2). Older versions: /1 and /2
Y/N: did quality control of read failed (Y: bad)
0: none of the control bits are on
CATGCA: index sequence (barcode)

Line 2: read sequence

Line 4: Base quality
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FASTQ format - base qualities

Quality score: Q = −10 log10 p
Phred Score Probability on incorrect base call base call accuracy

10 1/10 90%
20 1/100 99%
30 1/1000 99.9%
40 1/10000 99.99%
50 1/100000 99.999%
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Raw base quality QC

fastQC: http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Raw base quality QC

22 / 65



Raw base quality QC
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Raw base quality QC
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Raw base quality QC

25 / 65



Raw base quality QC
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Raw base quality QC
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Raw base quality QC
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Raw base quality QC
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Raw base quality QC
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Raw base quality QC
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Raw base quality QC
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Preprocessing

Read Trimming

Adaptor sequence
Bar code
(deteriorating bases at the end of reads)
often already done by the sequencing provider.
remaining polyA tails

Read filtering

low quality reads
PhiX reads (should be removed already by sequence provider)
in RNA-seq never remove duplicates because they can occur
for highly expressed transcripts

Perform fastQC again
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I.2 Alignment

DNA

bowtie2, BWA,...
Needs: genomic reference sequence + cleaned reads

RNAseq

Aligning to transcriptome: annotation-bias, you throw away
some data: very fast: Salmon and Kallisto.
Genome: problem Gaps
Star, tophat2, Rsubread, ...
Needs: genomic reference sequence + genomic annotation+
cleaned reads

http://wwwdev.ebi.ac.uk/fg/hts_mappers/
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www.ensembl.org/info/data/ftp/index.html

The human reference genome

https://www.gencodegenes.org/human/

slide courtesy Charlotte Soneson
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To the genome: gap aware!
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reference­based) transcriptome assembly  [45] , allele­specific expression analyses  [46] ,               
expression quantitative trait loci mapping  [47] , splicing  [48] , analysis of gene regulatory                       
networks  [49] or pathway analyses  [50,51] . In a large majority of applications, the overarching                           
goal is to identify DE, whether that be at the gene, transcript or exon level. The set of DE entities                                       
provides a snapshot into the molecular underpinnings of a stimulus, a disease condition, a                           
genetic mutation or any other perturbation being interrogated. In most cases, DE is only an                             
intermediate (though critical) step to understanding the biological system under study. 
 
The review is organized as follows. First, we discuss ‘Alignment and Quantification’, where                         
RNA­seq reads are placed in the context of the genome and/or annotation catalogs and the                             
relative expression level of each target is assessed. Following quantification, we split the rather                           
broad topic of DE into ‘Basics of differential expression’, which lays the foundation for the                             
current frameworks, and ‘Variants of differential expression’, to highlight the diverse conceptual                       
tools available to run the discovery process. Following this, we discuss two rapidly evolving                           
research areas, namely ‘Single Cell Transcriptome Sequencing’ and ‘Long Read Transcriptome                     
Sequencing’, which have both experienced considerable activity in the last few years. 

Alignment and Quantification 
After an experiment has been designed and executed, the analyst is presented with files                           
containing potentially millions to billions of short cDNA fragments. Following sufficient quality                       
control of the sequencing reactions,  alignment to a reference genome or ( de novo assembled)                           
transcriptome is one of the critical steps in translating the raw data into something quantitative. 
 

  Figure 4: Illustration of spliced alignment of             
RNA­seq fragments to a genome (top) and direct               
alignment to a transcriptome (bottom). Reads are             
designated by thick solid lines, while dashed arcs               
represent the pairing relationship between         
paired­end reads. This illustration depicts         
alignment to a single 4 exon gene consisting of 3                   
distinct transcripts. In the spliced alignment (top),             
the left read of the rightmost pair is a spliced                   
alignment to the red­green exon boundary. In the               
direct alignment to the transcriptome (bottom), one             
observes how the same alignment (e.g., the             
alignment to the blue exon) is repeated for each                 
transcript. 

 
Because the sequenced fragments are derived from cDNA corresponding to fully (or partially)                         
spliced transcripts, reads will often span the boundaries of splice junctions (SJs), resulting in                           
so­called “junction­spanning” reads (e.g., the read spanning the green and red exons in Figure                           
4). This results in contiguous read sequences whose constituent sub­sequences may be                       
separated by tens of thousands of nucleotides on the genome. This poses a considerable                           
computational challenge, as the position of splice junctions in spanning reads needs to be                           
accurately identified for a read to be properly aligned. There are two main approaches for                             
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STAR: Spliced Transcripts Alignment to a Reference

2 ALGORITHM

Many previously described RNA-seq aligners were developed as
extensions of contiguous (DNA) short read mappers, which were
used to either align short reads to a database of splice junctions
or align split-read portions contiguously to a reference genome,
or a combination thereof. In contrast to these approaches, STAR
was designed to align the non-contiguous sequences directly to
the reference genome. STAR algorithm consists of two major
steps: seed searching step and clustering/stitching/scoring step.

2.1 Seed search

The central idea of the STAR seed finding phase is the sequential
search for a Maximal Mappable Prefix (MMP). MMP is similar
to the Maximal Exact (Unique) Match concept used by the
large-scale genome alignment tools Mummer (Delcher et al.,
1999, 2002; Kurtz et al.) and MAUVE (Darling et al., 2004,
2010). Given a read sequence R, read location i and a reference
genome sequence G, the MMP(R,i,G) is defined as the longest
substring (Ri,Riþ 1, . . . ,RiþMML" 1) that matches exactly one or
more substrings of G, where MML is the maximum mappable
length. We will explain this concept using a simple example of a
read that contains a single splice junction and no mismatches
(Fig. 1a). In the first step, the algorithm finds the MMP starting
from the first base of the read. Because the read in this example
comprises a splice junction, it cannot be mapped contiguously to
the genome, and thus the first seed will be mapped to a donor
splice site. Next, the MMP search is repeated for the unmapped
portion of the read, which, in this case, will be mapped to an
acceptor splice site. Note that this sequential application of
MMP search only to the unmapped portions of the read
makes the STAR algorithm extremely fast and distinguishes it
from Mummer and MAUVE, which find all possible Maximal
Exact Matches. This approach represents a natural way of find-
ing precise locations of splice junctions in a read sequence and is
advantageous over an arbitrary splitting of read sequences used
in the split-read methods. The splice junctions are detected in a
single alignment pass without any a priori knowledge of splice
junctions’ loci or properties, and without a preliminary contigu-
ous alignment pass needed by the junction database approaches.

The MMP in STAR search is implemented through
uncompressed suffix arrays (SAs) (Manber and Myers, 1993).
Notably, finding MMP is an inherent outcome of the standard
binary string search in uncompressed SAs, and does not require
any additional computational effort compared with the full-
length exact match searches. The binary nature of the SA
search results in a favorable logarithmic scaling of the search
time with the reference genome length, allowing fast searching
even against large genomes. Advantageously, for each MMP the
SA search can find all distinct exact genomic matches with little
computational overhead, which facilitates an accurate alignment
of the reads that map to multiple genomic loci (‘‘multimapping’’
reads).
In addition to detecting splice junctions, the MMP search,

implemented in STAR, enables finding multiple mismatches
and indels, as illustrated in Figure 1b. If the MMP search does
not reach the end of a read because of the presence of one or
more mismatches, theMMPs will serve as anchors in the genome
that can be extended, allowing for alignments with mismatches.
In some cases, the extension procedure does not yield a good
genomic alignment, which allows identification of poly-A tails,
library adapter sequences or poor sequencing quality tails
(Fig. 1c). The MMP search is performed in both forward and
reverse directions of the read sequence and can be started from
user-defined search start points throughout the read sequence,
which facilitates finding anchors for reads with errors near the
ends and improves mapping sensitivity for high sequencing error
rate conditions.
Besides the efficient MMP search algorithm, uncompressed

SAs also demonstrate a significant speed advantage over the
compressed SAs implemented in many popular short read
aligners (Supplementary Section 1.8). This speed advantage is
traded off against the increased memory usage by uncompressed
arrays, which is assessed further in Section 3.3.

2.2 Clustering, stitching and scoring

In the second phase of the algorithm, STAR builds alignments of
the entire read sequence by stitching together all the seeds that
were aligned to the genome in the first phase. First, the seeds are
clustered together by proximity to a selected set of ‘anchor’ seeds.
We found that an optimal procedure for anchor selection is
through limiting the number of genomic loci the anchors align
to. All the seeds that map within user-defined genomic windows
around the anchors are stitched together assuming a local linear
transcription model. The size of the genomic windows deter-
mines the maximum intron size for the spliced alignments. A
frugal dynamic programming algorithm (see Supplementary
Section 1.5 for details) is used to stitch each pair of seeds, allow-
ing for any number of mismatches but only one insertion or
deletion (gap).
Importantly, the seeds from the mates of paired-end RNA-seq

reads are clustered and stitched concurrently, with each
paired-end read represented as a single sequence, allowing for
a possible genomic gap or overlap between the inner ends of
the mates. This is a principled way to use the paired-end infor-
mation, as it reflects better the nature of the paired-end reads,
namely, the fact that the mates are pieces (ends) of the same
sequence. This approach increases the sensitivity of the

Map Map again

MMP 1 MMP 2

exons in the genome

RNA-seq read

Map
MMP 1

mismatches

Extend
Map
MMP 1

A-tail, or adapter,
or poor quality tail 

Trim

(a)

(b) (c)

Fig. 1. Schematic representation of the Maximum Mappable Prefix
search in the STAR algorithm for detecting (a) splice junctions, (b) mis-
matches and (c) tails
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Rsubread: integration read alignment into R

memory in the most efficient way and reduces data access
time (Supplemental Methods, Supplemental Figure S2).

For the subread strategy to work effectively, it is neces-
sary that each subread has reasonable specificity, so
subreads corresponding to highly repetitive or overly
common sequences are removed from the subread set.
Examination of the human genome shows that 81% of
all possible 16 bp sequences occur 24 or fewer times in
the genome (Supplemental Methods, Supplemental

Figure S3). With this motivation, we define as uninforma-
tive any subread whose sequence occurs >24 times in the
reference genome. The informative subreads are therefore
those subreads that occur !24 times in the reference
genome. Simulations show that higher thresholds lead to
higher mapping sensitivity but lower accuracy (Table 5).
Our goal is to achieve a high mapping accuracy and a high
mapping speed; therefore, we decided to use a more
stringent threshold to filter out uninformative subreads.
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Figure 1. Seed-and-vote mapping paradigm. (A) Schematic of the proposed mapping paradigm. Subreads (or seeds) are short continuous sequences
extracted from each read. Substrings in green are uninformative subreads, and they are excluded from voting. Little red bars denote mismatched
bases. Mapping location of the read is determined by the largest consensus set. The thin solid arrows point to the mapping location of each subread
included in the largest consensus set. Mapping location of the read, as indicated by the black up-pointing triangle, is voted for by all the subreads in
the largest consensus set. The dashed arrows indicate other mapping locations for the subreads, and these locations were disregarded due to
insufficient number of votes. (B) Using an artificial example to illustrate the paradigm. Six subreads are extracted from the artificial read. Each
square bracket denotes an extracted subread, which contains five continuous bases, and the number embedded in the blue cycle indicates the subread
number. Base sequence of each subread is encoded into a string of 0’s and 1’s (each base is encoded into a 2-bit binary number). Encoded value for
each subread is used as its key in the hash table. The key’s value gives the chromosomal location/s in the genome to which the corresponding subread
is perfectly matched (no mismatches allowed). Four candidate mapping locations are found for this artificial read, which receive 2, 5, 1 and 2 votes
(number of consensus subreads), respectively. The location that receives the largest number of votes, in this case the location with five votes, is
selected as the final mapping location for this artificial read. (C) Indel detection performed under the seed-and-vote paradigm. (C1) shows the
mapping results of subreads when there are no indels found in the reads (assuming no mismatches exist in the read for simplicity). (C2) and (C3)
show respectively the schematic for detecting an insertion (Ins) and a deletion (Del) in the situation where insertion or deletion is found in the read
and flanking subreads are found at both sides of insertion or deletion. (C4) gives the schematic for detecting indels when they occur at the locations
close to the end of the reads where flanking subreads can be found at only one side. In (C2) and (C3), chromosomal locations pointed to by red
arrows are the true mapping locations of subreads 8, 9 and 10, respectively, and chromosomal locations pointed to by dotted black arrows indicate
the chromosomal locations to which they will be mapped if no indels exist before them. d is the indel length, equal to the difference between the
location pointed to by the red arrow and the location pointed to by the dotted black arrow from the same subread. Regions encompassed by the
dotted green lines are found to contain indels [(C2) and (C3)] or are candidate regions for searching indels (C4). Bases in these regions are not
covered by subreads that have made successful votes, and their mapping locations will be determined by aligning to the corresponding regions (within
the dotted green lines) in the reference genome. In (C4), a 4 bp window is moved along the uncovered bases to look for potential indels. When three
or more bases in the window are found to be mismatches, the indel detection process is triggered for the search of indels.

PAGE 5 OF 17 Nucleic Acids Research, 2013, Vol. 41, No. 10 e108

Liao
et al. (2013) Nucleic Acids Research, 41(10):e108, 2013
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Salmon: fast and bias-aware quantification of transcript
expression (Mapping to the transcriptome)

 

335

340

350

Conversely, they suffer from various disadvantages: they have no principled way of handling                         
multi­mapping reads (e.g., arising from paralogous genes), and they are oblivious to potentially                         
important compositional changes that are not reflected directly in gene­level read counts (e.g.,                         
isoform switching). Additionally, since such methods assess the frequency of reads overlapping                       
a gene, they must grapple with the concept of gene definition. For example, should a gene be                                 
considered to be the union of exons of all transcripts of the gene, or the intersection? Should                                 
intronic reads be included? Though the notion of the gene is a useful abstraction, transcripts are                               
the biological entities that are assayed in RNA­seq, and so present a conceptually cleaner target                             
for quantification. 
 

 

Figure 5: Illustration of alignment of various reads to a gene with 3 isoforms (B ­ blue; G ­ green; R ­ red). In this                                                 
example, we wish to estimate the abundances of these isoforms, but the majority of reads have ambiguous origins                                   
and need to be probabilistically assigned to the transcripts (relative probabilities for each read is shown by the                                   
magnitude of the three colors). Some reads are consistent only with the B and G transcripts (colored blue and                                     
green, respectively) and a small number of reads uniquely align to a single transcript (single color). In the EM (or                                       
related) algorithm, given the current abundance estimates, fragments are probabilistically assigned to transcripts,                         
and then estimated abundances are updated by summarizing the (proportional) allocations over all fragments;                           
transcript abundance estimates are determined after iterating the procedure until convergence. 

 
Transcript­level quantification consists of the assignment of fragments to specific transcripts,                     
which is fundamentally more challenging but has a number of advantages: it admits a clear                             

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27283v1 | CC BY 4.0 Open Access | rec: 17 Oct 2018, publ: 17 Oct 2018
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Post alignment QC

fastQC

Coverage plots

Removal of biological contamination if not of interest mRNA
(only small fraction of RNA pool):
rRNA, ncRNA, mitochondrial RNA

→ Normally removed with kits prior to sequencing
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1.3. Summarization

Genomic locations of genes and other features

www.ensembl.org/info/data/ftp/index.html https://www.gencodegenes.org/human/

slide courtesy Charlotte Soneson
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I.3a Summarization upon mapping to the genome

Most applications
summarize reads based upon
known annotation: bias

Generate counts for genes,
transcript or exons

Count read instead of nt

Count each read only ones

Discard reads that

do not map uniquely
overlap with several genes
with a bad quality score

Figure 4.1: Overlap modes; Image from the HTSeq package developed by Simon Anders.

So it appears that we have about 8, 300 cases where these counting generate di↵erent results (11% of the
total), and that the exon “FBgn0064225:2” shows the largest di↵erence.

For a detailled analysis, it would be important to adequatly choose one of the intersection modes
above, however for the remainder of this section, we will use the “union” set. We can now finally sum
the exons together to get a vector of read counts per gene:

> exonCounts <- exonCountsTable[,"union"]

> # look at the counts of the first few exons

> head(exonCounts)

> # assign the name of the corresponding gene to each exon

> names(exonCounts) <- elementMetadata(annot)$gene

> head(exonCounts)

> # create a list in which each element corresponds to

> # all exons of the same gene

> splitCounts <- split(exonCounts, names(exonCounts) )

> head(splitCounts)

> # sum the exons counts in each gene using the function sapply

> # sapply will sum the values in each element of the list

> geneCounts <- sapply( splitCounts, function(x) sum(x) )

> head(geneCounts)

As before for reads aligning to multiple places in the genome, choosing to take the union when reads
overlap several features is a simplification we may not want to do. There are several methods that
probabilistically estimate the expression of overlapping features [25, 42, 43].

This concludes that section on counting reads per known features. In the next section, we will look
at how novel transcribed regions could be identified.

52
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I.3b Summarization upon mapping to the transcriptome

Results in counts at the transcript level.

Sum of transcript level counts to obtain gene-level count

Account for potential difference in transcript usage between
samples : via average transcript length (see normalisation,
why?)

Has been shown to be more accurate: e.g. Soneson et al.
(2015). F1000Research, 4. doi:
10.12688/f1000research.7563.1
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Part II: Analysis of count
data
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Classical Approach: Gene level data

gene x sample matrix

Differential expression well studied by statisticians

Count data:

many zeroes
very large range
biological variability?
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Normalization

M = log2(Y2)− log2(Y1)

A = [log2(Y2)+log2(Y2)]
2
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Normalization
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Normalization

Sequencing depth
group lib.size norm.factors

treated2fb treated 15620018.00 1.00
treated3fb treated 12733865.00 1.00

untreated3fb untreated 10283129.00 1.00
untreated4fb untreated 11653031.00 1.00

use lib.size to normalize?

→ Convert reads in counts per million
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Modeling Counts

Marioni (2008) Genome Research showed that technical
replicates are Poisson(µ)

Properties: µ=mean=variance
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Modeling Counts
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Modeling Counts
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Modeling Counts
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Modeling Counts

The Poisson distribution is commonly used Poisson(µ)

Properties: µ=mean=variance

Relative error decreases with increasing mean

CV=standard deviation/mean=
√
µ/µ = 1/

√
µ

Mean CV

1 1
9 1/3
25 1/5
100 1/10
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Generalized linear model for seq data





yig ∼ Poisson(µig )

log(µig ) = ηig

ηig =
N∑

k=1

xikβgk

ygi :count for gene g of subject i

xik : predictor variabele k evaluated for subject i

η: linear predictor

βgk : effect for predictor variable k and gene g
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GLM with normalization





yig ∼ Poisson(µig )

µig = λigSig

log(µig ) = ηig

ηig =
N∑

k=1

xikβgk + log Sig

ygi :count for gene g of subject i

xik : predictor variabele k evaluated for subject i

η: linear predictor

βgk : effect for predictor variable k and gene g

Sig : effective library size for gene g of subject i
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Normalization with lib.size??

Other datasets
The global shift in log-fold-change caused by RNA com-
position differences occurs at varying degrees in other
RNA-seq datasets. For example, an M versus A plot for
the Cloonan et al. [12] dataset (Figure S3 in Additional
file 1) gives an estimated TMM scaling factor of 1.04
between the two samples (embryoid bodies versus
embryonic stem cells), sequenced on the SOLiD™ sys-
tem. The M versus A plot for this dataset also highlights
an interesting set of genes that have lower overall

expression, but higher in embryoid bodies. This explains
the positive shift in log-fold-changes for the remaining
genes. The TMM scale factor appears close to the med-
ian log-fold-changes amongst a set of approximately 500
mouse housekeeping genes (from [17]). As another
example, the Li et al. [18] dataset, using the llumina 1G
Genome Analyzer, exhibits a shift in the overall distri-
bution of log-fold-changes and gives a TMM scaling fac-
tor of 0.904 (Figure S4 in Additional file 1). However,
there are sequencing-based datasets that have quite
similar RNA outputs and may not need a significant
adjustment. For example, the small-RNA-seq data from
Kuchenbauer et al. [19] exhibits only a modest bias in
the log-fold-changes (Figure S5 in Additional file 1).
Spike-in controls have the potential to be used for

normalization. In this scenario, small but known
amounts of RNA from a foreign organism are added to
each sample at a specified concentration. In order to
use spike-in controls for normalization, the ratio of the
concentration of the spike to the sample must be kept
constant throughout the experiment. In practice, this is
difficult to achieve and small variations will lead to
biased estimation of the normalization factor. For exam-
ple, using the spiked-in DNA from the Mortazavi et al.
data set [11] would lead to unrealistic normalization fac-
tor estimates (Figure S6 in Additional file 1). As with

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of (a) technical replicates and (b) liver versus
kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-
fold-changes of the housekeeping genes. (c) An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points
indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the
estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney
tissues. The black arrow highlights the set of prominent genes that are largely attributable for the overall bias in log-fold-changes.

Table 1 Number of genes called differentially expressed
between liver and kidney at a false discovery rate <0.001
using different normalization methods

Library size
normalization

TMM
normalization

Overlap

Higher in liver 2,355 4,293 2,355

Higher in
kidney

8,332 4,935 4,935

Total 10,867 9,228 7,290

House keeping
genes (545)

Higher in liver 45 137 45

Higher in
kidney

376 220 220

Total 421 357 265

TMM, trimmed mean of M values.

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25

Page 4 of 9

Robinson and Oshlack (2010). Genome Biology.
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Figure 1. Exploratory plots. (a) The points show the frequency of counts in the bins shown on
the x-axis. The three colors represent three samples (NA12812, NA12874, NA11993) from the
Montgomery data. (b) log2 RPKM values are stratified by GC-content for two biological
replicates from the Montgomery data (NA11918, NA12761) and are summarized by boxplots.
The two samples are distinguished by the two colors. Genes with average (across all 60 samples)
log2 RPKM values below 2 are not shown. (c) Log-fold changes between RPKM values from the
two samples and the same genes shown in (b) were computed and are plotted against GC-content.
Red is used to show the genes with the 10% highest GC-content and blue is used to show the
genes with the 10% lowest GC-content. (d) RPKM log-fold-changes are plotted against average
log2 counts for the samples and genes shown in (b), with the same color coding as in (c). (e) As
(d) but from values corrected using the method proposed by Pickrell and others (2010). (f) As (d)
but for values normalized using our approach (see Methods).

14

http://biostats.bepress.com/jhubiostat/paper227

!"#

!"#$%&'()*+,"-,+*./01

2

3222

$222

4222

%2
53
6

%3
5$
6

%$
54
6

%4
57
6

%7
58
6

%8
59
6

%9
5:
6

%:
5;
6

%;
5<
6

%<
53
2
6

%3
2
53
3
6

%3
3
53
$
6

%3
$
53
4
6

%3
4
53
7
6

%3
7
53
8
6

!$#

=>,?"@A*@A

!"
#
$
%B
C
D
E
1

2
7

;
2F4G2F48 2F7G2F78 2F8G2F88 2F9G2F98 2F:G2F:8

G7
G$

2
$

7

!%#

=>,?"@A*@A

!"
#
$
%H
"
!/
,?
I
.
@
#
*
1

2F48 2F82 2F98

G7
G$

2
$

7

!&#

.J*+.#*,!"#
$
%KLM+*00N"@1

!"
#
$
%H
"
!/
,?
I
.
@
#
*
1

2 7 ;

G7
G$

2
$

7

!'#

.J*+.#*,!"#
$
%KLM+*00N"@1

!"
#
$
%H
"
!/
,?
I
.
@
#
*
1

2 7 ;
G7

G$
2

$
7

!(#

.J*+.#*,!"#
$
%KLM+*00N"@1

!"
#
$
%H
"
!/
,?
I
.
@
#
*
1

2 7 ;

Figure 1. Exploratory plots. (a) The points show the frequency of counts in the bins shown on
the x-axis. The three colors represent three samples (NA12812, NA12874, NA11993) from the
Montgomery data. (b) log2 RPKM values are stratified by GC-content for two biological
replicates from the Montgomery data (NA11918, NA12761) and are summarized by boxplots.
The two samples are distinguished by the two colors. Genes with average (across all 60 samples)
log2 RPKM values below 2 are not shown. (c) Log-fold changes between RPKM values from the
two samples and the same genes shown in (b) were computed and are plotted against GC-content.
Red is used to show the genes with the 10% highest GC-content and blue is used to show the
genes with the 10% lowest GC-content. (d) RPKM log-fold-changes are plotted against average
log2 counts for the samples and genes shown in (b), with the same color coding as in (c). (e) As
(d) but from values corrected using the method proposed by Pickrell and others (2010). (f) As (d)
but for values normalized using our approach (see Methods).
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Hansen, Irizarry and Wu (2012). Biostatistics.
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Normalization: Sij

Upper quartile Bullard et al. (2010) BMC Bioinformatics.

scale normalization: edgeR package, Robinson and Oshlack
(2010) Genome biology

Geometric mean: DESeq, Anders and Huber (2010) Genome
Biology

Gene specific normalization: Sgij
GC content
gene length
cqn package, Hansen, Irizarry and Wu (2012) Biostatistics.
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Normalization EdgeR

Other datasets
The global shift in log-fold-change caused by RNA com-
position differences occurs at varying degrees in other
RNA-seq datasets. For example, an M versus A plot for
the Cloonan et al. [12] dataset (Figure S3 in Additional
file 1) gives an estimated TMM scaling factor of 1.04
between the two samples (embryoid bodies versus
embryonic stem cells), sequenced on the SOLiD™ sys-
tem. The M versus A plot for this dataset also highlights
an interesting set of genes that have lower overall

expression, but higher in embryoid bodies. This explains
the positive shift in log-fold-changes for the remaining
genes. The TMM scale factor appears close to the med-
ian log-fold-changes amongst a set of approximately 500
mouse housekeeping genes (from [17]). As another
example, the Li et al. [18] dataset, using the llumina 1G
Genome Analyzer, exhibits a shift in the overall distri-
bution of log-fold-changes and gives a TMM scaling fac-
tor of 0.904 (Figure S4 in Additional file 1). However,
there are sequencing-based datasets that have quite
similar RNA outputs and may not need a significant
adjustment. For example, the small-RNA-seq data from
Kuchenbauer et al. [19] exhibits only a modest bias in
the log-fold-changes (Figure S5 in Additional file 1).
Spike-in controls have the potential to be used for

normalization. In this scenario, small but known
amounts of RNA from a foreign organism are added to
each sample at a specified concentration. In order to
use spike-in controls for normalization, the ratio of the
concentration of the spike to the sample must be kept
constant throughout the experiment. In practice, this is
difficult to achieve and small variations will lead to
biased estimation of the normalization factor. For exam-
ple, using the spiked-in DNA from the Mortazavi et al.
data set [11] would lead to unrealistic normalization fac-
tor estimates (Figure S6 in Additional file 1). As with

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of (a) technical replicates and (b) liver versus
kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-
fold-changes of the housekeeping genes. (c) An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points
indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the
estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney
tissues. The black arrow highlights the set of prominent genes that are largely attributable for the overall bias in log-fold-changes.

Table 1 Number of genes called differentially expressed
between liver and kidney at a false discovery rate <0.001
using different normalization methods

Library size
normalization

TMM
normalization

Overlap

Higher in liver 2,355 4,293 2,355

Higher in
kidney

8,332 4,935 4,935

Total 10,867 9,228 7,290

House keeping
genes (545)

Higher in liver 45 137 45

Higher in
kidney

376 220 220

Total 421 357 265

TMM, trimmed mean of M values.

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25

Page 4 of 9
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themselves are not modified, it can be used in further
applications such as comparing expression between
genes.
Normalization will be crucial in many other applica-

tions of high throughput sequencing where the DNA or
RNA populations being compared differ in their compo-
sition. For example, chromatin immunoprecipitation
(ChIP) followed by next generation sequencing (ChIP-
seq) may require a similar adjustment to compare
between samples containing different repertoires of
bound targets. Interestingly, the PeakSeq method [23]
uses a linear regression on binned counts across the
genome to estimate a scaling factor between two ChIP
populations to account for the different coverages. This
is similar in principle to what is proposed here, but pos-
sibly less robust. We demonstrated that there are
numerous biological situations where a composition
adjustment will be required. In addition, technical arti-
facts that are not fully captured by the library size
adjustment can be accounted for with the empirical
adjustment. Furthermore, it is not clear that DNA
spiked-in at known concentrations will allow robust
estimation of normalization factors.
Similar to previous high throughput technologies such

as microarrays, normalization is an essential step for
inferring true differences in expression between samples.
The number of reads for a gene is dependent not only
on the gene’s expression level and length, but also on
the population of RNA from which it originates. We
present a straightforward and effective empirical method
for normalization of RNA-seq data.

Materials and methods
TMM normalization details
A trimmed mean is the average after removing the
upper and lower x% of the data. The TMM procedure is
doubly trimmed, by log-fold-changes Mgk

r (sample k
relative to sample r for gene g) and by absolute intensity
(Ag). By default, we trim the Mg values by 30% and the
Ag values by 5%, but these settings can be tailored to a
given experiment. The software also allows the user to
set a lower bound on the A value, for instances such as
the Cloonan et al. dataset (Figure S1 in Additional file
1). After trimming, we take a weighted mean of Mg,
with weights as the inverse of the approximate asympto-
tic variances (calculated using the delta method [24]).
Specifically, the normalization factor for sample k using
reference sample r is calculated as:
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The cases where Ygk = 0 or Ygr = 0 are trimmed in
advance of this calculation since log-fold-changes cannot
be calculated; G* represents the set of genes with valid
Mg and Ag values and not trimmed, using the percen-
tages above. It should be clear that TMMr

r( )  1 .
As Figure 2a indicates, the variances of the M values

at higher total count are lower. Within a library, the
vector of counts is multinomial distributed and any indi-
vidual gene is binomial distributed with a given library
size and proportion. Using the delta method, one can
calculate an approximate variance for the Mg, as is com-
monly done with log relative risk, and the inverse of
these is used to weight the average.
We compared the weighted with the unweighted

trimmed mean as well as an alternative robust estimator
(robust linear model) over a range of simulation para-
meters, as shown in Figure S4 in Additional file 1.

Housekeeping genes
Human housekeeping genes, as described in [16], were
downloaded from [25] and matched to the Ensembl gene
identifiers using the Bioconductor [26] biomaRt package
[27]. Similarly, mouse housekeeping genes were taken to
be the approximately 500 genes with lowest coefficient of
variation, as calculated by de Jonge et al. [17].

Statistical testing
For a two-library comparison, we use the sage.test func-
tion from the CRAN statmod package [28] to calculate
a Fisher exact P-value for each gene. To apply TMM
normalization, we replace the original library sizes with
‘effective’ library sizes. For two libraries, the effective
library sizes are calculated by multiplying/dividing the
square root of the estimated normalization factor with
the original library size.
For comparisons with technical replicates, we followed

the analysis procedure used in the Marioni et al. study
[6]. Briefly, it is assumed that the counts mapping to a
gene are Poisson-distributed, according to:

Y Pois Mgk gz kk
~ ( )O

where Ogzk represents the fraction of total reads for
gene g in experimental condition zk. Their analysis utilizes
an offset to account for the library size and a likelihood
ratio (LR) statistic to test for differences in expression
between libraries (that is, H0:μg1 = μg2). In order to use
TMM normalization, we augment the original offset with
the estimated normalization factor. The same LR testing
framework is then used to calculate P-values for DE
between tissues. We modified this analysis to use an exact
Poisson test for testing the difference between two

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25
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themselves are not modified, it can be used in further
applications such as comparing expression between
genes.
Normalization will be crucial in many other applica-

tions of high throughput sequencing where the DNA or
RNA populations being compared differ in their compo-
sition. For example, chromatin immunoprecipitation
(ChIP) followed by next generation sequencing (ChIP-
seq) may require a similar adjustment to compare
between samples containing different repertoires of
bound targets. Interestingly, the PeakSeq method [23]
uses a linear regression on binned counts across the
genome to estimate a scaling factor between two ChIP
populations to account for the different coverages. This
is similar in principle to what is proposed here, but pos-
sibly less robust. We demonstrated that there are
numerous biological situations where a composition
adjustment will be required. In addition, technical arti-
facts that are not fully captured by the library size
adjustment can be accounted for with the empirical
adjustment. Furthermore, it is not clear that DNA
spiked-in at known concentrations will allow robust
estimation of normalization factors.
Similar to previous high throughput technologies such

as microarrays, normalization is an essential step for
inferring true differences in expression between samples.
The number of reads for a gene is dependent not only
on the gene’s expression level and length, but also on
the population of RNA from which it originates. We
present a straightforward and effective empirical method
for normalization of RNA-seq data.

Materials and methods
TMM normalization details
A trimmed mean is the average after removing the
upper and lower x% of the data. The TMM procedure is
doubly trimmed, by log-fold-changes Mgk

r (sample k
relative to sample r for gene g) and by absolute intensity
(Ag). By default, we trim the Mg values by 30% and the
Ag values by 5%, but these settings can be tailored to a
given experiment. The software also allows the user to
set a lower bound on the A value, for instances such as
the Cloonan et al. dataset (Figure S1 in Additional file
1). After trimming, we take a weighted mean of Mg,
with weights as the inverse of the approximate asympto-
tic variances (calculated using the delta method [24]).
Specifically, the normalization factor for sample k using
reference sample r is calculated as:
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The cases where Ygk = 0 or Ygr = 0 are trimmed in
advance of this calculation since log-fold-changes cannot
be calculated; G* represents the set of genes with valid
Mg and Ag values and not trimmed, using the percen-
tages above. It should be clear that TMMr

r( )  1 .
As Figure 2a indicates, the variances of the M values

at higher total count are lower. Within a library, the
vector of counts is multinomial distributed and any indi-
vidual gene is binomial distributed with a given library
size and proportion. Using the delta method, one can
calculate an approximate variance for the Mg, as is com-
monly done with log relative risk, and the inverse of
these is used to weight the average.
We compared the weighted with the unweighted

trimmed mean as well as an alternative robust estimator
(robust linear model) over a range of simulation para-
meters, as shown in Figure S4 in Additional file 1.

Housekeeping genes
Human housekeeping genes, as described in [16], were
downloaded from [25] and matched to the Ensembl gene
identifiers using the Bioconductor [26] biomaRt package
[27]. Similarly, mouse housekeeping genes were taken to
be the approximately 500 genes with lowest coefficient of
variation, as calculated by de Jonge et al. [17].

Statistical testing
For a two-library comparison, we use the sage.test func-
tion from the CRAN statmod package [28] to calculate
a Fisher exact P-value for each gene. To apply TMM
normalization, we replace the original library sizes with
‘effective’ library sizes. For two libraries, the effective
library sizes are calculated by multiplying/dividing the
square root of the estimated normalization factor with
the original library size.
For comparisons with technical replicates, we followed

the analysis procedure used in the Marioni et al. study
[6]. Briefly, it is assumed that the counts mapping to a
gene are Poisson-distributed, according to:

Y Pois Mgk gz kk
~ ( )O

where Ogzk represents the fraction of total reads for
gene g in experimental condition zk. Their analysis utilizes
an offset to account for the library size and a likelihood
ratio (LR) statistic to test for differences in expression
between libraries (that is, H0:μg1 = μg2). In order to use
TMM normalization, we augment the original offset with
the estimated normalization factor. The same LR testing
framework is then used to calculate P-values for DE
between tissues. We modified this analysis to use an exact
Poisson test for testing the difference between two

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25
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Figure 1. Exploratory plots. (a) The points show the frequency of counts in the bins shown on
the x-axis. The three colors represent three samples (NA12812, NA12874, NA11993) from the
Montgomery data. (b) log2 RPKM values are stratified by GC-content for two biological
replicates from the Montgomery data (NA11918, NA12761) and are summarized by boxplots.
The two samples are distinguished by the two colors. Genes with average (across all 60 samples)
log2 RPKM values below 2 are not shown. (c) Log-fold changes between RPKM values from the
two samples and the same genes shown in (b) were computed and are plotted against GC-content.
Red is used to show the genes with the 10% highest GC-content and blue is used to show the
genes with the 10% lowest GC-content. (d) RPKM log-fold-changes are plotted against average
log2 counts for the samples and genes shown in (b), with the same color coding as in (c). (e) As
(d) but from values corrected using the method proposed by Pickrell and others (2010). (f) As (d)
but for values normalized using our approach (see Methods).
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there is little impact. This problem has downstream consequences since observed fold changes are
obscured by the variability introduced by GC-content effects (Figure 1(c,d)).

Some work has been done to develop methods to address these effects. Pickrell and others (2010),
the first to notice the sample specific GC-content effect, proposed a sample specific adjustment.
They suggested stratifying predefined genomic regions by GC-content and then for each stratum,
divide the sample counts by the sum of the counts across all samples. This fraction is considered
an enrichment factor for that GC-content stratum, which is then smoothed by GC-content for each
sample separately. Counts are then adjusted by the smoothed enrichment factor. Finally, they pro-
posed doing this on the exon level, adding adjusted counts across all exons from a gene in order to
obtain gene level adjusted counts. We found two problems with this approach that we decided to
improve. First, the enrichment scores are computed for each sample relative to all samples in an
experiment, thus this adjustment does not remove the GC-content effect but rather equalizes the ef-
fect across samples. As a consequence, adjustments vary depending on what samples are processed
together. Second, the GC-content effect is estimated based on the direct summation of counts on
different genes in different samples, ignoring the fact that genes with higher expected counts also
have greater variance. As a result GC-content effects are not entirely removed (Figure 1(e)). In ad-
dition, Roberts and others (2011) addresses bias removal within the Cufflinks transcript assembly
framework (Trapnell and others, 2010) and show improvements in comparisons between sequenc-
ing technologies, but does not address variation between biological replicates.

4 Methods

We present a normalization algorithm motivated by a statistical model that accounts for both the
need to correct systematic biases and the need to adjust for distributional distortions. We denote
the log gene expression level for gene g at sample i with ✓g,i, which we consider a random variable.
For most g, ✓g,i are independent and identically distributed across i. We assume that the marginal
distribution of the ✓g,i is the same for all samples i, and denote it by G. Note that this variability
accounts for the difference in gene expression across different genes. The p covariates thought to
cause systematic errors are denoted with Xg = (Xg,1, . . . , Xg,p)

0. Examples of covariates consid-
ered here are GC-content, gene length, and gene mappability defined as the percentage of uniquely
mapping subreads of a gene. To model the observed counts Yg,i for gene g in sample i we write:

Yg,i | µg,i ⇠ Poisson(µg,i)

with

µg,i = exp

(
hi(✓g,i) +

pX

j=1

fi,j(Xg,j)

)

with fi,j(X̄.j) = 0 8 j for identifiability. Here, the his are non-decreasing functions that account for
the fact that count distributions are distorted in non-linear ways across the different samples (Fig-
ure 2(a)). The fi,js account for sample dependent systematic biases. Data exploration suggested

5
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that these are smooth functions, so for tractability we model these as (parametric) natural cubic
splines with known degrees of freedom and knot locations. If there is no technical variability, hi is
the identity function and

Pp
j=1 fi,j(Xg,j) = 0, then the distribution of Ygi for a given i reduces to

a G-Poisson mixture.

With the model in place, obtaining normalized counts is equivalent to estimating ✓g,i. To do this
we needed to estimate the non-parametric hi functions along with the linear parameters that define
the splines. Note that the distribution of the ✓g,i in a sample is determined by the biological system,
which varies greatly between species, tissue types and developmental stages. Thus it is unrealistic
to restrict it to a particular parametric family of distributions. This makes estimation requiring full
likelihood, including maximum likelihood estimation (MLE) and Bayesian approaches unsuitable.
In addition, outliers can arise because of either biological activity or technical artifacts. Since both
h and f represent the global impact of systematic effects on all genes in general, it is crucial to
define estimation procedures that are robust to outliers. We take advantage of the large amount
of data for each sample and our parsimonious model to define a stable algorithm which we now
motivate and describe.

For any given i, the distribution of hi(✓g,i) is unspecified and Figure 2(b) shows that values can
range from �1 to 8. First we observe that when µg,i is large, log(Yg,i) | µg,i is approximately
normal with mean log(µg,i) and variance 1/µg,i. The small variance implies that for large µg,i

log(Yg,i) | µg,i ⇡ log(µg,i) = hi(✓g,i) +

pX

j=1

fi,j(Xg,j),

showing that for a fixed i and large µg,i, the distribution of log(Yg,i) is equal to hi(✓g,i) except for
a location shift given by

Pp
j=1 fi,j(Xg,j). Even though the shape of hi(G) is left unspecified, the

quantiles of log(Yg,i) shift by
Pp

j=1 fi,j(Xg,j). We therefore use quantile regression to estimate the
fi,js. To assure the large µg,i assumption is satisfied, instead of fixing the quantile choice, we use
median regression on a subset of genes with average counts beyond a lower bound.

To estimate the his we take advantage of the fact that

E

(
log(Yg,i) �

pX

j=1

fi,j(Xg,j)

)
= hi(✓g,i)

and that the distribution of ✓g,i does not depend on i, to use subset quantile normalization (Wu and
Aryee, 2010).

The specifics of our algorithm are as follows:

1. Select a subset of genes with Ȳg,. > 50. Then for each i, use median regression on log(Yg,i)

to estimate the parameters that define the splines fi,j and determine f̂i,j .

6
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2. For each i, apply quantile normalization to log(Yg,i) �
Pp

j=1 f̂i,j(Xg,j) to obtain ĥ�1
i .

3. For each gene g on each sample i, define a normalization offset as exp[log(Yg,i)�ĥ�1{log(Yg,i)�
f̂i,j(Xg,j)}].

The algorithm returns an offset rather than normalized data for two reasons. First, for interpretabil-
ity we want to preserve the data as counts, i.e. integer numbers. Due to the large sampling error,
small counts should be treated with caution thus users of the algorithm benefit from access to
these original counts. Second, the most widely used methodology for identifying differentially
expressed genes from RNA-seq data model the counts in a way that sampling error from counting
process (such as Poisson) and variation in gene expression (✓) are taken into account (Robinson
and others, 2010; Anders and Huber, 2010). Providing an offset allows direct application of these
existing methods which take counts as input and can be easily adapted to adjust for offsets.

While the algorithm allows one to correct for a variety of systematic biases, we have consistently
used GC content and gene length. An R package cqn implementing the method is being submitted
to Bioconductor.

5 Results

Because experimentally controlling for the amount of RNA extracted from a sample is difficult, the
total number of counts varies across samples and manifests itself as between sample differences in
the locations of the log read-count distributions (Figure 1(a)). This unwanted technical variability
is further augmented by the differences in cDNA amplification efficiency (Aird and others, 2011)
and other technical artifacts and differences in distribution shapes and scales persist after library
size is taken into account. Scaling normalization based on more robust estimates of the shift in
location (Bullard and others, 2010; Robinson and Oshlack, 2010; Anders and Huber, 2010) can
provide further improvement, although improvement is limited in the samples we have analyzed (as
an example, results for trimmed median of M-values, TMM, from (Robinson and Oshlack, 2010)
are shown below). In contrast, our normalization approach (CQN) results in sample distributions
with comparable scales and shapes, as discussed below.

To demonstrate the down-stream advantages of our algorithm we first considered comparisons
between two samples. For illustrative purposes we selected two samples with very different sys-
tematic bias patterns (fi,js). For the assessment, we focused on fold-change as it is considered the
basic unit for differential expression analysis. We computed log-fold-change for each gene after
both RPKM normalization and CQN and a substantial improvement was observed (Figure 1(e,f)).
Specifically, while the RPKM showed a strong dependence between fold-change and GC-content,
CQN eliminated it.
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Figure 3. Results from normalizing 60 samples. In these plots we only show genes with a length
greater than 100bp and an average (across all 60 samples) standard log2-RPKM of 2 or greater.
(a) Empirical density estimates of log2-RPKM for five different biological replicates from the
Montgomery data are shown. (b) As (a) but CQN normalized expression values on the log2-scale
are shown. (c) The estimated GC-content effect are shown as curves for all 60 biological
replicates in the Montgomery study. We created a five versus five comparison using the samples
highlighted in blue (group 1) and red (group 2). (d) as (c) but curves are shown for the gene
length effect instead of GC-content. (e) Average log-fold-change is plotted against GC-content.
Here we used RPKM values and compared group 2 to group 1. (f) Average log-fold-change is
plotted against GC-content using CQN normalized expression measures.
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Mean Variance relationship

Analysis of multifactor RNA/ChIP-Seq 

experiments with respect to biological 

variation

Gordon Smyth

Bioconductor, Seattle 28 July 2011
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Mean variance relationship

Seq technology true expression

total variability = technical variability + biological variability
Var [ygi ] = µgi + φg ∗ µ2gi

Total CV2 = Technical CV2 + biological CV2

Total CV2 = 1
µgi

+ φg
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Sources of variability in a sequencing experiment
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Sources of variability in a sequencing experiment
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Improved model for RNA-seq data





yig ∼ NB(µig , φig )

µig = λigSig

log(µig ) = ηig

ηig =
N∑

k=1

xikβgk + log Sig

ygi :count for gene g of subject i

xik : predictor variabele k evaluated for subject i

βgk : effect for predictor variable k and gene g

Sig : effective library size for gene g of subject i
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Estimating overdispersion

For every single gene: not enough data

Common dispersion for all genes

Trended dispersion

Gene wise, EB shrinkage to a common (trended) dispersion:
Borrow strength across genes (McCarthy & Smyth (2012).
Nucleic Acid Research)
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Figure 1: Empirical (black dots) and fitted (red lines) dispersion values plotted against mean
expression strength.

$ fittedDispEsts : num [1:14599] 5.21332 0.02055 Inf 1.5008 0.00559 ...

$ df : int 2

$ sharingMode : chr "maximum"

To visualize these, we plot the per-gene estimates against the normalized mean expressions
per gene, and then overlay the fitted curve in red. As we will need this again later, we define a
function:

> plotDispEsts <- function( cds )

+ {

+ plot(

+ rowMeans( counts( cds, normalized=TRUE ) ),

+ fitInfo(cds)$perGeneDispEsts,

+ pch = '.', log="xy" )

+ xg <- 10^seq( -.5, 5, length.out=300 )

+ lines( xg, fitInfo(cds)$dispFun( xg ), col="red" )

+ }

Calling the function produces the plot (Fig. 1).

> plotDispEsts( cds )

6
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Allowing an abundance trend on the BCV did not reduce
the number of outlier genes for which the BCV is rejected
(Figure 2). On the other hand, permitting genewise BCV,
with empirical Bayes moderation with prior G0=10,
shows no remaining lack of fit (Figure 2). This provides
a statistical justification for the use of genewise BCVs in
the following analysis. There is also a biological justifica-
tion, which is that genes that have inconsistent tumour
versus normal differences in the three patients will
receive higher BCV estimates, and hence be demoted in
the list of differentially expressed genes. The use of
genewise BCV therefore allows us to focus on genes that
have consistent tumour versus normal differences.
Using the genewise BCV values, we test for differential

expression between tumour and normal tissue by
comparing the additive with the baseline model. This
analysis adjusts for baseline differences between the
patients, in a way that is analogous to computing a
paired t-test for each gene, but adapted to count data.
It yielded 1276 genes at false discovery rate (FDR)
< 0.05 (Table 1, Supplementary Table S1). Included prom-
inently among these genes are those previously identified
as differentially expressed between tumour and normal
tissues in head and neck squamous cell carcinoma
studies. Of 25 genes reported by Yu et al. (52), 18 were
included in our list at FDR< 0.05 (Supplementary Table
S2). Another two (TNC and FN1) show fold-changes
greater than two-fold and FDR around 0.4. The remain-
ing five genes show small fold-changes and no evidence of
differential expression (Supplementary Table S3). Tuch et
al. (50) discussed nine genes of particular biological
interest. Six of the genes (CASQ1, INHBA, MMP1,
HMGA2, SHANK2 and WIF1) are confirmed to be
strongly differentially expressed in our analysis with
FDR< 0.001 (Supplementary Tables S4 and S5). This
includes one gene (HMGA2) validated by RT-qPCR.
Note that the original study (50) validated 16 genes by
PCR, but only HMGA2 was identified by name.
To demonstrate further the biological relevance of the

detected genes, we tested for enrichment of curated gene

sets from the MSigDB database (53) using the mean-rank
gene-set enrichment test (54). At FDR< 0.05 this yielded
417 gene sets enriched in the up-regulated genes and 268
gene sets enriched in the down-regulated genes.
Significantly enriched sets were overwhelmingly cancer
related and concordant, suggesting an enhanced WNT1
pathway in the tumours, and an expression signature
similar to other cancers such as basal-like breast cancer
(Supplementary Tables S7 and S8). Gene ontology
analysis (55) found 146 GO terms enriched for
up-regulated genes and 264 terms enriched for down-
regulated genes. The GO terms for up-regulated genes
tend to be associated with cell development, proliferation
and differentiation and associated processes concordant
with tumour development (Supplementary Tables S9
and S10).

Next, we looked for genes with heterogeneous tumour
versus normal differences. Ideally this analysis should be
conducted relative to BCV between independent tissue
extracts from the same patients. However, the interaction
model fully fits the available data, leaving no residual
degrees of freedom, hence cannot be used to estimate
the BCV. Instead we conduct this analysis using
genewise BCVs estimated from differences between the
three normal patients. These BCVs represent inter-patient
rather than intra-patient differences, and so should
over-estimate somewhat the desired BCV. Hence our
analysis will be conservative to some extent in terms of
P-values and FDRs. The BCVs between the normal
patients are generally similar in size to the BCVs from
the additive model, so the conservatism may be relatively
minor. Using these conservative BCVs, a comparison
of the interaction and additive models yields 202 differen-
tially expressed genes at FDR< 0.05. The top-ranked gene
in this analysis is CDKN2B, which was identified by Tuch
et al. (50) as of biological interest based on correlation of
expression level with copy number variation in Patient 8.
The other two genes (CCND1, CTTN) similarly identified
by Tuch et al. (50) have FDR around 0.1 in our inter-
action analysis (Supplementary Table S6).
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Figure 2. QQ-plots of goodness of fit statistics using common, trended or empirical Bayes genewise (tagwise) dispersions. Genewise deviance
statistics were transformed to normality, and plotted against theoretical normal quantiles. Points in blue are those genes with a significantly poor
fit (Holm-adjusted P-value < 0.05). When using genewise dispersions, no genes show a significantly poor fit.
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II. 3. Statistical inference

Asymptotic statistical tests exist to test if (contrasts of the)
parameters of the GLM are different form zero.

Implemented in edgeR and DESeq2.

Again we have to correct for multiple testing !!!
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