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Introduction

Central Dogma:
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lllumina Genome Analyzer Worktlow
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read counts
/l\
cDNA library
T
mRNA levels
J
protein levels

+
phenotype

Potential Problems

mapping, lane, flow cell, run bias

RNA extraction, rRNA, DNA conversion,...

post transcriptional regulation, translation speed

post translational regulation, modification, activity regulation...
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Potential Problems
read counts

1T mapping, lane, flow cell, run bias
cDNA library
0 RNA extraction, rRNA, DNA conversion,...
mRNA levels
4 post transcriptional regulation, translation speed
protein levels
K post translational regulation, modification, activity regulation...
phenotype

@ Number of reads depends on many factors

@ expression level, total number of reads per library, transcript length
etc.

@ Here we focus on differences at gene level: transcripts have the
same length.

@ Systematic differences in read counts — systematic differences in
mRNA levels
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Alternative Splicing
Alternative splicing in tropomyosin
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Alternative Splicing

Data from RNA-seq
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Alternative Splicing
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Single end vs paired end
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Image adapted from Zhernakova, et al., PLoS Genet. 2013 June; 9(6): 1003594.
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Naive vs Strand specific

Strand-Specific RNA-Seq Reveals Novel Features
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Steps in a RNA-seq Experiment

Experimental design

Experiment

Sampling

Library Prep

Sequencing/basecalling

Quality assessment of Reads

Read alignment to reference genome

Quality assessment of alignment

Summarization: read counts per feature (gene, exon, ...)

Gene Prioritization: Analysis of differential expression

©E6000000000F0

Downstream Analysis
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RNA-seq Data Analysis work flow

Sequence quality
checks

Steps 1and 2
Collect metadata for
Stepese
Mapping reads,
organize files, Steps 7-12
inspect mapping
Feature counting Step 13
Data structures, Step 14
normalization,
fitness checks edgeR DESeq
2.group differential

comparison

GLM-based differential
comparisons

Inspect and save
results

Additional sanity
checks

Step 15

Anders et al. (2013) Nature Protocols.
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Part |. Basecalling,
Alignment and
Summarization



|.1. Basecalling

Most researchers use standard base caller:
Illumina — Cassava — fastq files
http://en.wikipedia.org/wiki/FASTQ_format
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http://en.wikipedia.org/wiki/FASTQ_format

FASTQ format

Combines sequence and base quality information
Four lines per sequence (read)

ID line (starting with @) sequence

another ID line (starting with +) base qualities

e 6 6 o o

For paired-end sequencing: one file for "first” reads and one
for "second” reads of the read pairs
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@D7MHBFN1:202:D1BUDACXX:4:1101:1340:1967 1:N:0:CATGCA
NATCTTCGGATCACTTTGGTCAAATTGAAACGATACAGAGAAGATTGTAAGTAACAATATTTACCAAGGTTCGAGTCATACTAACTCGTTGTCCTATAGT

+

#1=DDFFFHHHHH]]JJJJJHIJIJ]IIJIIGIIIIIIIIIIIITIIIHIIFGIIIIIIIIIIIEHIITHHGFFF@?ADFEDDEDCDDBDDBDCDDDDEC

o Linel

© © 6 6 6 6 6 ¢ o o o

D7MHBFNI: unique instrument name

202: run ID

D1BUDACXX: flowcell 1D

4: flowcell lane

1101: tile number within lane

1340: x-coordinate of cluster within tile

1967: y-coordinate of cluster within tile

1: member of pair (1 or 2). Older versions: /1 and /2
Y/N: did quality control of read failed (Y: bad)
0: none of the control bits are on

CATGCA: index sequence (barcode)

o Line 2: read sequence

o Line 4: Base quality
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FASTQ format - base qualities

Quality score: Q@ = —10logg p
Phred Score Probability on incorrect base call base call accuracy

10 1/10 90%
20 1/100 99%
30 1/1000 99.9%
40 1/10000 99.99%

50 1/100000 99.999%

19 /65



GH XD

59 64
«26...31..

=5....0..
0..
........................ 26..e3lecccccce
- Sanger Phred+33, raw reads typically (0, 40)
- Solexa Solexa+64, raw reads typically (-5, 40)

- Illumina 1.3+ Phred+64, raw reads typically (0, 40)

Illumina 1.5+ Phred+64, raw reads typically (3, 40)
with O=unused, l=unused, 2=Read Segment Quality Control Indicator (bold)
(Note: See discussion above).

- Illumina 1.8+ Phred+33, raw reads typically (0, 41)

https://en.wikipedia.org/wiki/FASTQ_format
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https://en.wikipedia.org/wiki/FASTQ_format

Raw base quality QC

fastQC: http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/

New design. Better apps. More

QFastQC Report D s 0

Summary @Basic Statistics
@Basic Statistics Filename bad_sequence. txt
@ Perbase sequence qualiy File type Conventional base calls
o Encoding Tllumina 1.5

Per tile sequence quality Total Sequences 395288
@Per sequence quality scores Sequences flagged as poor quality 0

per quence content Sequence Length )

sec @

Per sequence GC content

@Per base N content
@&&qugngg Length Distribution

QPer base sequence quality
Sequence Duplication Levels

Quality scores across all bases {llumina 1.5 encoding)

)
@_dam | TTTTTTTTTII-I—H-I—H-I—II 10EE T 7 <] TS Tl

Kmer Content

Overrepresented sequences



http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Raw base quality QC

Quality scores across all bases {lllumina 1.5 encoding}

T m
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12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read (bp)

o N & O ®
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Raw base quality QC

Quality per tile

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read (bp)
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Raw base quality QC

@Per sequence quality scores

60000

50000

40000

30000

20000

10000

Quality score distribution over all sequences

Average Quality per read

2 3 45 6 7 8 9 1011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Mean Sequence Quality (Phred Score)
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Raw base quality QC

@Per base sequence content

Sequence content across all bases
100
%T

%C
o0 %A
%G
80
70
60
50
40
30

20

10

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read {bp)
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Raw base quality QC

@Per sequence GC content

50000

40000

30000

20000

10000

0

GC distribution over all sequences

GC count per read
Theoretical Distribution

0246811 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99
Mean GC content {%)
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Raw base quality QC

@Per base N content

N content across all bases
100
%N
90
80
70
60
50
40

30

20

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read (bp)
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Raw base quality QC

@Sequence Length Distribution

Distribution of sequence lengths over all sequences

Sequence Length

350000
300000
250000
200000
150000
100000

50000

39 40 41
Seauence Lenath (bo)
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Raw base quality QC

@Sequence Duplication Levels

Percent of seqs remaining if deduplicated 69.26%
100
% Deduplicated sequences

% Total sequences
90

80
70
60
50
40
30
20

10

1 2 3 4 S 6 7 8 9 =10 =50 =100 =500 =1k =5k =10k
Sequence Duplication Level
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Raw base quality QC

Overrepresented sequences

Sequence

AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC 2065 0.5224039181558763 No Hit
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG 2047 0.5178502762542754 No Hit

ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA 2014 0.5095019327680071 No Hit

CGAT: TTGGCGTATCCAACCTGC TTTTAT 1913 0.4839509420979134 No Hit

GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA 1879 0.47534961850600066 No Hit

AAAA GTATCCAACCTGCAGAGTTTTATCGCT 1846 0.4670012750197325 No Hit

TGATTGGCGTATCCAACCTGC. TTTTATCGCTTCCAT 1841 0.46573637449150995 No Hit
AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA 1836 0.46447147396328753 No Hit

ATA 'TGGCGTATCCAACCTGC, TTTATC 1831 0.4632065734350651 No Hit

AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC 1779 0.45005160794155147 No Hit

ATGATTGGCGTATCCAACCTGC: TTTTATCGCTTCCA 1779 0.45005160794155147 No Hit

AATGATT GTATCCAACCTGC: TTTATCGCTTCC 1760 0.4452449859343061 No Hit
AAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTT 1729 0.4374026026593269 No Hit
CGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAG 1713 0.43335492096901496 No Hit
ATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAG 1708 0.43209002044079253 No Hit
CAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTT 1684 0.42601849790532476 No Hit
CAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTA 1668 0.4219708162150128 No Hit
TGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACT 1668 0.4219708162150128 No Hit
TATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAA 1630 0.4123575722005221 No Hit
GTCATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAA 1620 0.40982777114407726 No Hit

AACTTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGG 1616 0.4088158507214993 No Hit
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Raw base quality QC

@Adapter Content

% Adapter

lllumina Universal Adapter
lllumina Small RNA Adapter
90 Nextera Transposas

Sequence

80

70

60

50

40

30

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Position in read {bp)
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Raw base quality QC

@ Kmer Content

30

25

20

N

Log2 Obs/Exp

TAGGTCC
CGAGACC
CCGAGTG
GCCGAGT
GAGACCG

1

2 3 456 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Position in read (bp)
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Preprocessing

@ Read Trimming

Adaptor sequence

Bar code

(deteriorating bases at the end of reads)

often already done by the sequencing provider.
remaining polyA tails

(]

e 6 o o

o Read filtering

o low quality reads

o PhiX reads (should be removed already by sequence provider)

o in RNA-seq never remove duplicates because they can occur
for highly expressed transcripts

@ Perform fastQC again
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|.2 Alignment

o DNA
o bowtie2, BWA,...
o Needs: genomic reference sequence + cleaned reads

@ RNAseq

o Aligning to transcriptome: annotation-bias, you throw away
some data: very fast: Salmon and Kallisto.

o Genome: problem Gaps
Star, tophat2, Rsubread, ...

o Needs: genomic reference sequence + genomic annotation+
cleaned reads

http://wwwdev.ebi.ac.uk/fg/hts_mappers/
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http://wwwdev.ebi.ac.uk/fg/hts_mappers/

The human reference genome

WWW, mbl.org/inf ta/ft, x.html htt Www. nes.org/human
Single species data Fastafiles
Popular species are listed first. You can customise this list via our home page Content Regions Description Download
am Fasta
Show (X entries Show/hide columr R . Fasta
pRe 5 = o
DNA CcDS ncRNA Protein 1G_"_gene. TR "_gene. polymorphic_pseudogene:
(FAsTA) ASTA) (FASTA) (FASTA) sequence R Fasta
(FASTA) transltion sequences chromosomes
. o stop decan
Y  Human A® FASTA® FASTA® FASTA® 16 gon. TR g pohmrphc pcudogene e
Homo
7 CHR+ Nucea P
sapiens e o -
Y  Mouse FASTA® FASTA® FASTA® FASTA® FASTA® PN fasta
Mus {(GRCh38p12) it
BT + Thescasence regonnames e the same 5 the GTFIGFF3 les
Y  Zebrafish  FASTA® FASTA® FASTA® FASTA® FASTA® PRI - Nt . D
Danio roio et e
|} Homo sapiens GRCh38 dna.primary assembly.fa.gz 840 MB

slide courtesy Charlotte Soneson
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To the genome: gap aware!
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STAR: Spliced Transcripts Alignment to a Reference
(@) Map Map again
MMP1 § MMP2
| | RNA-seq read

exons in the genome

(b) (c)
Map Map
MMP 1 Extend MMP 1 Trim
mismatches A-tail, or adapter,

or poor quality tail

Fig. 1. Schematic representation of the Maximum Mappable Prefix
search in the STAR algorithm for detecting (a) splice junctions, (b) mis-
matches and (c) tails Dobin

et al. (2013) Bioinformatics 29(1), 15-21 37/65



Rsubread: integration read alignment into R

A Read c (c1)
T Subreads (seeds)

— Informative
——=—— ., subreads (C2)

Largest consensus

T 55

Reference genome

voted location
(C3)
B . 2 votes

5 votes
(final mapping location)

(C4)
1 vote

A>00-4AA>>4N0>0N00-4>

2 votes

Read
Hash table Reference genome

Reference genome

jlne

]subreads

Read X
--.....,d{Insertion size)
> T

Q

]

g ——

=1

——
L _g——" 3

covered bases || covered bases
(perfectly matched) uncovered

d ;Delet\on size)

O,

| o

wawubily

—o
[ g—2—

covered bases —1 covered bases
uncovered

1uew“6‘w

4bp window i

fncovered  covered bases }—{uncovered

et al. (2013) Nucleic Acids Research, 41(10):e108, 2013

Liao
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Salmon: fast and bias-aware quantification of transcript
expression (Mapping to the transcriptome)

ambiguous fragments
soft-assigned with probabilities

Ps P Pr

atstepj

abundance

e E—
II. - E— E—
e

Updated abundance

fil

soft-assignments

to
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Post alignment QC

o fastQC
o Coverage plots

@ Removal of biological contamination if not of interest mRNA
(only small fraction of RNA pool):
rRNA, ncRNA, mitochondrial RNA

— Normally removed with kits prior to sequencing
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1.3. Summarization

www.ensembl.org/info/data/ftp/index.html https://www.gencodegenes.org/human/
e this list via our home page. GTF/GFF3files
Showhide columns = e
( ] R arors
DS  ncRNA  Protein Annotated Annotatedf Gene ) Whole Varic L chromesomes only
) ey e @ Tt el ametationfle for mostusrs
(EASTA)R(EMBE) o olds, assembly patches and alternateloci are
rei it e
{TA®? FASTA® FASTA® EMBL@ GTF® |wysaLe @ S o
GFF3% O e
wo Grears
TA@ EASTAY EASTAC EMBLC Genbarke GIFC MSQL® G < Mismnmennotenon oot
e om . arrorrs
ly
TAG FASTA® FASTA® EMBLE GenBank@® GTF® MySQLE & e e e e
GFFa S e e

slide courtesy Charlotte Soneson
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|.3a Summarization upon mapping to the genome

@ Most applications
summarize reads based upon
known annotation: bias

o Generate counts for genes,
transcript or exons

@ Count read instead of nt

@ Count each read only ones

@ Discard reads that

e do not map uniquely
o overlap with several genes
o with a bad quality score

union
—_———— gene_A
e gene_A
e . gene_A
o e gere A
e

ambiguous

ambiguous

intersection
ict

gene_A

no_feature

no_feature
gene_A
gene_A
gene_A

ambiguous.

intersection
_nonempty

gene A

gene A

gene A

gene A

gene_A

gene A

ambiguous

Figure 4.1: Overlap modes; Image from the HTSeq package developed by Simon Anders.

42/
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|.3b Summarization upon mapping to the transcriptome

@ Results in counts at the transcript level.
@ Sum of transcript level counts to obtain gene-level count

@ Account for potential difference in transcript usage between
samples : via average transcript length (see normalisation,
why?)

@ Has been shown to be more accurate: e.g. Soneson et al.
(2015). F1000Research, 4. doi:
10.12688/f1000research.7563.1
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Part Il: Analysis of count
data



Classical Approach: Gene level data

@ gene x sample matrix
o Differential expression well studied by statisticians

o Count data:

e many zeroes
o very large range
o biological variability?
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Frequency

400

300

200

100

o

T T T T
20 40 60 80

lanel

100

@ Discrete data
o Skewed distribution

46
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Normalization

150000
1

100000
I

treated3fb

50000
I

T T T T T
0 50000 100000 150000 200000

treated2ib
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Normalization

10000

treated3fb

1 100 10000

treated2fb
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Normalization

o M =logy(Y2) — logy(Y1)

-2
I

o A= lom(¥e)+op(¥2)
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Normalization

@ Sequencing depth

group

lib.size

norm.factors

treated2fb treated

treated3fb treated
untreated3fb untreated
untreated4fb untreated

15620018.00
12733865.00
10283129.00
11653031.00

1.00
1.00
1.00
1.00

@ use lib.size to normalize?

— Convert reads in counts per million
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Modeling Counts

@ Marioni (2008) Genome Research showed that technical
replicates are Poisson(f.)

o Properties: y=mean=variance
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Modeling Counts

Frequency

40

30

20

10

T T T
10 20 30

counts

40
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Modeling Counts

mu =9
w _
—
o
=
>
3
c
o
3
o
o
w
w -
. ‘ ‘ ” N H
0 10 20 30 40
counts
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Modeling Counts

mu =25
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Modeling Counts

@ The Poisson distribution is commonly used Poisson(u)

(<]

Properties: p=mean=variance
@ Relative error decreases with increasing mean

o CV=standard deviation/mean=,/p1/p = 1/\/11

Mean CV
1 1

9 1/3
25 1/5

100 1/10
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Generalized linear model for seq data

( Yig ~ Poisson(fjg)
|°g(ﬂig) = Nig
N
Nig = kZ: Xikﬁgk
-1

@ ygi:count for gene g of subject i

@ Xx;x: predictor variabele k evaluated for subject i
@ 7): linear predictor

@ [g: effect for predictor variable k and gene g

50 /65



GLM with normalization

( Yig ~ Poisson(fijg)
Kig = Aigsig
log(uig) = mig
N
Nig = 1;1 XikBgk + log Sig

ygi:count for gene g of subject i

Xjk: predictor variabele k evaluated for subject i

°
°

o 7: linear predictor

@ [gk: effect for predictor variable k and gene g
°

Sig: effective library size for gene g of subject /

51/65



Normalization with lib.size??

P
2)
~

logx(Liver/Ny) - logo(Kidney/Nk)

5

2oapml| 1 | 1ces

o
- vy

M

lousekeeping genes
Unique to a sample

T T T
-10

o
S
o

A= Iogz(JLiver/NL -Kidney/N)

Robinson and Oshlack (2010). Genome Biology.
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log,(Fold change)
0 2 4

-2

4

T T T T J
0.3-0.350.4-0.45 0.5-0.55 0.6-0.65 0.7-0.75

— T
0.35 0.50 0.65
GC content GC content

log2(Number of reads)

Hansen, Irizarry and Wu (2012). Biostatistics.

53 /65



Normalization: S;

o Upper quartile Bullard et al. (2010) BMC Bioinformatics.

o scale normalization: edgeR package, Robinson and Oshlack
(2010) Genome biology

o Geometric mean: DESeq, Anders and Huber (2010) Genome
Biology

o Gene specific normalization: Sgj;

o GC content
o gene length
o cqn package, Hansen, Irizarry and Wu (2012) Biostatistics.

54 /65



Normalization EdgeR

(c)

e

5
:
i

Zoaamli ] 1l
-

loga(Liver/N|) - loga(Kidney/N)

5
1

M

o | ® Housekeeping genes
@ Unique to a sample

T
-20 -15 -10

A = log,(y/Liver/Ny -Kidney/Ny)

u]
o)
I
i
!




TMM normalization details

A trimmed mean is the average after removing the
upper and lower x% of the data. The TMM procedure is
doubly trimmed, by log-fold-changes Mg, (sample k
relative to sample r for gene g) and by absolute intensity
(Ag). By default, we trim the M, values by 30% and the
A, values by 5%, but these settings can be tailored to a
given experiment. The software also allows the user to
set a lower bound on the A value, for instances such as
the Cloonan et al. dataset (Figure S1 in Additional file
1). After trimming, we take a weighted mean of M,,
with weights as the inverse of the approximate asympto-
tic variances (calculated using the delta method [24]).
Specifically, the normalization factor for sample k using
reference sample r is calculated as:

T r (Y,
Wl M, ogal ¥
N L . ) IR
oz = 956" T T gy - L andwf - Sk Yok | .
> o T Mgk Niigr

YgYye 0.

The cases where Yy = 0 or Yy, = 0 are trimmed in
advance of this calculation since log-fold-changes cannot
be calculated; G* represents the set of genes with valid
M, and A, values and not trimmed, using the percen-
tages above. It should be clear that TMM{) = 1.

As Figure 2a indicates, the variances of the M values
at higher total count are lower. Within a library, the
vector of counts is multinomial distributed and any indi-
vidual gene is binomial distributed with a given library
size and proportion. Using the delta method, one can
calculate an approximate variance for the M,, as is com-
monly done with log relative risk, and the inverse of
these is used to weight the average.

We compared the weighted with the unweighted
trimmed mean as well as an alternative robust estimator
(robust linear model) over a range of simulation para-
meters, as shown in Figure S$4 in Additional file 1.
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Norma | IZatlon Cq n (Hansen, Irizarry and Wu (2012). Biostatistics)

(b)

8

log,(RPKM)
4
Tt
T 1
log,(Fold change)

0

r T T T 1 l—l—|
0.3-0.35 0.4-0.45 0.5-0.55 0.6-0.65 0.7-0.75 0.35 0.50 0.65
GC content GC content
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NOrma | IZatlon Cq n (Hansen, Irizarry and Wu (2012). Biostatistics)

We present a normalization algorithm motivated by a statistical model that accounts for both the
need to correct systematic biases and the need to adjust for distributional distortions. We denote
the log gene expression level for gene g at sample 7 with 6, ;, which we consider a random variable.
For most g, 0, ; are independent and identically distributed across 7. We assume that the marginal
distribution of the 6, ; is the same for all samples 4, and denote it by G. Note that this variability
accounts for the difference in gene expression across different genes. The p covariates thought to
cause systematic errors are denoted with X, = (Xy1,..., Xy ,)". Examples of covariates consid-
ered here are GC-content, gene length, and gene mappability defined as the percentage of uniquely
mapping subreads of a gene. To model the observed counts Y ; for gene g in sample i we write:

Yy.i | ptg,i ~ Poisson(puy.;)
with

Hgi = €Xp {hi(eﬂﬂ + Z fw(Xg«J)}

with j}_j()?_j) = 0V j for identifiability. Here, the h;s are non-decreasing functions that account for
the fact that count distributions are distorted in non-linear ways across the different samples (Fig-
ure 2(a)). The f; ;s account for sample dependent systematic biases. Data exploration suggested
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NOrma | IZatlon Cq n (Hansen, Irizarry and Wu (2012). Biostatistics)

For any given i, the distribution of h;(6,;) is unspecified and Figure 2(b) shows that values can
range from —oo to 8. First we observe that when 1, is large, log(Y;) | 1. is approximately
normal with mean log(y,,;) and variance 1/, ;. The small variance implies that for large /,;

P
108(Yy) | g % L0g(hg,) = hi(By) + D fii(Xy):

=1

showing that for a fixed i and large /1, the distribution of log(Yj;) is equal to h;(f, ;) except for
a location shift given by >-7_, fi j(X,,;). Even though the shape of /;(G) is left unspecified, the
quantiles of log(Yj;) shiftby >°7_, fi ;(X,,;). We therefore use quantile regression to estimate the
fijs. To assure the large /1,,; assumption is satisfied, instead of fixing the quantile choice, we use
median regression on a subset of genes with average counts beyond a lower bound.

To estimate the h;s we take advantage of the fact that

E {bg(Yw) -3 fl,,<Xg,])} = hi6,,)

and that the distribution of 6, ; does not depend on 1, to use subset quantile normalization (Wu and
Aryee, 2010).

The specifics of our algorithm are as follows:

1. Select a subset of genes with Y, > 50. Then for each 4, use median regression on log(Y};)
to estimate the parameters that define the splines f; ; and determine f; ;.
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Norma | IZatlon Cq n (Hansen, Irizarry and Wu (2012). Biostatistics)

2. For each 7, apply quantile normalization to log(Yy) — >7_, fi.j(X,) to obtain ;.

3. For each gene g on each sample 7, define a normalization offset as exp[log (Y, ;) —h? {log(Yy.:)—

FsXa)Y-

The algorithm returns an offset rather than normalized data for two reasons. First, for interpretabil-
ity we want to preserve the data as counts, i.e. integer numbers. Due to the large sampling error,
small counts should be treated with caution thus users of the algorithm benefit from access to
these original counts. Second, the most widely used methodology for identifying differentially
expressed genes from RNA-seq data model the counts in a way that sampling error from counting
process (such as Poisson) and variation in gene expression () are taken into account (Robinson
and others, 2010; Anders and Huber, 2010). Providing an offset allows direct application of these
existing methods which take counts as input and can be easily adapted to adjust for offsets.
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Normalization cqn

(Hansen, Irizarry and Wu (2012). Biostatistics)
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Mean Variance relationship
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Mean variance relationship

Seq technology

true expression

total variability = technical variability
Var [ygi] = Mgi
Total CV?2 = Technical CV2
Total CV? = ;%
gi

biological variability

Pg * /‘f;i

biological CV?
Pg
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Sources of variability in a sequencing experiment

biological variability
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Sources of variability in a sequencing experiment
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Sources of variability in a sequencing experiment
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Sources of variability in a sequencing experiment
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Sources of variability in a sequencing experiment
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Improved model for RNA-seq data

( Yig ~ NB(uig, dig)
Ihig = AigSig
log(pig) = mig
N
Nig = kZ::l XikBgk + log Sig

@ ygi:count for gene g of subject i
@ Xx;c: predictor variabele k evaluated for subject i
@ [g: effect for predictor variable k and gene g

o S, effective library size for gene g of subject /
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Estimating overdispersion

For every single gene: not enough data
Common dispersion for all genes
Trended dispersion

Gene wise, EB shrinkage to a common (trended) dispersion:
Borrow strength across genes (McCarthy & Smyth (2012).
Nucleic Acid Research)
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Common Trended Genewise

Sample Quantiles
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[1. 3. Statistical inference

e Asymptotic statistical tests exist to test if (contrasts of the)
parameters of the GLM are different form zero.

o Implemented in edgeR and DESeq?2.

@ Again we have to correct for multiple testing !!!
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