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Francisella tularensis experiment

Pathogen: causes tularemia

Metabolic adaptation key for intracellular life
cycle of pathogenic microorganisms.

Upon entry into host cells quick phasomal
escape and active multiplication in cytosolic
compartment.

Francisella is auxotroph for several amino
acids, including arginine.

Inactivation of arginine transporter delayed
bacterial phagosomal escape and
intracellular multiplication.

Experiment to assess difference in proteome
using 3 WT vs 3 ArgP KO mutants
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Summarized data structure

o WT vs KO
@ 3 vs 3 repeats

@ 882 proteins

Protein WT, WT, WTj KO, KO, KO3
gi|118496616 29.83 29.77 29.91 29.70 29.86 29.80
gi|118496617 31.28 31.23 31.51 31.30 31.51 31.76
gi|118496635 32.39 32.27 3224 3225 3214 3222
gi|118496636 30.74 30.54 30.64 30.65 30.49 30.60
gi|118496637 29.56 29.35 29.56 29.30 29.24 29.14
gi|118498323 31.38 30.52 30.62 31.04 27.38 NA
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Data T-test

Hypothesis testing: a single protein

A=2Z —Zp

Signal
A
z S Ty=—
SeA
« /\l
Eh signa
T, = 222
2 .
£ Noise
If we can assume equal
<] variance in both
treatment groups:
° T T T T T 1 1
6 8 I 10Ev 12 14 seA — SD al —"_ i
* 1 m

lieven.clement@ugent.be



Data T-test

Hypothesis testing: a single protein

Francisella (gi|118497015)

S _log,FC —14
0 —— t= = =-11.9
S 7 — seIog2 Fe 0.118
9o Is t = —11.9 indicating that
= 8 there is an effect?
R How likely is it to observe
—— t = —11.8 when there is no
| ; effect of the argP KO on the
wr D8 protein expression?
Treatment
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein

o On average the protein abundance in WT is different from that
in KO
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein
o On average the protein abundance in WT is different from that
in KO
o But, we will assess it by falsifying the opposite: null
hypothesis Hy
o On average the protein abundance in WT is equal to that in
KO
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Two Sample t-test

data: z by treat
t = -11.449, df = 4, p-value = 0.0003322
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-1.031371 -1.691774
sample estimates:
mean in group D8 mean in group WT
29.26094 30.62251

@ How likely is it to observe an equal or more extreme effect than the
one observed in the sample when the null hypothesis is true?

@ When we make assumptions about the distribution of our test
statistic we can quantify this probability: p-value. The p-value will
only be calculated correctly if the underlying assumptions hold!

@ When we repeat the experiment, the probability to observe a fold
change more extreme than a 2.6 fold (log, FC = —1.36) down or up
regulation by random change (if Hp is true) is 3 out of 10.000.

@ If the p-value is below a significance threshold o we reject the null
hypothesis. We control the probability on a false positive result
at the a-level (type | error)
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Hypothesis testing: a single protein
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Multiple hypothesis testing

Multiple hypothesis testing
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Multiple hypothesis testing

Problem of multiple hypothesis testing

o Consider testing DA for all m = 882 proteins simultaneously
o What if we assess each individual test at level o?

— Probability to have a false positive among all m simultatenous
test >>> a =0.05

Suppose that 600 proteins are non-DA, then we could expect

to discover on average 600 x 0.05 = 30 false positive proteins.
Hence, we are bound to call false positive proteins each time

we run the experiment.
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Multiple hypothesis testing

FDR: False discovery rate

o FDR: Expected proportion of false positives on the total
number of positives you return.

@ An FDR of 1% means that on average we expect 1% false
positive proteins in the list of proteins that are called
significant.

@ Defined by Benjamini and Hochberg in 1995

FP Pr(|T| > tihres| Hi
FDR(ltthresD = E|: :| — 70 r(| ‘— th es‘ 0)

FP 4+ TP Pr(|T| > tthres)
]' X ptthres
FDRBH(| tehres|) = ot

o FDR adjusted p-values can be calculated (e.g. Perseus, R, ...)
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Multiple hypothesis test

Ordinary t-test

-log10(p-value)




Moderated statistics

Moderated Statistics
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Moderated statistics

Problems with ordinary t-test

—log10(p-value)

Ordinary t-test
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Moderated statistics

Problems with ordinary t-test

Original t—test

log2 FC
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Moderated statistics

A moderated t-test

A general class of moderated test statistics is given by

Vo1 — Yo
(%)

where §g is a moderated standard deviation estimate.

mod __
T =

@ empirical Bayes theory provides formal framework for borrowing
strength across genes,

@ Implemented in popular bioconductor package limma

& _ ngé% + dosg
& dg + do ’

@ S2: common variance (over all proteins)

@ Moderated t-statistic is t-distributed with dy + d, degrees of
freedom.

— Note that the degrees of freedom increase by borrowing strength
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Moderated statistics

Shrinkage of the variance with limma
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Moderated standard deviation
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Ordinary t-test Moderated t-test
<~ o <~ o
T ™4 - T ™4
= =
i i
=] ;=]
S - S -
i=J =2
o o
T T
“ o “ o
o+ oo
T T T T T T T T T T
-3 -2 -1 0 1 -3 -2 -1 0 1
log2 FC log2 FC

statOmics, Ghen i lieven.clementQu



Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Original t-test Moderated t-test
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Moderated statistics

log-fold-change
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Peptide-based models

Peptide-based models
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Peptide-based models

MS measures abundances at peptide level, but we have to
assess differences at the protein level

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS)

° Pseudoreplication' Median Summarization
@ Strong peptide effect R s
@ Unbalanced peptide § o |
identification 5 i
@ Summarization bias o
o Different precision of protein —
0 5 10 15 20 25 30

level summaries

Peptide Sequence
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MSqRob workflow

Linear model on normalized and log2 peptide intensities (ygsp)

Valsp = Bgroup +,B/Iab + u:amp + ‘ﬁgep + €sp
protein-level

o 5P and Bj* related to spike-in

and lab

@ random sample effect
ug™ ~ N (0,02)
— Addresses pseudo-replication

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS)
Median Summarization

31

22
L

-
peptide-level 5 &

o peptide specific effect 75" ¥

o within sample error ¢, ~ N (0,07) 2
Estimation S % n 5 2 %

Peptide Sequence
@ Outliers — robust regression

@ Penalisation on g3tredt
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Peptide-based models

Linear model on normalized and log2 peptide intensities (ygsp)
Velsp = Bgroup + /Bllab + u:amp + Aggep + €sp

o Fitting this model is computationally cumbersome
Inference with linear mixed models is more difficult
@ We therefore use a two step procedure to fit the model:
@ Fit peptide specific model to summarize at peptide intensities
into protein level summaries at the sample level

_ sam Pe
Vep =25 P + BpF +e5p

@ Fit linear model to assess effect of treatment

Zs = Xsﬁ + €5

€s lumps between and within sample variance.

Fit both models using robust regression

Advantage: much faster, more straightforward to explain
Disadvantage: difference in precision of protein summaries is
not accounted for

Performance is very similar to peptide level model
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Peptide-based models Robust regression

Robust regression

16

— OLS °
—— M-estimation




Peptide-based models Robust regression

Robust regression

@ Robust fit minimises the maximal bias of the estimators
o Cl and statistical tests are based on asymptotic theory
o If € is normal, the M-estimators have a high efficiency!
o ordinary least squares (OLS): minimize loss function

n

> (yi—x/ B)

i=1

M-estimation: minimize loss function

S0 (v~ x78)
i=1

with
o pis symmetric, i.e. p(z) = p(—2z)
o p has a minimum at p(0) = 0, is positive for all z # 0
o p(z) increases as |z| increases

statOmics, Ghent University lieven.clement@ugent.be



Peptide-based models Robust regression

The estimator 5’ is also the solution to the equation
n
> W(y —xiB) =0,
i=1

where WV is the derivative of p. For 3 possessing the robustness
property, W should be bounded.

Example: least squares A
p(z) = 22, and thus V(z) = 222—2 (unbounded!). 3 is the solution
of

ZZx TB)=0or B=(XTX)"1Xy

with X = [x1...xg]"
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Peptide-based models Robust regression

When a location and a scale parameter, say o, have to be
estimated simultaneously, we write

n

PR : yi—x/B & yi—x/ B

(B,6) = ArgMing, > p (=== ) and 3 W (=—=] =0.
T

Define u; = y’Tx’ﬁ The last estimation equation is equivalent to

n

Z w(uj)uj =0,

i=1
with weight function w(u) = W(u)/u. This is the typical form that
appears when solving the iteratively reweighted least squares
problem,

n

(B,6) = ArgMin, Z W(ufk_l)) (u,(k))z ,

i=1

where k represents the iteration number.
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Peptide-based models Robust regression

Some Examples of Robust Functions

Name p(x) yr(x) wix)

if |x|< k /2 X 1

b
Huber {if|x|> k {k(|x\—k/2) ksgn(x) L
g 2 (A Al x 1
Fair c (16 log(lJr C)) :@- :Er
Cauchy %log(lirz(x/rjz) m 1+(_,\1’1c)r
- : x x 1

Geman-McClure = —;(sz) —g(sz)
Welsch %’ (1 —exp (— (f)z ) rexp (—(x/c)?) exp (—(x/c)?)

‘ 2 3 2 22
Tukey %f|.1c|§ e T (1 —(1=(x/c)?) ) x(1—(x/c)?) (1=(x/c)?)

if |x|> e < 0 0
Andrews 4 T HISHT F2(1 — cos(x/k)) Jesin(x/k) =em

if x| > kr 22 0 0

PhD thesis Bolstad 2004
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Peptide-based models Robust regression

The p functions
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Peptide-based models Robust regre
Common W-Functions
L2 Huber Fair
i il i
® e 24 iy
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Figure 4.2: The v functions for some common M-estimators.
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Peptide-based models Robust regression

Corresponding Weight Functions

L2 Huber Fair

ity
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Figure 4.3: The weight functions for some common M-estimators.

PhD thesis Bolstad 2004
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Peptide-based models Robust regression

Robust estimation using observation weights (Ex I:
LM-Sqg-Rob)

o Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...

residual

-2
L

weight
04 05 06 07 08 09 10
. . . . . . .

-4
L

T T T T T T T T T T T
-4 -2 0 2 4 16 17 18 19 20 21
std. residual fitted
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Experimental Design

Experimental Design
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Experimental Design

Power?
A= fpl — Zp2
A

Tg=—

Signal SeA

37 signal

T = ——=

« Noise

If we can assume equal
s | variance in both
treatment groups:

noise

1 1
sen = SDy/ —+ —
g npm
s ) 0 ] )
log v — Design: if number of

bio-repeats increases we
have a higher power!
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.

o Assess difference in power between 3vs3, 6vs6 and 9vs9
patients.

statOmics, Ghen rsity lieven.clement@ugent.be




Blocking

mental Design Blocking

Lab 2 Lab3

== O=5

x3 x3
Color variable 7!
condition -
MDS plot after full preprocessing !
" Plot MDS points
Plot MDS labels
037 X6A_8
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« XRAa8s
T o1
5
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S 00 X6A_7
P
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Experimental Design Blocking

Experimental Design:
Blocking
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Experimental Design Blocking

Sources of variability

2 _ 2 2 2 2
0 = Opjo + Olab + O extraction + Orun +...

@ Biological: fluctuations in protein level between experimental
units.

@ Technical: lab effect, time effect, plasma extraction, MS-run,
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Experimental Design Blocking

a No blocking b BIc::cL:IIT:S?eon Sampling schemes
Completely Complete

" 405 f . Incomplete block
_'é -6 ? - randomized randomized block
+ 405 6 | +05 6 replicates 6 replicates 4 replicates
a$= _045$=. w05 (Oll6l[e][6/l6/6 666666 (666666
+0.5 +0.5 ) 666)/66 6 6666606 606066060
a$= & 9 10 11 @ 9 1011 g [6//6l[6]/6//6 066668 4w Technical
-0.5 Response Response 1 2 3 repeats

Figure 2 | Blocking improves sensitivity by isolating variation in samples
that is independent from treatment effects. (a) Measurements from
treatment aliquots derived from different cell cultures are differentially
offset (e.g., 1, 0.5, -0.5) because of differences in cultures. (b) When
aliquots are derived from the same culture, measurements are uniformly
offset (e.g., 0.5). (c) Incorporating blocking in data collection schemes.
Repeats within blocks are considered technical replicates. In an incomplete
block design, a block cannot accommodate all treatments.

Nature Methods 2014, 11(7) 699-700.
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Experimental Design Blocking

Effect of treatment and lab: strong blocking

B3
o Unwanted variability is < - e
often present (e.g. batch, w s
lab period, cage, ...) N
e Exploit it A
¢}
o Randomize all treatment 2 A;
£ 7 B1
within each block 3 81
Clal
o lsolate between-block o | a M
variability from FC ‘ .
estimates in the data 83
. 3 eg2
analysis ‘ ; ; ; ‘ ‘ ‘
-15 -1.0 -0.5 0.0 0.5 1.0

Leading logFC dim 1
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Experimental Design Blocking

Intermezzo: Power gain of blocking
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Experimental Design Blocking

Intermezzo: Power gain of blocking
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Experimental Design Blocking

Intermezzo: Power gain of blocking
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Experimental Design Blocking

Power gain of blocking

o Completely randomized design: 14 people, 7 baseline BP, 7
BP upon treatment.

@ Randomized complete block desigh: 7 people, 7 baseline BP
and BP upon treatment.
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(3]

ental Design Blocking

Power gain of blocking

Completely randomized design

Call:
Im(formula = bp ~ treat, data = captoprilCRD)

Residuals:
Min 1Q Median 3Q Max
-26.714 -11.643 -3.929 11.179 30.857

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 179.143 7.036 25.461 8.19e-12
treatT -23.429 9.950 -2.355 0.0364

(Intercept) **x

treatT *

Signif. codes:

0 7%x%’ 0.001 %> 0.01 ’%’ 0.05 .7 0.1 * 1

Residual standard error: 18.62 on 12 degrees of freedom
Multiple R-squared: 0.316,Adjusted R-squared: 0.259
F-statistic: 5.544 on 1 and 12 DF, p-value: 0.03641
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Exp ental Design Blocking

Power gain of blocking

Randomized complete block design

Call:
Im(formula = bp ~ treat + patient, data = captoprilRCB)

Residuals:
Min 1Q Median 3Q Max
-8 -3 0 3 8
Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 213.000 5.442 39.138 1.86e-08
treatT -15.000 3.848 -3.898 0.008004
patientp2 -38.500 7.200 -5.348 0.001749
patientp3 -29.000 7.200 -4.028 0.006896
patientpd -47.000 7.200 -6.528 0.000617
patientp5 -48.500 7.200 -6.737 0.000521
patientp6 -45.000 7.200 -6.250 0.000777
patientp7 -29.000 7.200 -4.028 0.006896

(Intercept) ***
treatT **
patientp2 *k
patientp3 **
patientpd  kx*
patientps  kx*
patientp6  xkx*
patientp7 *k

Signif. codes:

0 7#x%’ 0.001 ’**> 0.01 ’x’ 0.05 .7 0.1 * 1
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Exp ental Design Blocking

Power gain of blocking

Randomized complete block design

Call:
Im(formula = bp ~ treat + patient, data = captoprilRCB)

Residual standard error: 7.2 on 6 degrees of freedom
Multiple R-squared: 0.9317,Adjusted R-squared: 0.8519
F-statistic: 11.69 on 7 and 6 DF, p-value: 0.00404
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ental Design Blocking

Power gain of blocking

Randomized complete block bad analysis

Call:
Im(formula = bp ~ treat, data = captoprilRCB)

Residuals:
Min 1Q Median 3Q Max
-19.143 -11.643 -1.143 5.357 36.857

Coefficients:
Estimate Std. Error t value
(Intercept) 179.143 6.694 26.763
treatT -15.000 9.466 -1.585
Pr(>ltl)
(Intercept) 4.55e-12 **x*
treatT 0.139

Signif. codes:
0 2#*x’ 0.001 ’*%’ 0.01 %’ 0.05 *.’
0.1 71

Residual standard error: 17.71 on 12 degrees of freedom
Multiple R-squared: 0.173,Adjusted R-squared: 0.1041
F-statistic: 2.511 on 1 and 12 DF, p-value: 0.1391
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