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1 The study of gene expression

• The first part of this course focussed on proteomics, studying the concentration of proteins in biological
samples. We have seen that identification of proteins and measuring their respective concentrations
are extremely challenging, leading to many technological and statistical challenges in order to interpret
these data.

• In the second part of the course, we will focus on measuring gene expression, i.e., measuring the
concentration of mRNA molecules, that may eventually be translated into proteins, but may also have
functions on their own.

include_graphics("./images_sequencing/centralParadigm.png")
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Figure 1: Central Paradigm of Biology: a gene, a specific region in the DNA, is first transcribed into RNA
and then into proteins. Note, that for RNA-genes the RNA molecule is the end product itself, which is
referred to as non-coding RNA (ncRNA) (Source: Wikipedia)
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1.1 Alternative splicing

include_graphics("./images_sequencing/alternative_splicing.png")

2 Sequencing technology

• Measuring mRNA molecules typically happens through sequencing.
• The technology continues to evolve at an incredible speed. The data output of so-called ‘next genera-

tion’ sequencing machines has more than doubled each year! Simultaneously, the cost of sequencing (in
terms of $ per Gigabase) is dropping. Each year, we’re able to sequence more for less money, providing
more information, as well as also computational and statistical challenges.

• This tremendous technological revolution has revolutionized biology, and genomic sequencing is now a
core component of the modern-day biologist’s toolkit.

• The large majority of sequencing data is generated using sequencing-by-synthesis using machines pro-
duced by the company Illumina. While new players such as Pacific Biosciences and Oxford Nanopore
have entered the scene, these are typically most useful for (but not limited to) DNA sequencing rather
than gene expression studies, owing to their capability of sequencing long molecules.

2.1 From sample to data analysis

2.2 Illumina Sequencing

2.3 Single vs paired end

2.4 The sequencing workflow with Details

Library preparation steps

1. First, the biological samples of interest are collected. Owing to the maturity of different protocols
for sequencing, several types of biological input samples are amenable to sequencing, such as frozen
tissues or FFPE-preserved samples.

2. The mRNA molecules from our sample are captured. This typically involves cell lysis in order
to release the mRNA molecules from within the cells. The mRNA molecules are most often captured
using (i) polyA-capture to select for polyadenylated RNA, or (ii) ribosomal depletion, where ribosomal
and transfer RNAs are depleted, and so also non-polyA-mRNA molecules may be captured, such as
long non-coding RNAs. In the case of ‘targeted sequencing’, where relevant molecules are of main
interest (e.g., a gene panel), these targets can be specifically targeted in this step.

3. Fragmentation of captured molecules. The captured molecules are fragmented, either chemically or
mechanically. The appropriate size of fragments depends on the sequencing machines, but is often in
the range of 300 - 500bp.

4. Reverse transcription. Current dominant sequencing machines only sequence double-stranded DNA
molecules. Therefore, in order to measure single-stranded mRNA, we must first reverse transcribe these
molecules to a double-stranded complementary (cDNA) molecule.

5. Adapter ligation. Adapters are oligonucleotides (short sequences of nucleotides) that are platform-
specific sequences for fragment recognition by the sequencing machines. These are added either to the
3’ or 5’ end of the cDNA molecules or used as primers in the reverse transcription reaction. The final
cDNA library consists of cDNA inserts flanked by an adapter sequence on each end.

6. PCR amplification. To increase concentration, several PCR reactions are performed.
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Figure 2: Alternative splicing allows a single gene in Eucaryotes to code for multiple proteins. During
alternative splicing particular exons of a gene may be included or excluded from the premature messenger
RNA when producing the messenger RNA (mRNA) from that gene. Hence exons can be joined in different
combinations, leading to different (alternative) mRNA strands. The proteins translated from alternatively
spliced mRNAs thus differ in their amino acid sequence and, often, in their biological functions (Source:
Wikipedia)
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Figure 3: Figure: The data output revolution of sequencing machines. Image from Illumina documentation.

Figure 4: Figure: The sequencing workflow. Image adapted from Van den Berge et al. (2019).
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Figure 5: Figure: Illumina sequencing steps 1-6 (Source: Illumina)

6



Figure 6: Figure: Illumina sequencing steps 1-6 (Source: Illumina)
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Figure 7: Figure: Single vs paired end sequencing. In contrast to single-end sequencing, paired-end se-
quencing allows users to sequence both ends of a fragment (Image adopted from Zhernakova et al., 2013,
doi.org/10.1371/journal.pgen.1003594).
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7. Loading the amplified cDNA library on the sequencing machine. Find out how sequencing-by-
synthesis works through this video. Note that the video shows paired-end sequencing, where a number
of basepairs are sequenced at each end of the fragment. All previous steps together are described as
‘sample prep’ in that video.

Figure 8: Figure: The sequencing workflow. Image adapted from Van den Berge et al. (2019).

Note that several variants of library preparation protocols are available. The most important ones are:

• Single-end vs paired-end sequencing: In single-end sequencing, a single end (3’ or 5’) of the cDNA
fragment is sequenced. In paired-end sequencing, both ends are sequenced, and depending on the size
of the fragment, the reads may or may not overlap.

• Strand-specific protocols: Some library preparation protocols allow measuring strand specificity, where
the strand information (i.e., sense/antisense) of each read can be preserved.

2.5 The sequencing output files

• The typical output of a sequencing machine we will be working with are FASTA or FASTQ files for
each sample. Each of these files are several gigbases large and contain millions of sequences, which we
will call reads. For paired-end sequencing, there are two files for each sample, one for each end of the
sequenced fragments.

• The difference between a FASTA file and a FASTQ file, is that while FASTA files only store the results
of base calls (sequences), FASTQ files also store the quality score of each base call (i.e., each called
nucleotide), which can be useful in downstream analyses such as mapping or variant calling.

• A FASTQ file contains four lines for each sequenced read:

1. Sequence identifier line, starting with @.
2. The sequence.
3. Another sequence identifier line, now starting with +.
4. Quality scores.
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FASTQ format - sequence ID line

• D7MHBFNI - unique instrument name 
• 202 - run ID 
• D1BUDACXX - flowcell ID 
• 4 - flowcell lane 
• 1101 - tile number within lane 
• 1340 - x-coordinate of cluster within tile 
• 1967 - y-coordinate of cluster within tile 

• 1 - member of pair (1 or 2). Older 
versions: /1 and /2 

• Y/N - whether the read failed quality 
control (Y = bad) 

• 0 - none of the control bits are on 
• CATGCA - index sequence (barcode)

Figure 9: Figure: One read in a FASTQ file. Slide courtesy by Charlotte Soneson.
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As you’ll have noticed, the base call quality scores are encoded as ASCII characters for efficient storage.
These ASCII characters can be converted into integers called Phred scores, which are logarithmically related
to the probability of an erroneous base call.

2.5.1 Quality score

The Phred Score is a quality score
𝑄 = −10 log10 𝑝

, with p the probability on an incorrect base call

Phred Score Probability on incorrect base call Base call accuracy
10 1/10 90%
20 1/100 99%
30 1/1000 99.9%
40 1/10000 99.99%
50 1/10000 99.999%

Phred score encoded as an ASCII letter. E.g. Phred+33:

Phred0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Phred
+
33

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

ASCII! ” # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I

3 Preprocessing of raw sequencing data

After sequencing, we typically do a quality control (QC) check to verify the quality of the samples. During
QC check, aberrant samples due to e.g. degraded mRNA can be detected.

The sequencing reads on their own contain a lot of information, but are most useful if we would be able to
assign sequencing reads to genomic features (genes, exons, transcripts, etc.), i.e., for each sequencing read
we will try to derive the (set of) feature(s) that could have plausibly produced the fragment through the
process of gene expression. This process is called mapping. Most often we map reads to genes.

3.1 Quality control

During quality control, diagnostic plots are created for each sample in order to determine its quality. The
most popular QC tool for bulk RNA-seq data is FastQC. If many samples are sequenced, then MultiQC can
be used to aggregate the QC checks across samples in a conveniently organized overview.

The FastQC website provides interesting example reports for us to look at and compare against. Here are
example reports of high-quality Illumina data and low-quality Illumina data.
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Figure 10: Figure: An updated sequencing workflow, including sequencing and mapping. Image adapted
from Van den Berge et al. (2019).

3.2 Read Trimming

• Read Trimming

– Adaptor sequence
– Bar code
– (deteriorating bases at the end of reads)
– often already done by the sequencing provider.
– remaining polyA tails

• Read filtering

– low quality reads
– PhiX reads (should be removed already by sequence provider) in

– RNA-seq never remove duplicates because they can occur for highly expressed transcripts

• Perform fastQC again

3.3 Mapping

• Mapping is a critical step in the interpretation of RNA-seq data, where we are attributing reads to
genomic features.

• Allows us to measure how strong a feature such as a gene is expressed: the number of reads mapping
to a gene serve as a proxy for how high that gene has been expressed in the sample.

• While this opens the door to many opportunities, mapping is hard.
• We are typically unable to assign each individual read uniquely to one specific gene; some

reads cannot be unambiguously mapped and are compatible with multiple genes. These reads are said
to be ‘multi-mapping’.
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Finally, a note on terminology. In this text we will use the words ‘read’ or ‘fragment’ (referring to the
fragmented mRNA molecule being sequenced) to designate a datum, note that this could be either a single
read (in single-end sequencing) or a read pair (in paired-end sequencing). The literature may also use these
words interchangeably, although ‘fragment’ seems better at avoiding ambiguity between single-end reads and
paired-end read pairs.

3.3.1 Reference files

• The alignment most often relies on a reference genome of the species, which can be considered a
‘representative example’ of the genome sequence of that species. Reference genomes are contiuously
updated and released periodically.

• Reference genomes can be freely downloaded from several providers, for example Ensembl or Gencode.
• Along with a reference genome, an annotation GFF or GTF file defines the coordinates of specific

genomic features.
• While here we will focus on reference-based alignment, i.e., alignment where a reference genome or

transcriptome is available, note that a de novo construction of a reference transcriptome is also possible,
where the reference may be constructed from the observed sequencing reads.

www.ensembl.org/info/data/ftp/index.html

The human reference genome

https://www.gencodegenes.org/human/

Figure 11: slide courtesy Charlotte Soneson

• More recently, mapping of RNA-seq data occurs more often against a reference transcriptome,
which is a reference file containing the sequences all known isoforms of a particular species, e.g., using
kallisto or Salmon.

• The set of spliced transcripts is much smaller than the entire genome, and therefore mapping against
a reference transcriptome is typically fast and memory efficient.

• However, it has been noted that mapping against a reference transcriptome may also introduce spurious
expression for genes that are not expressed. These observations can be explained by intronic reads
that share some sequence similarity with transcripts, and could map to spliced transcript sequences.
Recent methods, such as alevin-fry, avoid this by expanding the reference transcriptome to also include
intronic sequences.
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Figure 12: Figure: A reference sequence of human chr1.
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Genomic locations of genes and other features

www.ensembl.org/info/data/ftp/index.html https://www.gencodegenes.org/human/

Figure 13: slide courtesy Charlotte Soneson

3.3.2 Alignment-based workflows

• Traditionally, alignment-based workflows have been used to map reads, where one tries to find the
exact coordinates a read maps to on the reference genome or the reference transcriptome.

• Note that due to alternative splicing, reads do not necessarily map contiguously on a reference genome,
as a read can overlap with a splicing junction, where an intron has been excised. When mapping against
a transcriptome, however, reads should be mapping contiguously.

• A main challenge in spliced alignment against a reference genome is the proper alignment of reads that
span a splice junction, especially when these junctions are not annotated a priori. Indeed, in spliced
alignment reads can be split at any nucleotide, and the corresponding subsequences can map several
thousands of basepairs apart. Meanwhile, the main challenge in unspliced alignment to a transcriptome
is the redundant sequence among related transcripts in the transcriptome, which often leads to a high
multi-mapping rate (i.e., reads that cannot be unambiguously assigned to a single transcript).

• Spliced alignment against a genome is therefore computationally a much harder task. Since the tran-
script sequences are already spliced when aligning to a reference transcriptome, reads should align
contiguously, and many of the computationally expensive steps and heuristics can be avoided, there.

3.3.3 Alignment-free workflows

• Modern approaches avoid mapping each fragment individually (i.e., do not attempt to find the exact
coordinates of a read’s origin), and instead posit a probabilistic model where transcript abundances are
typically defined using its constituent 𝑘-mers. These methods are sometimes referred to as lightweight.

• A 𝑘-mer is a short sequence of nucleotides of length 𝑘. The space of possible 𝑘-mers and the corre-
sponding transcripts can be precomputed in advance using the reference transcriptome, providing a
computational advantage as it only needs to be computed once.

• For each fragment, the transcripts its 𝑘-mers are compatible with is searched for using an indexed
(efficiently searchable) transcriptome. The set of compatible transcripts is called the ‘𝑘-compatibility
class’, ‘equivalence class’ or ‘transcript compatibility class’ of the fragment.

3.4 Abundance quantification

Given a set of mappings, using either alignment-based or alignment-free workflows, the estimation of expres-
sion of a gene/transcript/exon may occur in several ways.
Counting:
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Figure 14: Figure: An example GTF file.

16



Figure 15: Figure: Unspliced and spliced alignment. Figure from Van den Berge et al. (2019).
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Figure 16: Figure: Overview of kallisto, image from Bray et al. (2016).
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Figure 17: Figure: Overview of kallisto, image from Bray et al. (2016).

• In alignment-based workflows, one could do a direct counting of fragments at the gene-level, counting
the number fragments mapping to each gene. This has been the dominant approach for the first decade
of RNA-seq data, often obtained using reference genome alignments.

• Many heuristic choices need to be made: Do we count a fragment as soon as it intersects with the
gene’s coordinates, or do we require the full fragment to map to the gene? Do we count intronic reads?
Do we count multi-mapping reads?

Estimation:

• Abundance quantification is more recently starting to shift from counting towards using statistical
models to estimate the expression counts for a feature, which in this case is typically a transcript.

• This approach is amenable to alignment-free workflows, since the number of fragments in each equiv-
alence class are sufficient statistics for the abundance quantification, meaning that they contain all
information needed to estimate the parameters of the statistical model, and hence the feature-level
abundances. Since the expression counts in this case are estimated, they are not necessarily integer
counts, and will be referred to as ‘estimated counts’.

• In order to derive these, the EM-algorithm is often used, although other approaches have been used
by tools like Salmon. A big advantage of the estimation approach is that it probabilistically assigns
fragments to transcripts, thereby automatically dealing with multi-mapping reads. The total number of
fragments mapping to each transcript is then the sum of all fragment-level probabilities to be assigned
to that respective transcript.

3.4.1 Abundance metrics

• For simplicity, we have only been talking about feature-level counts as in sums of fragments. However,
this is merely one metric that can be used as a proxy for expression, and several others exist.

• Most of these were introduced to attempt to make the abundances more comparable across samples or
features, as compared to the simple counts. These mainly serve to correct for technical biases such as
transcript length and sequencing depth, both of which have significant impact on the observed counts.

19



Figure 18: Figure: Gene- and exon-level read counting. Image adapted from Charlotte Soneson.
20



Figure 19: Figure: Abundance quantification using the EM algorithm. Figure from Van den Berge et al.
(2019).
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• Indeed, for a gene with the same mRNA concentration in two samples, sequencing one sample deeper,
will on average result in a higher count.

• Likewise, for two transcripts with the same mRNA concentration but different transcript lengths, one
will tend to observe more fragments from the longer transcript due to the fragmentation step in the
RNA-seq protocol, where longer transcripts can be split into more fragments of appropriate length.

Below we introduce several relevant abundance metrics, but note that most data analysis methods we will
discuss in this course will work with (estimated) counts. In what follows, let 𝑌𝑓𝑖 denote the random variable
representing the expression counts of feature 𝑓 in sample 𝑖 (obtained either as a simple sum of fragments or
estimated using lightweight approaches), and let 𝑁𝑖 = ∑𝑓 𝑌𝑓𝑖 denote the sequencing depth of sample 𝑖.

• Counts per million (CPM) are the counts one could expect to observe if the sample was sequenced
to a depth of one million.

𝐶𝑃𝑀𝑓𝑖 = 𝑌𝑓𝑖
𝑁𝑖

106

• Transcripts per million (TPM) refers to the concentration or proportion of your feature in the
sample. TPMs take into account the length of the feature, which is often reformulated into an effective
length 𝑙(𝑒𝑓𝑓)

𝑓𝑖 , relating to the number of possible start sites that a feature may have in order to generate
fragments of a typical length observed in your dataset. This typical length is often calculated using
the observed fragment length distribution from the data and defined as

𝑙(𝑒𝑓𝑓)
𝑓𝑖 = 𝑙𝑓 − ̂̄𝐹 𝑖 + 1,

where 𝑙𝑓 is the total length of a feature in terms of number of nucleotides, and ̂̄𝐹 𝑖 is the estimated
average fragment length in sample 𝑖. We can use this to define

𝑇 𝑃𝑀𝑓𝑖 = 𝑌𝑓𝑖

𝑙(𝑒𝑓𝑓)
𝑓𝑖

⎛⎜⎜
⎝

1
∑𝑓

𝑌𝑓𝑖
𝑙(𝑒𝑓𝑓)
𝑓𝑖

⎞⎟⎟
⎠

106.

Note that the first part of the right-hand-side (RHS), 𝑌𝑓𝑖
𝑙(𝑒𝑓𝑓)
𝑓𝑖

is the expression counts normalized for the
length of the feature. This measure, however, is still affected by the sequencing depth, which is then
alleviated by dividing by the sum of the length-normalized counts across all features, i.e., ∑𝑓

𝑌𝑓𝑖
𝑙(𝑒𝑓𝑓)
𝑓𝑖

.
TPMs hence normalize for the feature length as well as sequencing depth.

3.4.2 The final countdown

Once abundances have been quantified, the (estimated) counts are typically stored in a count matrix, with
genes spanning the rows and samples spanning the columns. This count matrix forms the basis of most
downstream analyses to interpret RNA-seq data, and it will be the main object we will be working with in
the following lectures.

4 References
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Figure 20: Figure: An updated sequencing workflow. Image adapted from Van den Berge et al. (2019).
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