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In this lecture we will introduce the main principles of working with count data, and how to model these
using generalized linear models (GLMs). We focus on introducing the concept of generalized linear models,
and how they can be applied to genomics data analysis.

1 The Poisson distribution

• The Poisson distribution is a typical count distribution that is generally popular and fairly easy to
work with. It is defined by a single parameter: its mean 𝜇. For a Poisson distributed random variable
𝑌𝑖 with observations 𝑖 ∈ {1, … , 𝑛}, its variance is equal to its mean. That is, if

𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇)
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, then

𝐸(𝑌𝑖) = 𝑉 𝑎𝑟(𝑌𝑖) = 𝜇.

• This immediately shows an important feature of count data: the mean-variance relationship. In-
deed, in count data, the variance will always be a function of the mean.

• This is quite intuitive. Consider the following example. You have two bird cages, where in one bird
cage there are 10 birds, while in the other there are 100 birds. You let a sample of people look to the
number of birds in either one of the cages. It seems unlikely that a person in front of the 10-bird cage
would come up with an estimate of 3, while it seems likely that someone in front of the 100-bird cage
would come up with an estimate of 80. Even though the difference from the true value is the same,
the exact value has an impact on the plausible deviation around it.

set.seed(11)
y1 <- rpois(n=500, lambda=10)
y2 <- rpois(n=500, lambda=100)

par(mfrow = c(1,2))
qplot(y1, main="Poisson(10)", geom = "histogram", binwidth=.5,center=0)
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1.1 The Poisson distribution in RNA-seq

• In RNA-seq, technical replicates represent different aliquots of the same sample being sequenced re-
peatedly. The underlying true expression of a gene can hence safely be assumed to be equal across
these technical replicates.

• Marioni et al. (2008) have shown that, for most genes, the distribution of observed gene expression
counts across technical replicates follow a Poisson distribution. A small proportion of genes (∼ 0.5%)
do not follow this Poisson model, however, and actually show evidence for ‘extra-Poisson variation’.

1.2 Relative uncertainty for Poisson distributed random variables

Take a minute to consider the following question:

• Suppose that we have a solid tumor sample from a cancer patient, as well as a sample of surrounding
healthy tissue. For each sample, we have three technical replicates at our disposal. Let 𝑌𝑔𝑟𝑡 denote the
observed gene expression values of gene 𝑔 in replicate 𝑟 ∈ {1, 2, 3} from tissue 𝑡 ∈ {0, 1}, where 𝑡 = 0
denotes healthy tissue and 𝑡 = 1 denotes tumoral tissue.

• We then know that the random variables 𝑌𝑔𝑟0 and 𝑌𝑔𝑟1 follow a Poisson distribution, and we would
estimate its mean as ̄𝑌𝑔0 = 1

3 ∑3
𝑟=1 𝑌𝑔𝑟0 and ̄𝑌𝑔1 = 1

3 ∑3
𝑟=1 𝑌𝑔𝑟1, respectively.

• Similar, for another gene 𝑘, we observe 𝑌𝑘𝑟𝑡, and estimate ̄𝑌𝑘0 and ̄𝑌𝑘1 correspondingly.
• Now suppose that 𝛽𝑘 = ̄𝑌𝑘1/ ̄𝑌𝑘0 = 5, but also 𝛽𝑔 = ̄𝑌𝑔1/ ̄𝑌𝑔0 = 5, i.e., the two genes have the same

average expression ratio (also often called a fold-change) across samples. However, they are differently
expressed as ̄𝑌𝑘1 = 100, and ̄𝑌𝑔1 = 10 (making ̄𝑌𝑘0 = 20, and ̄𝑌𝑔0 = 2).
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greater than other sequencing technologies, making it particu-
larly attractive for expression studies. Our study also differs from
previous reports in its assessment of variability across technical rep-
licates for a single sample, and direct comparison of the sequence-
based results with those from a state-of-the-art array platform.

We find that the sequencing data are highly reproducible,
with few systematic differences among technical replicates. Sta-
tistically, we find that the variation across technical replicates
can be captured using a Poisson model, with only a small pro-
portion (∼0.5%) of genes showing clear deviations from this
model. This Poisson model can be used to identify differentially
expressed genes, and using this approach, the sequence data
identified 30% more differentially expressed genes than were ob-
tained from a standard analysis of the array data at the same false
discovery rate. We also illustrate the potential for sequence-based
approaches to identify alternative-spliced forms.

Results

Experimental design

Illumina’s sequencing technology uses massively parallel Sanger
sequencing to simultaneously sequence millions of short frag-
ments of DNA. Each time a machine is run, DNA samples can be
independently sequenced in one of eight lanes, although one
lane is normally used to sequence a control sample. Typically,
each lane generates many millions of short reads (e.g., 32 bp in
the data considered here). To assess the ability of Illumina se-
quencing to measure gene expression differences between
samples, we used the following study design (Fig. 1A): We ex-
tracted total RNA from liver and kidney samples of a single hu-
man male, purified the poly(A) mRNA, and sheared it prior to
cDNA synthesis. The cDNA was then processed into a library of
template molecules suitable for sequencing on the Illumina Ge-
nome Analyzer (see Methods). To assess technical variance

within and between runs, we sequenced each sample seven
times, split across two runs of the machine (Fig. 1B). To investi-
gate the effects of cDNA concentration, two different cDNA con-
centrations were used: 3 pM (five lanes per sample) and 1.5 pM
(two lanes per sample).

To allow comparisons with an array-based technology, we
hybridized the same RNA samples to Affymetrix U133 Plus 2
arrays (www.affymetrix.com/products/arrays/specific/
hgu133plus.affx). We used three arrays (technical replicates) for
each RNA sample, and the sample preparation and data analysis
were designed to be as similar to the sequence-based approach as
possible (Methods). To facilitate a direct comparison between the
sequence and array data, we mapped the array probe sets to an-
notated genes in the Ensembl database v.48 (Flicek et al. 2008). In
total, 70% of probe sets mapped to an Ensembl gene, and, after
accounting for multiple probe sets mapping to the same gene
and probe sets that did not map uniquely, we identified a set of
17,708 probe sets, mapping uniquely to 17,708 genes, which
were used in subsequent analyses (see Methods).

Illumina sequencing data processing

Each RNA sample was sequenced in seven lanes, producing 12.9–
14.7 million reads per lane at the 3 pM concentration and 8.4–9.3
million reads at the 1.5 pM concentration (Supplemental Table
1). We aligned all reads against the whole genome using the
Illumina-supplied algorithm ELAND, which is designed to be par-
ticularly efficient for 32-bp reads. Tolerances were set to allow at
most two mismatches in each alignment, and reads that aligned
to multiple genomic locations were ignored. By these criteria,
40% of reads mapped uniquely to a genomic location, and of
these, 65% mapped to autosomal or sex chromosomes (the re-
mainder mapped almost exclusively to mitochondrial DNA).
These percentages were similar for 3 pM and 1.5 pM concentra-
tions and are comparable to results from other studies that have

used Illumina sequencing (Nagalakshmi
et al. 2008). Possible reasons for reads
not mapping uniquely to the genome
include the presence of sequencing er-
rors or polymorphisms, reads that come
from repetitive sequence, and reads from
exon–exon junctions (which can poten-
tially be recovered by a more sophisti-
cated alignment strategy; see below).

As expected, the distribution of the
locations of mapped reads showed a
strong bias toward annotated genic re-
gions based on the Ensembl database:
83% of mapped reads fell in such re-
gions; of these, 68% fell in annotated ex-
ons. Furthermore, reads mapping to in-
tergenic locations (i.e., reads mapping
outside the furthest 5! and 3! exons for
every gene) tended to fall near an anno-
tated gene (Supplemental Fig. 1), sug-
gesting that many genes in the Ensembl
annotation may require extension or re-
vision. Nonetheless, a sizable minority
(10.6%) of intergenic reads was mapped
to locations at least 100 kb from a
known gene, supporting other pub-
lished data (The ENCODE Project Con-

Figure 1. Graphical representation of the study design. (A) Summary of the experimental design. (B)
The lanes in which each sample was sequenced across the two runs. In each run, the control sample
was sequenced in lane 5. Samples were sequenced at two concentrations: 1.5 pM (indicated by an
asterisk) and 3 pM (no asterisk).

Marioni et al.
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sortium 2007), suggesting that many
transcriptionally active regions (TARs)
are currently unannotated.

We obtained, for each lane, a mea-
sure of the “overall” expression of each
gene in the Ensembl database by sum-
ming the number of reads mapping to
exons within each gene (Supplemental
Table 2). For genes with multiple tran-
scripts, we took the median across tran-
scripts. Within each lane, under ideal-
ized assumptions (e.g., no alignment
errors, and no sequence-context se-
quencing bias), these “gene counts”
would, in expectation, be proportional
to the transcript length times the mRNA
expression level. Of the genes in the En-
sembl database, 22,925 (72%) were
mapped to by at least one read. Among
these, the distribution of the number of
reads was very skewed across genes
(Supplemental Fig. 2), with many genes
having relatively few reads (median = 46
for liver, 101 for kidney).

A first (albeit rather rough) indica-
tion that sequence data are highly repli-
cable is that, for each sample, the gene
counts are highly correlated across lanes
(average Spearman correlation = 0.96)
(Supplemental Fig. 3).

An issue of particular importance is
to what extent the data exhibit a “lane
effect,” by which we mean systematic
differences between results for the same
sample, sequenced at the same concen-
tration in different lanes, over and above
those expected from sampling error. We
examined this issue in two ways, first by
considering each pair of lanes in turn
(which allows any outlying lanes to be
identified), and then by considering
multiple lanes simultaneously (which should increase the
power to detect lane effects if they consistently affect the same
genes).

When comparing a pair of lanes, we computed, for each
gene, a P-value testing the null hypothesis that the gene counts
in one lane resembled a random sample from the reads in both
lanes (this is done using the fact that, in the absence of a lane
effect, after accounting for the different total gene counts in each
lane, the individual gene counts in each lane should follow a
hypergeometric distribution). In the absence of a lane effect, the
distribution of these P-values across genes should be uniform,
whereas deviations from uniformity (which we assessed using a
qq-plot) indicate a lane effect. Among the 22 total two-way com-
parisons between lanes in which the same sample was sequenced
at the same concentration, we found that only a small propor-
tion of genes (consistently <0.5%) had very small P-values that
indicated clear evidence for a lane effect (Fig. 2A; Supplemental
Fig. 4). This was true for comparisons both within and across the
two different runs, although comparisons across different runs
seemed to show slightly larger proportions of genes with small
P-values (larger experiments will be required to assess compre-

hensively run-to-run variability). In contrast, using the same pro-
cedure to compare results from the same sample sequenced at
different concentrations produced P-values that showed much
greater deviations from uniformity (Fig. 2B; Supplemental Fig. 5).

To compare multiple lanes for a lane effect, we took a closely
related approach based on the following Poisson model. If xijk

represents the number of reads mapped to gene j for the kth lane
of data from sample i, xijk can be modeled as independent Poisson
random variables with mean µijk = cik!ijk, where the !ijk are con-
strained to sum to 1 across genes j. The parameter cik represents
the total rate at which lane k of sample i produces reads, and the
parameter !ijk represents the rate at which reads map to gene j (in
lane k of sample i) relative to other genes. The hypothesis of no
lane effect corresponds to !ijk being constant across lanes k. For
each gene, we compute a goodness-of-fit statistic across L lanes to
test this hypothesis: if there is no lane effect, then this statistic
should be "2 distributed on L ! 1 degrees of freedom. A qq-plot
of these values (Fig. 2C,D; Supplemental Fig. 6) shows that, in
each case, only a small proportion of genes (∼0.5%) show strong
evidence for a lane effect (i.e., extra-Poisson variation).

In summary, for lanes sequencing the same sample at the

Figure 2. Plots to assess lane effects. Each panel shows a qq-plot comparing the distribution of a
statistic (Y-axis) against its theoretical distribution in the absence of a lane effect (X-axis). Deviations
from the line y = x indicate the presence of a lane effect. (Points in red) Those above the 95th
percentile; (points in blue) those above the 99.5th percentile. (A) A typical result when using P-values
derived from a hypergeometric test statistic to compare two lanes used to sequence the same sample
at the same concentration. (In this panel, data generated when the kidney sample was sequenced in
Run 1, lane 1 and Run 2, lane 2 were used; see Supplemental Fig. 4 for all pairwise comparisons.) (B)
Analogous results when comparing two lanes used to sequence the same sample at different concen-
trations. (In this panel, data generated when the kidney sample was sequenced in Run 1, lane 1 and
Run 2, lane 4 were used; see Supplemental Fig. 5 for all pairwise comparisons.) (C,D) Results (on two
different scales) when the goodness-of-fit statistic is used to assess the fit of the Poisson model to the
kidney data sequenced at a concentration of 3 pM. The liver sample showed a similar pattern (Supple-
mental Fig. 6).

RNA-seq: Estimating gene expression using sequencing
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Figure 1: Figure: Technical replication in RNA-seq. Figures from Marioni et al. (2008).
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• For which of the two genes is the uncertainty on the expression ratio the highest? In other words, do
we trust 𝛽𝑘 more or do we trust 𝛽𝑔 more?

Let’s approximate the uncertainty in 𝑏𝑒𝑡𝑎𝑔 and 𝛽𝑘 using simulation:

N <- 1e3
beta_g <- beta_k <- vector(length=N)
for(ii in 1:N){

ygr1 <- rpois(n=3, lambda=10)
ygr0 <- rpois(n=3, lambda=2)
ykr1 <- rpois(n=3, lambda=100)
ykr0 <- rpois(n=3, lambda=20)
beta_g[ii] <- mean(ygr1) / mean(ygr0)
beta_k[ii] <- mean(ykr1) / mean(ykr0)

}

par(mfrow=c(1,2), mar=c(4,2,3,1))
hist(beta_g, breaks=seq(0,50,by=1), xlim=c(0,50))
hist(beta_k, breaks=seq(0,50,by=1), xlim=c(0,50))
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We clearly see that the uncertainty on 𝛽𝑘 is much lower than on 𝛽𝑔. Even though the variance on the counts
of gene 𝑘 is higher, since its mean is higher and it is distributed as a Poisson variable. How do we explain
this?

• We may explain this by considering the relative uncertainty on the mean. Relative uncertainty may be
defined as the coefficient of variation 𝐶𝑉 = 𝜎

𝜇 (this is, the standard deviation divided by the mean).
Indeed, the CV describes the relative deviation of the distribution relative to its mean, where a low
CV indicates low dispersion with respect to the mean.

• Calculating the CV shows that the relative uncertainty for gene 𝑘 than for gene 𝑔, even though
the variance on the raw counts is higher for gene 𝑘 than for gene 𝑔.

• This lower relative uncertainty on the mean then propagates further to a lower uncertainty on the
fold-change. This basic result will be essential for understanding the results of a differential expression
analysis!

sqrt(100)/100 #CV for gene k

## [1] 0.1

sqrt(10)/10 #CV for gene g

## [1] 0.3162278

2 Modeling count data: Generalized linear models

Just like we have modeled protein abundances in the proteomics module of this course in order to assess
differential protein abundance, we can model gene expression counts to identify genes with differences in
average expression between groups of samples.

2.1 Why we can(’t) use linear models to model count data

• If we are using a linear model to model a response 𝑌𝑖, with 𝑖 ∈ {1, … , 𝑛} in function of a single covariate
𝑋𝑖, the linear model can be defined as follows:

{ 𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖
𝑌𝑖|𝑥𝑖 ∼ 𝑁(𝛽0 + 𝛽1𝑥𝑖, 𝜎2).

• Or, equivalently, we can write it in matrix form as

{ 𝑌 = X𝑇 𝛽 + 𝜖
𝑌 |X ∼ 𝑁(X𝛽, 𝜎2I),

where X now represents our 𝑛 × 𝑝 design matrix, with row 𝑖 corresponding to observation 𝑖.

• The variance-covariance matrix of Y is assumed a diagonal matrix with 𝜎2 on the diagonal elements
and zero everywhere else. This means that the data points are uncorrelated, and that every observation
has the same variance 𝜎2, also referred to as homoscedasticity.

• The latter does not hold for count data, due to the mean-variance relationship. This makes linear
models, in its basic form, unsuitable to model count data.

• In addition, count data are non-negative, while there are no such constraints in the standard linear
model to make sure that our estimates will be non-negative. Indeed, ̂𝑌𝑖 = ̂𝜇𝑖 = X𝑇

𝑖 ̂𝛽 ∈] − ∞, ∞[.
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2.2 Generalized linear models

• As the name suggests, generalized linear models (GLMs) extend linear models. In GLMs, we extend
two things with respect to the linear model:

– The conditional distribution of the response variable 𝑌𝑖|𝑋𝑖 can be assumed to follow
any distribution that belongs to the exponential family of distributions, which includes the
Gaussian but also other commonly known distributions, such as the Binomial, Gamma and Poisson
distribution.

– The linear model assumed a linear relationship between 𝑌𝑖 and 𝑋𝑖, since we assumed that
𝐸(𝑌𝑖|𝑋𝑖) = X𝑇

𝑖 𝛽. In GLMs, we will allow a link function 𝑔() that links the conditional mean
to the covariates. Hence, in GLMs we have that 𝑔(𝐸(𝑌𝑖|𝑋𝑖)) = X𝑇

𝑖 𝛽. Note that each family has
got a canonical link function, which is the identity link function 𝑔(𝜇) = 𝜇 for Gaussian, the log
link function 𝑔(𝜇) = log 𝜇 for Poisson, or the logit link function 𝑔(𝜇) = log( 𝜇

1−𝜇 ) for Binomial.

2.2.1 A Poisson GLM

• We can define a Poisson GLM as follows

⎧{
⎨{⎩

𝑌𝑖 ∼ 𝑃𝑜𝑖(𝜇𝑖)
log 𝜇𝑖 = 𝜂𝑖

𝜂𝑖 = X𝑇
𝑖 𝛽

where 𝑌𝑖 is the response variable, with mean 𝜇𝑖, 𝜂𝑖 is the linear predictor, X is the 𝑛 × 𝑝 model matrix
and 𝛽 is the 𝑝 × 1 matrix of regression coefficients.

• It is insightful to compare this model to a linear model where 𝑌𝑖 is log-transformed. Indeed, in the
linear model case, we would be modeling 𝐸(log 𝑌𝑖), while in the GLM we are modeling log 𝐸(𝑌𝑖).

• This shows that in the GLM setting we are modeling a transformed version of the expected value, and
after retransforming we can interpret the fit in terms of the mean of our response variable. In the
transformed linear model, however, we are working with the expected value of a transformed version
of our response variable, and we will not be able to interpret the fit in terms of the mean (because
𝐸(log 𝑌𝑖) ≠ log 𝐸(𝑌𝑖). In this specific case, we would have to resort to interpreting changes in terms
of a geometric mean.

• Also note that X𝑇
𝑖 𝛽 ∈] − ∞, ∞[, while 𝑌𝑖 must be non-negative [0, ∞[. The link function helps

with this, since the exponential function transforms any real number to a non-negative number, i.e.,
exp(X𝑇

𝑖 𝛽) ∈ [0, ∞[.

3 Sequencing Data

In this lecture we will use a subset of the real bulk RNA-seq dataset from Haglund et al. (2012).

Lets try to work out the experimental design using the following paragraph from the Methods section of the
paper.

3.1 Technical repeats

There are technical repeats in the data!

data("parathyroidGenesSE", package="parathyroidSE")
se <- parathyroidGenesSE
rm(parathyroidGenesSE)
colData(se) %>% knitr::kable(.)

7

https://academic.oup.com/jcem/article/97/12/4631/2536573


Figure 2: Figure: A paragraph from the Methods section.

run experiment patient treatment time submission study sample
SRR479052 SRX140503 1 Control 24h SRA051611 SRP012167 SRS308865
SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167 SRS308866
SRR479054 SRX140505 1 DPN 24h SRA051611 SRP012167 SRS308867
SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167 SRS308868
SRR479056 SRX140507 1 OHT 24h SRA051611 SRP012167 SRS308869
SRR479057 SRX140508 1 OHT 48h SRA051611 SRP012167 SRS308870
SRR479058 SRX140509 2 Control 24h SRA051611 SRP012167 SRS308871
SRR479059 SRX140510 2 Control 48h SRA051611 SRP012167 SRS308872
SRR479060 SRX140511 2 DPN 24h SRA051611 SRP012167 SRS308873
SRR479061 SRX140511 2 DPN 24h SRA051611 SRP012167 SRS308873
SRR479062 SRX140512 2 DPN 48h SRA051611 SRP012167 SRS308874
SRR479063 SRX140513 2 OHT 24h SRA051611 SRP012167 SRS308875
SRR479064 SRX140513 2 OHT 24h SRA051611 SRP012167 SRS308875
SRR479065 SRX140514 2 OHT 48h SRA051611 SRP012167 SRS308876
SRR479066 SRX140515 3 Control 24h SRA051611 SRP012167 SRS308877
SRR479067 SRX140516 3 Control 48h SRA051611 SRP012167 SRS308878
SRR479068 SRX140517 3 DPN 24h SRA051611 SRP012167 SRS308879
SRR479069 SRX140518 3 DPN 48h SRA051611 SRP012167 SRS308880
SRR479070 SRX140519 3 OHT 24h SRA051611 SRP012167 SRS308881
SRR479071 SRX140520 3 OHT 48h SRA051611 SRP012167 SRS308882
SRR479072 SRX140521 4 Control 48h SRA051611 SRP012167 SRS308883
SRR479073 SRX140522 4 DPN 24h SRA051611 SRP012167 SRS308884
SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885
SRR479075 SRX140523 4 DPN 48h SRA051611 SRP012167 SRS308885
SRR479076 SRX140524 4 OHT 24h SRA051611 SRP012167 SRS308886
SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887
SRR479078 SRX140525 4 OHT 48h SRA051611 SRP012167 SRS308887

se %>%
colData %>%
as.data.frame %>%
pull(sample) %>%
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nlevels

## [1] 23

se %>%
colData %>%
nrow

## [1] 27

Extract sample names of duplicates!

dupl <- which(table(colData(se)$sample) > 1) %>% names
techreps <- assays(se)$counts[,colData(se)$sample==dupl[1]]

3.1.1 Explore the data of two technical repeats

We expect the counts to be very similar. Indeed, they are based on the same cell culture, stimulated with
the same stimulus and incubated for the same time.

qplot(techreps[,1],techreps[,2]) +
geom_abline(intercept = 0, slope = 1) +
xlab("Technical repeat 1") +
ylab("Technical repeat 2")
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• The plot shows a systematic difference between the counts of both technical repeats!

• However, plotting the data on the original count scale does not give a good overview of the data. The
plot is dominated by a few very abundant genes, i.e. genes with very high counts.

3.1.2 Explore the data of two technical repeats

qplot(techreps[,1],techreps[,2], log="xy") +
geom_abline(intercept = 0, slope = 1) +
xlab("Technical repeat 1") +
ylab("Technical repeat 2")

## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous y-axis
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• The plot clearly shows that the counts for all genes are very different in the two technical repeats.

• However, we have to look at the plot via the diagonal.

• In omics we therefore often use MA plots. With M (log ratio) and A (log average).
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A <- techreps %>% log2 %>% rowMeans
M <- techreps %>% log2 %>% apply(.,1,diff)
w <- techreps[,1]==min(techreps[,1]) | techreps[,2]==min(techreps[,2])
if (any(w)) {

A[w] <- runif(sum(w), min = -1, max = .1)
M[w] <- log2(techreps[w,2] + 1) - log2(techreps[w,1] + 1)

}

MAplot <- qplot(A, M, col=w) +
theme(legend.position = "none") +
scale_color_manual(values = c("black","orange")) +
xlab("A: log2 Average") +
ylab("M: log2 Fold Change")

MAplot +
geom_abline(intercept=0,slope=0)
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The MA plot clearly shows that the counts of one technical repeat are systematically higher than that of
the other technical repeats.

colSums(techreps)

## [1] 5251911 19332369
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logFCdepth <- colSums(techreps) %>% log2 %>% diff
logFCdepth

## [1] 1.880104

2^logFCdepth

## [1] 3.681016

The technical repeats differ with a factor 3.7 in sequencing depth!

MAplot + geom_abline(intercept = logFCdepth, slope = 0, color="red")
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• This log2 fold change in sequencing depth is also the baseline around which the log2 fold changes
between technical repeats of individual genes are fluctuating!

Hence, we will have to correct for differences in sequencing depth.

3.2 Count scaling using GLM offsets

• We have previously discussed count scaling transformations such as CPM and TPM.
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• A more appropriate and natural way when working with GLMs is through the use of offsets. The
general use of an offset is to account for the ‘effort’ performed in order to gather that observation of
the response variable.

→ i.e. sample being sequenced deeper contains more information as compared to a sample being sequenced
relatively shallow. We have more confidence in a count from a deeply sequenced sample than that from a
shallowly sequenced sample. We can therefore use the sequencing depth 𝑁𝑖 = ∑𝑔 𝑌𝑔𝑖 as offset in the model.

• Adding an offset to the model is different from adding a new variable to the model. For each new
variable we add, we will estimate its average effect 𝛽 on the response variable. When adding an offset,
however, we implicitly set 𝛽 = 1.

• Offsets are typically added on the scale of the linear predictor. Suppose we have a gene g and sample
i specific offset 𝑂𝑔𝑖, then we can define our GLM including the offset as

⎧{
⎨{⎩

𝑌𝑔𝑖 ∼ 𝑃𝑜𝑖(𝜇𝑔𝑖)
log 𝜇𝑔𝑖 = 𝜂𝑔𝑖

𝜂𝑔𝑖 = X𝑇
𝑖 𝛽𝑔 + 𝑙𝑜𝑔(𝑂𝑔𝑖)

When we would like to correct for the overall sequencing depth 𝑂𝑔𝑖 = 𝑁𝑖. However, better offsets exist!

Note, that

𝜇𝑖𝑔 = exp(X𝑇
𝑖 𝛽𝑔) × 𝑂𝑔𝑖

or
log ( 𝜇𝑖𝑔

𝑂𝑔𝑖
) = X𝑇

𝑖 𝛽𝑔

3.3 Biological repeats

We extract the four biological repeats from the study for the control treatment at time 24h.

bioreps <- colData(se)$treatment=="Control" & colData(se)$time=="24h"
biorepCounts <- assays(se)$counts[,bioreps]
qplot(rowMeans(biorepCounts),rowVars(biorepCounts),log="xy") +

geom_abline(intercept = 0,slope = 1,col="red") +
geom_smooth(col="orange")

## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Warning: Removed 37702 rows containing non-finite values (stat_smooth).
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• Having data on thousands of genes provides the opportunity to empirically assess the mean-variance
relationship.

• It is clear that the data is overdispersed with respect to the Poisson distribution (red y=x line). There
also seems to be a quadratic trend of the variance as a function of the mean.

4 Negative binomial distribution

The observed quadratic mean variance trend has motivated the use of the negative binomial distribution to
model (bulk) RNA-seq gene expression data.

⎧{
⎨{⎩

𝑌𝑔𝑖 ∼ 𝑁𝐵(𝜇𝑔𝑖, 𝜙𝑔)
log 𝜇𝑔𝑖 = 𝜂𝑔𝑖

𝜂𝑔𝑖 = X𝑇
𝑖 𝛽𝑔 + 𝑙𝑜𝑔(𝑂𝑔𝑖)

with

var[𝑌𝑔𝑖] = 𝜇𝑔𝑖 + 𝜙𝑔𝜇2
𝑔𝑖

Seq. technology real expression
total variability = technical

variability
+ biological

variability
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Seq. technology real expression
var[𝑌𝑔𝑖] = 𝜇𝑔𝑖 + 𝜙𝑔𝜇2

𝑔𝑖
total CV2 = 1

𝜇𝑔𝑖
+ 𝜙𝑔

4.1 What about technical repeats?

• Technical repeats are Poisson distributed.
• The sum of two Poisson distributed counts is again Poisson. So we can summarize over technical

repeats by taking the sum of the counts. This enables us to collapse the technical repeats to the level
of biological repeats.

• We will illustrate that in the tutorial session.

4.2 Estimating the overdispersion?

• Gene wise: for every single gene, very unstable due to the lack of data
• Common dispersion for all genes
• Trended dispersion
• Tag-wise: EB shrinkage to a common (trended) dispersion: Borrow strength across genes (McCarthy

& Smyth, 2012, DOI: 10.1093/nar/gks042)

In the tutorials we will analyse the entire study and we will focus on assessing the main research questions:
i.e. comparing the early and late effects of the stimuli, and if the effect of stimuli is changes over time.

Here, we illustrate the estimation using the edgeR tool on a subset of control treatment for patients 1, 2 and
3. For this subset only biological repeats are sequenced and a measurement on time 24 and 48h has been
taken for cells of each patient.
So we can model the study using a simple block design with a time effect and a block effect for patient.

1. Setup the data

seSub <- se[,colData(se)$treatment=="Control"&colData(se)$patient%in%1:3]
colData(seSub)$patient <- colData(seSub)$patient %>%

as.double %>%
as.factor

y <- DGEList(counts = assays(seSub)$counts)

design <- model.matrix(~time+patient,colData(seSub))

2. Typically lowly expressed genes are filtered.

keep <- filterByExpr(y,design)
y <- y[keep,]

3. Normalisation to correct for differences in library size.

y <- calcNormFactors(y)

4. Estimate the dispersions using empirical Bayes (EB)
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y <- estimateDisp(y, design)

5. Estimate gene-wise dispersions without shrinkage for comparison purposes

yNoEB <- estimateDisp(y, design, prior.df = 0)

6. Visualisation and comparison of tag-wise (EB) and genewise dispersion

o <- order(y$AveLogCPM)
data.frame(

AveLogCPM=rep(yNoEB$AveLogCPM[o],2),
BCV=sqrt(

c(yNoEB$tagwise.dispersion[o],
y$tagwise.dispersion[o])

),
method=rep(c("genewise","tagwise"), each=nrow(y))) %>%
ggplot(aes(AveLogCPM,BCV,color=method)) +
geom_point(size = .2) +
geom_line(

data = data.frame(
AveLogCPM=y$AveLogCPM[o],
BCV = sqrt(y$trended.dispersion[o]),
method="trended")) +

scale_colour_manual(values =c('black','orange','blue'))+
ylab("Biological Coefficient of Variation") +
xlab("Average log CPM")
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Note, that

• The gene-wise dispersion is very variable (black dots).
• There is a dispersion - mean trend (blue line)
• The tag-wise dispersions (orange dots) are the result of shrinking the gene-wise dispersion (black dots)

to the trend (blue line)

By default edgeR provides the following plot

plotBCV(y)
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In the methods paper of edgeR different dispersion estimators were compared and the tag-wise dispersions
seemed to provide the best goodness of fit.

5 Statistical Inference

• Asymptotic statistical tests exist to test if (contrasts of the) parameters of the GLM are different from
zero.

• Implemented in edgeR and DESeq2.

• Again we have to correct for multiple testing !!! FDR correction is done by default in the edgeR and
DESeq2 output

1. Fit the model

fit <- glmFit(y,design)
head(fit$coefficients)

## (Intercept) time48h patient2 patient3
## ENSG00000000003 -9.349871 0.13638138 -0.5613559 -0.7834884
## ENSG00000000419 -10.391095 -0.09800617 0.1057271 0.1356434
## ENSG00000000457 -10.928625 -0.08069712 0.4491010 -0.1289007
## ENSG00000000460 -10.041597 -0.81035512 0.5044914 -0.5433122
## ENSG00000000938 -14.614695 0.39307169 1.4719170 0.1349905
## ENSG00000000971 -13.512986 0.46252084 -0.2107229 0.5042261
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Figure 3: QQ-plots of goodness of fit statistics using common, trended or empirical Bayes. Image from
McCarthy and Smyth, 2012, NAR, DOI: 10.1093/nar/gks04219



Interpretation of model parameters?

2. Statistical test to assess the time effect

lrt <- glmLRT(fit, coef = "time48h")
topTags(lrt)

## Coefficient: time48h
## logFC logCPM LR PValue FDR
## ENSG00000164089 4.284786 3.099739 213.7650 2.072422e-48 3.294944e-44
## ENSG00000148795 3.026969 3.686056 183.3434 9.025281e-42 7.174647e-38
## ENSG00000133110 1.293005 7.185439 164.0009 1.512056e-37 8.013393e-34
## ENSG00000211445 1.450374 8.966014 162.1696 3.798734e-37 1.509902e-33
## ENSG00000107796 1.398750 6.002617 146.0886 1.241600e-33 3.865574e-30
## ENSG00000169239 1.557744 7.377027 145.7683 1.458799e-33 3.865574e-30
## ENSG00000188404 -1.590059 9.851890 141.9293 1.007722e-32 2.288824e-29
## ENSG00000136235 1.375796 5.149565 139.4353 3.537613e-32 7.030564e-29
## ENSG00000163631 1.835300 4.898878 135.1416 3.074462e-31 5.431208e-28
## ENSG00000005189 -1.702284 5.615167 134.7941 3.662515e-31 5.823032e-28
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