Differential expression analysis for transcriptomics data

Recent advances in a rapidly evolving field

Outline

- Single-cell transcriptomics: recent advances in protocols and data
- **Muscat:** multi-patient multi-condition differential expression analyses
- **satuRn:** transcript-level inference for single-cell data

Outline

- Single-cell transcriptomics: recent advances in protocols and data
- **Muscat:** multi-patient multi-condition differential expression analyses
- **satuRn:** transcript-level inference for single-cell data

Single-cell transcriptomics protocols

From Griffiths et al. (2018), doi: 10.15252/msb.20178046

Single-cell transcriptomics protocols

Single-cell transcriptomics protocols

From Griffiths et al. (2018), doi: 10.15252/msb.20178046

Single-cell transcriptomics - Advanced protocols

Cell hashing - sample multiplexing

Single-cell transcriptomics - Advanced protocols

Cell hashing - sample multiplexing

- Spatially resolved transcriptomics (Visium)
- CITE-seq
- ASAP-seq

Bulk versus single-cell data

Major differences:

- 1. Higher technical variation in single-cell data
- 2. Higher biological variation in single-cell data
- 3. Single-cell data is very sparse
- -> lower signal-to-noise ratio

Hierarchical data structure

- Single-cell data is hierarchical/clustered in nature
- Resolution of inference depends on research hypothesis and quality of data

From: https://www.cellsignal.com/pathways/immune-cell-markers-human

Hierarchical data structure

- Single-cell data is hierarchical/clustered in nature
- Resolution of inference depends on research hypothesis and quality of data
- With hashed (multi-patient) data, an addition level of hierarchy appears

Hierarchical data structure

- Single-cell data is hierarchical/clustered in nature
- Resolution of inference depends on research hypothesis and quality of data
- With hashed (multi-patient) data, an addition level of hierarchy appears
 - -> cells of the same patient are more similar than cells of different patients
 - -> individual cells can be considered pseudo replicates

Outline

- Single-cell transcriptomics: recent advances in protocols and data
- **Muscat:** multi-patient multi-condition differential expression analyses
- **satuRn:** transcript-level inference for single-cell data

- Published by the Mark Robinson group in Nature Communications (2020)
- Bioconductor package

• Method for **multi-patient**, multi-condition differential expression (DE) analysis

- Published by the Mark Robinson group in Nature Communications (2020)
- Bioconductor package

- Method for multi-patient, multi-condition differential expression (DE) analysis
- Aggregates single-cell data to pseudo-bulk
- Applies edgeR on pseudo-bulk data

Aggregates single-cell data to pseudo-bulk

-> summation of the counts of individual cells to some higher hierarchical level

-> a single count per cell (sub-)type, per patient

- Aggregates single-cell data to pseudo-bulk
 - -> summation of the counts of individual cells to some higher hierarchical level
 - -> a single count per cell (sub-)type, per patient

- Pseudo-bulk data != bulk data
 - Still able to differentiate between cell (sub-)types

muscat

Advantages

- Fast
- Data less sparse -> negative binomial assumption
- Avoids pseudoreplication bias issues

Advantages

- Fast
- Data less sparse -> negative binomial assumption
- Avoids pseudoreplication bias issues

Disadvantages

- Few replicates -> low power
- Sensitive to imbalances in the number of aggregated cells

Advantages

- Fast
- Data less sparse -> negative binomial assumption
- Avoids pseudoreplication bias issues

Disadvantages

- Few replicates -> low power
- Sensitive to imbalances in the number of aggregated cells

Alternatives

- Distinct R package
- Methods that specifically account for hierarchical nature of single-cell data

Outline

- Single-cell transcriptomics: recent advances in protocols and data
- **Muscat:** multi-patient multi-condition differential expression analyses
- satuRn: transcript-level inference for single-cell data

Differential Transcript Usage (DTU)

Gene-level analysis

Differential Transcript Usage (DTU)

Prerequisites for DTU analysis

- Full-length RNA-seq data
 - -> Transcript-level abundances require sequencing reads from both 3' and 5' end
 - SMART-seq, SMARTer, Quartz-seq
 - Long read RNA protocols (PacBio, Oxford Nanopore)
 - Not* 10X, Visium, Drop-seq, CEL-seq, InDrop, MARS-seq

Prerequisites for DTU analysis

- Full-length RNA-seq data
 - -> Transcript-level abundances require sequencing reads from both 3' and 5' end
 - SMART-seq, SMARTer, Quartz-seq
 - Long read RNA protocols (PacBio, Oxford Nanopore)
 - Not* 10X, Visium, Drop-seq, CEL-seq, InDrop, MARS-seq

- Splice-aware alignment
 - Ambiguity in assigning reads to transcripts
 - Pseudo-alignment tools like kallisto, salmon and sailfish
 - STAR, HISAT2
 - Bowtie

What makes a for good DTU analysis method?

Type 1 error control

Complex designs

Sparse data

Scalable analysis of differential transcript usage for RNa-seq data

Software development

- Denote the expression of transcript t of gene g in sample i as Y_{gti}
- Denote the usage of transcript *t* of gene *g* in sample *i* as:

$$U_{gti} = \frac{Y_{gti}}{Y_{g.i}}$$

Software development

- Denote the expression of transcript t of gene g in sample i as Y_{gti}
- Denote the usage of transcript *t* of gene *g* in sample *i* as:

$$U_{gti} = \frac{Y_{gti}}{Y_{g.i}}$$

• Describe the **quasi-binomial** GLM:

$$\begin{cases} E[U_{gti} | \mathbf{X}_{i}, Y_{g.i}] = \pi_{gti} \\ \log\left(\frac{\pi_{gti}}{1 - \pi_{gti}}\right) = \eta_{gti} \\ \eta_{gti} = \mathbf{X}_{i}^{T} \boldsymbol{\beta}_{gt} \end{cases}$$

• With variance:

$$Var[U_{gti} | \mathbf{X}_{i}, Y_{g.i}] = \frac{\pi_{gti} * (1 - \pi_{gti})}{Y_{g.i}} * \phi_{gt}$$

Scalability

#cells/samples

method

- DEXSeg DoubleExpSeq DRIMSeq edgeRDiffsplice limmaDiffsplice satuRn

Scalability

#cells/samples

#cells/samples (zoom)

Good performance in bulk RNA-Seq

Poor FDR control in scRNA-Seq

DoubleExpSeq edgeR_diffsplice limma_diffsplice satuRn

FDR control

Potential issues:

- Transcript-transcript correlation
- Cell-cell correlation
- Unobserved confounders

Solution: empirical null distribution

In practice:

1. Take p-values p_{gt} and convert to z-scores (inverse CDF)

$$z_{gt} = \Phi^{-1}\left(\frac{p_{gt}}{2}\right) * sign(S)$$

Solution: empirical null distribution

In practice:

1. Take p-values pgt and convert to z-scores (inverse CDF)

$$z_{gt} = \Phi^{-1}\left(\frac{p_{gt}}{2}\right) * sign(S)$$

2. Empirically determine how the null tests (mid 50%) are distributed

Chen dataset - 50v50 - edgeR filter - repeat 3

Solution: empirical null distribution

In practice:

1. Take p-values p_{gt} and convert to z-scores (inverse CDF)

$$z_{gt} = \Phi^{-1}\left(\frac{p_{gt}}{2}\right) * sign(S)$$

2. Empirically determine how the null tests (mid 50%) are distributed

3. Recompute p-values given the new null

$$z_{gt}^* = \frac{(z_{gt} - \mu^*)}{\sigma^*}$$
$$p_{gt}^* = 2 * \Phi\left(-abs(z_{gt}^*)\right)$$

FDR control in scRNA-Seq restored

No evidence for differential gene expression

edgeR FDR = 1 800 •• gene expression count 600 400 200 0 Tnc Hsd11b1_Endou group

ENSMUSG0000029470

Dataset obtained from Tasic et al. (2018), Nature 563, 72–78

Strong evidence for differential transcript usage

Crucially, the left isoform is protein coding, while the middle isoform is not

Dataset obtained from Tasic et al. (2018), Nature 563, 72-78

- DGE and DTU between different cell types
- Number of DGE genes associated with number of genes with DTU transcripts
- Limited overlap: orthogonal information

Comparison	Cell type 1 (ALM)	Cell type 2 (VISp)	DGE	DTU Gene	Overlap
1	Cpa6 Gpr88	Batf3	203	15	1
2	Cbln4 Fezf2	Col27a1	281	53	3
3	Cpa6 Gpr88	Col6a1 Fezf2	154	5	0
4	Gkn1 Pcdh19	Col6a1 Fezf2	231	22	1
5	Lypd1 Gpr88	Hsd11b1 Endou	331	69	4
6	Tnc	Hsd11b1 Endou	595	112	10
7	Tmem163 Dmrtb1	Hsd11b1 Endou	471	53	7
8	Tmem163 Arhgap25	Whrn Tox2	197	40	1

- DGE and DTU between different cell types
- Number of DGE genes associated with number of genes with DTU transcripts
- Limited overlap: orthogonal information

Comparison	Cell type 1 (ALM)	Cell type 2 (VISp)	DGE	DTU Gene	Overlap
1	Cpa6 Gpr88	Batf3	203	15	1
2	Cbln4 Fezf2	Col27a1	281	53	3
3	Cpa6 Gpr88	Col6a1 Fezf2	154	5	0
4	Gkn1 Pcdh19	Col6a1 Fezf2	231	22	1
5	Lypd1 Gpr88	Hsd11b1 Endou	331	69	4
6	Tnc	Hsd11b1 Endou	595	112	10
7	Tmem163 Dmrtb1	Hsd11b1 Endou	471	53	7
8	Tmem163 Arhgap25	Whrn Tox2	197	40	1

GSEA analysis: similar gene sets from DGE and DTU

satuRn take-home

• satuRn is:

- Detects biologically relevant DTU signal in a case study
- Published in F1000Research (https://f1000research.com/articles/10-374)
- Available from Bioconductor (<u>https://bioconductor.org/packages/release/bioc/html/satuRn.html</u>)

Differential expression analysis for transcriptomics data

Recent advances in a rapidly evolving field

statOmics research group - Ghent University

Team leader Prof. Lieven Clement

Transcriptomics and single-cell omics

Proteomics

Meta-omics

Bulk transcriptomics protocols

Bulk versus single-cell data

- 1. Higher technical variation in single-cell data
- 2. Higher biological variation in single-cell data
- 3. Single-cell data is very sparse

From Zimmerman et al. (2021), https://doi.org/10.1038/s41467-021-21038-1