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1 Introduction
Inference was only correct if distributional assumptions were satisfied

• e.g Normal distribution

• equal variance

• The 𝑝-value: P0 [|𝑇 | ≥ |𝑡|].
– Calculated using the null distribution of 𝑇 that we derived under the assumptions
– In correct if assumptions are violated

• 95% CI also builds upon these assumptions. If they are invalid then the intervals will not contain the
population parameter with 95% probability.

• Asymptotic theory is more difficult to place: the 𝑡-test is asymptotically non-parametric because for
very large samples the distributional assumptions of normality are no longer important.

• If assumptions hold the parametric approach

– more efficient: larger power with same sample size + smaller CI.
– more flexible: easier to analyse data with complex designs
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1.1 Cholesterol example
• Cholesterol concentration in blood measured for

– 5 patients (group=1) two days upon a stroke
– 5 healthy subject (groep=2).

• Is cholesterol concentration of hart patients and healthy subjects on average different?
chol <- read_tsv("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/chol.txt")
chol$group <- as.factor(chol$group)
nGroups <- table(chol$group)
n <- sum(nGroups)
chol

# A tibble: 10 x 2
group cholest
<fct> <dbl>

1 1 244
2 1 206
3 1 242
4 1 278
5 1 236
6 2 188
7 2 212
8 2 186
9 2 198

10 2 160
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• Possibly outliers
• Difficult to assess distributional assumptions when only 5 observations are available.

2 Rank Tests
• Important group of non-parametric test

– Non-parametric,
– Exact 𝑝-values using a permutation null distribution.
– No need for separate permutation distribution for each new dataset.
– Permutation null distribution of rank tests only depends on sample size
– Robust to outliers

3 Ranks
Rank tests start from rank-transformed data.

• Let 𝑌1, … , 𝑌𝑛.
• In the absence of ties

𝑅𝑖 = 𝑅(𝑌𝑖) = #{𝑌𝑗 ∶ 𝑌𝑗 ≤ 𝑌𝑖; 𝑗 = 1, … , 𝑛}
• Smallest observation has rank 1, second smallest rank 2, … , largest observation gets rank 𝑛

chol$cholest

[1] 244 206 242 278 236 188 212 186 198 160
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rank(chol$cholest)

[1] 9 5 8 10 7 3 6 2 4 1

3.1 Ties
Sometimes ties occur: two observations with identical values
withTies <- c(403, 507, 507, 610, 651, 651, 651, 830, 900)
rank(withTies)

[1] 1.0 2.5 2.5 4.0 6.0 6.0 6.0 8.0 9.0

• Ties: 507 occurs twice, 651 occurs 3 times

• If ties occur midranks are used.

• midrank of observation 𝑌𝑖 becomes

𝑅𝑖 = #{𝑌𝑗 ∶ 𝑌𝑗 ≤ 𝑌𝑖} + (#{𝑌𝑗 ∶ 𝑌𝑗 < 𝑌𝑖} + 1)
2 .

3.2 Ranks of pooled sample
• Let 𝑌𝑖𝑗, 𝑖 = 1, … , 𝑛𝑗 be observations from two treatment groups 𝑗 = 1, 2.
• They can also be represented by 𝑍1, … , 𝑍𝑛 (𝑛 = 𝑛1 + 𝑛2), the outcomes of the pooled sample

t(chol)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
group "1" "1" "1" "1" "1" "2" "2" "2" "2" "2"
cholest "244" "206" "242" "278" "236" "188" "212" "186" "198" "160"
z <- chol$cholest
z

[1] 244 206 242 278 236 188 212 186 198 160
rank(z)

[1] 9 5 8 10 7 3 6 2 4 1

4 Wilcoxon-Mann-Whitney Test
Simultaneously developed by Wilcoxon, and, Mann and Whitney: Wilcoxon-Mann-Whitney, Wilcoxon
rank sum test or Mann-Whitney U test

4.1 Hypotheses
Under 𝐻0 the distributions of the two groups are equal

𝐻0 ∶ 𝑓1 = 𝑓2

Under the alternative 𝐻1 the distributions differ in location

𝐻1 ∶ 𝜇1 ≠ 𝜇2
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𝐻1 assumes location-shift, we will relax this assumption later on.

4.2 Test statistic
Classic T-test: difference in sample means ̄𝑌1 − ̄𝑌2.

Here: Difference in sample means based on rank transformed data

Ranks based on the pooled sample (upon joining the observations from the two groups): 𝑅𝑖𝑗 = 𝑅(𝑌𝑖𝑗) is de
rank of observation 𝑌𝑖𝑗 in the pooled sample.

𝑇 = 1
𝑛1

𝑛1

∑
𝑖=1

𝑅(𝑌𝑖1) − 1
𝑛2

𝑛2

∑
𝑖=1

𝑅(𝑌𝑖2).

• Under 𝐻0 we expect the average rank of the first group to be close to that of the second group so 𝑇
is close to zero.

• Under 𝐻1 we expect the mean ranks to differ so that 𝑇 deviates from zero.

• It is sufficient to only calculate

𝑆1 =
𝑛1

∑
𝑖=1

𝑅(𝑌𝑖1)
.

• 𝑆1 is the sum of the ranks of the first group: rank sum test.

• This holds because

𝑆1 + 𝑆2 = sum of all ranks = 1 + 2 + ⋯ + 𝑛 = 1
2𝑛(𝑛 + 1).

• 𝑆1 (or 𝑆2) is a good test statistic

• Use permutations to determine the exact permutation distribution. (Permute the ranks between the
groups)

• For a given 𝑛 and no ties the rank transformed data is always

1, 2, … , 𝑛

• For given 𝑛1 en 𝑛2 the permutation distribution is always the same!

• With current computing power this is not so important any more.

4.3 Standardized statistic
Often the standardized test statistic is used

𝑇 = 𝑆1 − E0 [𝑆1]
√Var0 [𝑆1]

,

• with E0 [𝑆1] and Var0 [𝑆1] the expect mean and variance of S1 under 𝐻0.

• Under 𝐻0

E0 [𝑆1] = 1
2𝑛1(𝑛 + 1) en Var0 [𝑆1] = 1

12𝑛1𝑛2(𝑛 + 1).
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• Under 𝐻0 and when min(𝑛1, 𝑛2) → ∞

𝑇 = 𝑆1 − E0 [𝑆1]
√Var0 [𝑆1]

→ 𝑁(0, 1).

Asymptotically the standardised statistic follows a standard normal distribution!

4.4 Cholesterol example
We illustrate the result for the cholesterol example using the R function wilcox.test.
wilcox.test(cholest ~ group, data = chol)

Wilcoxon rank sum exact test

data: cholest by group
W = 24, p-value = 0.01587
alternative hypothesis: true location shift is not equal to 0

• We reject 𝐻0 (𝑝 = 0.016 < 0.05)

• The output shows 𝑊 = 24?

• Lets calculate
S1 <- sum(rank(chol$cholest)[chol$group == 1])
S1

[1] 39
S2 <- sum(rank(chol$cholest)[chol$group == 2])
S2

[1] 16

• Where does 𝑊 = 24 comes from?

4.5 Mann and Whitney test
Mann and Whitney test in absence of ties:

𝑈1 =
𝑛1

∑
𝑖=1

𝑛2

∑
𝑘=1

I {𝑌𝑖1 ≥ 𝑌𝑘2} .

• with I {.} an indicator that equals 1 if the expression is true and is zero otherwise.

• U counts how many times an observation of the first group is larger or equal to an observation from
the second group.

y1 <- subset(chol, group == 1)$cholest
y2 <- subset(chol, group == 2)$cholest
u1Hlp <- sapply(y1, function(y1i, y2) {

y1i >= y2
}, y2 = y2)
colnames(u1Hlp) <- y1
rownames(u1Hlp) <- y2
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u1Hlp

244 206 242 278 236
188 TRUE TRUE TRUE TRUE TRUE
212 TRUE FALSE TRUE TRUE TRUE
186 TRUE TRUE TRUE TRUE TRUE
198 TRUE TRUE TRUE TRUE TRUE
160 TRUE TRUE TRUE TRUE TRUE
U1 <- sum(u1Hlp)
U1

[1] 24

It can be shown that 𝑈1 = 𝑆1 − 1
2 𝑛1(𝑛1 + 1).

S1 - nGroups[1] * (nGroups[1] + 1) / 2

1
24

1. 𝑈1 en 𝑆1 contain the same information
2. 𝑈1 is also a rank statistic, and
3. Exact test based on 𝑈1 and 𝑆1 are equivalent.

4.6 Probabilistic index
• 𝑈1 has a better interpretation feature
• Let 𝑌𝑗 a random observation from group 𝑗 (𝑗 = 1, 2). Then

1
𝑛1𝑛2

E [𝑈1] = P [𝑌1 ≥ 𝑌2] .

So we can estimate the probability by calculating the mean of all indicator variable values I {𝑌𝑖1 ≥ 𝑌𝑘2}.
Note, that we did 𝑛1 × 𝑛2 comparisons
mean(u1Hlp)

[1] 0.96
U1 / (nGroups[1] * nGroups[2])

1
0.96

• Probability P [𝑌1 ≥ 𝑌2] is referred to as the probabilistic index.

• It is the probability that a random observation of the first group is larger or equal than a random
observation of the second group

• If 𝐻0 holds P [𝑌1 ≥ 𝑌2] = 1
2 .

• R function wilcox.test does not return the Wilcoxon rank sum statistic. It returns the Mann-Whitney
statistic 𝑈1.

• Lets revisit the result
wTest <- wilcox.test(cholest ~ group, data = chol)
wTest
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Wilcoxon rank sum exact test

data: cholest by group
W = 24, p-value = 0.01587
alternative hypothesis: true location shift is not equal to 0
U1

[1] 24
probInd <- wTest$statistic / prod(nGroups)
probInd

W
0.96

Because 𝑝 = 0.0159 < 0.05 we conclude at the 5% significance level that the mean cholesterol level of hart
patients is larger then that of healthy subjects.

• Note that we have assumed that the location-shift model is valid in this conclusion.
• We also know that higher cholesterol level are more likely for hart patients then for healthy subjects

and this probability is 𝑈1/(𝑛1 × 𝑛2) = 96%.
• We should assess the location shift assumption. But this is not possible with only 5 observations.

Without the location-shift assumption the conclusion in terms of the probabilistic index remains valid!

• So when we do not assume location shift we test for

𝐻0 ∶ 𝐹1 = 𝐹2 vs 𝐻1 ∶ 𝑃 [𝑌1 ≥ 𝑌2] ≠ 0.5.

4.7 Conclusion
There is a significant difference in the distribution of the cholesterol concentration of hart patients two days
upon a stroke and that of healthy subject (𝑝 = 0.0159). It is more likely to observe higher cholesterol levels
for hart patients then for healthy subjects. The point estimator for this probability is 96%.
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