9. Non-parametric statistics - Kruskal Wallis

Lieven Clement

statOmics, Ghent University (https://statomics.github.io)

Contents

L	Comparison of g groups	1
	DMH example 2.1 Comet Assay:	1
	Kruskal-Wallis Rank Test 3.1 DNA Damage Example	9

1 Comparison of g groups

• Extend F-test from a one-way ANOVA to non-parametric alternatives.

2 DMH example

Assess genotoxicity of 1,2-dimethylhydrazine dihydrochloride (DMH) (EU directive)

- 24 rats
- four groups with daily DMH dose
 - control
 - low
 - medium
 - high
- Genotoxicity in liver using comet assay on 150 liver cells per rat.
- Are there differences in DNA damage due to DMH dose?

2.1 Comet Assay:

- Visualise DNA strand breaks
- Length comet tail is a proxy for strand breaks.

```
dna <- read_delim("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/dna.txt", delim = " ")
dna$dose <- as.factor(dna$dose)
dna</pre>
```

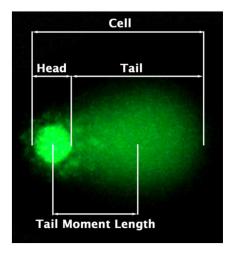
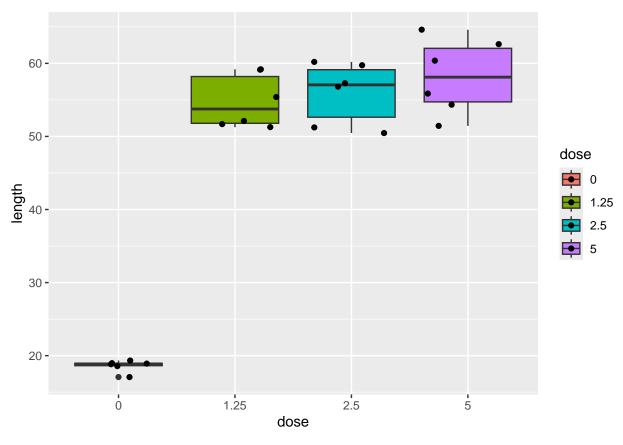
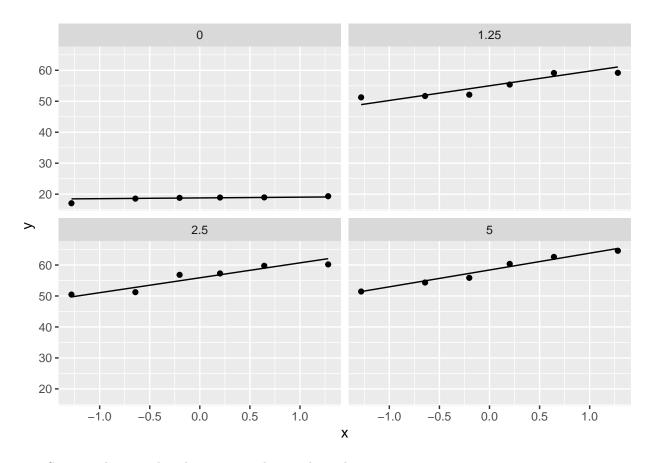
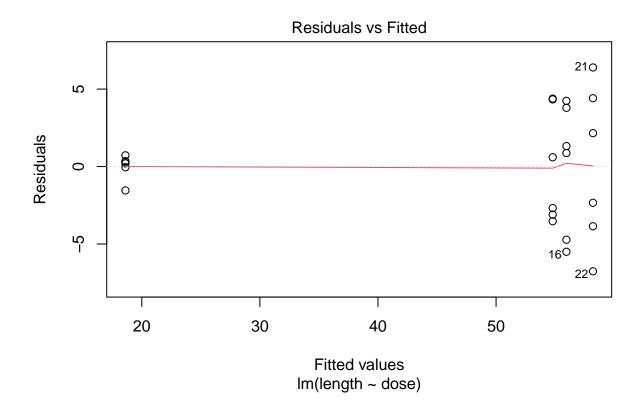
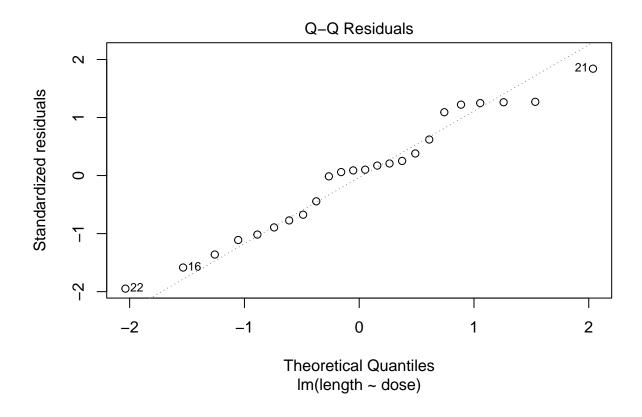
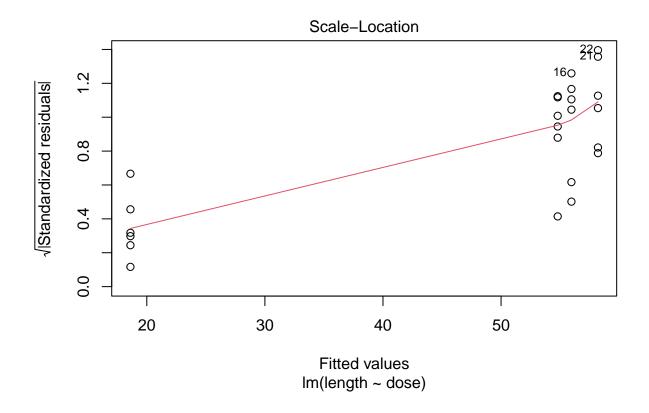




Figure 1: Comet assay

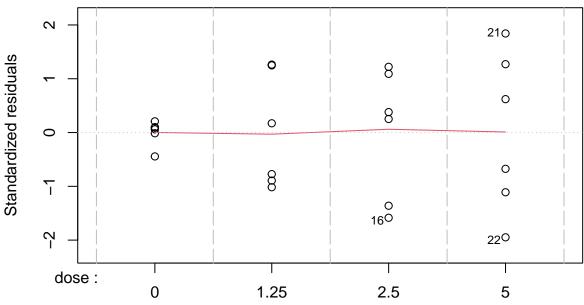
```
17.1 0
5 Rat5
6 Rat6
          18.8 0
7 Rat7
          55.4 1.25
8 Rat8
          59.2 1.25
9 Rat9
           59.1 1.25
10 Rat10
           52.1 1.25
# i 14 more rows
dna %>%
 ggplot(aes(x = dose, y = length, fill = dose)) +
 geom_boxplot() +
 geom_point(position = "jitter")
```




```
dna %>%
   ggplot(aes(sample = length)) +
   geom_qq() +
   geom_qq_line() +
   facet_wrap(~dose)
```



- Strong indication that data in control group has a lower variance.
- 6 observations per group are too few to check the assumptions


plot(lm(length ~ dose, data = dna))

Constant Leverage: Residuals vs Factor Levels

Factor Level Combinations

3 Kruskal-Wallis Rank Test

- The Kruskal-Wallis Rank Test (KW-test) is a non-parameteric alternative for ANOVA F-test.
- Classical F-test statistic can be written as

$$F = \frac{\mathrm{SST}/(g-1)}{\mathrm{SSE}/(n-g)} = \frac{\mathrm{SST}/(g-1)}{(\mathrm{SSTot} - \mathrm{SST})/(n-g)},$$

- with g the number of groups.
- SSTot depends only on outcomes **y** and will not vary in permutation test.
- SST can be used as statistic

$$\mathrm{SST} = \sum_{j=1}^t n_j (\bar{Y}_j - \bar{Y})^2$$

• The KW test statistic is based on SST on rank-transformed outcomes¹,

$$\mathrm{SST} = \sum_{j=1}^g n_j \left(\bar{R}_j - \bar{R}\right)^2 = \sum_{j=1}^t n_j \left(\bar{R}_j - \frac{n+1}{2}\right)^2,$$

- with \bar{R}_j the mean of the ranks in group j, and \bar{R} the mean of all ranks,

$$\bar{R} = \frac{1}{n}(1+2+\cdots+n) = \frac{1}{n}\frac{1}{2}n(n+1) = \frac{n+1}{2}.$$

 $^{^{1}}$ we assume that no ties are available

• The KW teststatistic is given by

$$KW = \frac{12}{n(n+1)} \sum_{j=1}^g n_j \left(\bar{R}_j - \frac{n+1}{2}\right)^2. \label{eq:KW}$$

• The factor $\frac{12}{n(n+1)}$ is used so that KW has a simple asymptotic null distribution. In particular under H_0 , given that $\min(n_1, \dots, n_q) \to \infty$,

$$KW \to \chi^2_{t-1}$$
.

• The exact KW-test can be executed by calculating the permutation null distribution (that only depends on n_1, \dots, n_q) to test

$$H_0: f_1 = \ldots = f_g$$
 vs $H_1:$ at least two means are different.

- In order to allow H₁ to be formulated in terms of means, the assumption of locations shift should be valid.
- For DMH example this is not the case.
- If location-shift is invalid, we have to formulate H_1 in terms of probabilistic indices:

$$H_0: f_1 = \ldots = f_g \text{ vs } H_1: \exists \ j,k \in \{1,\ldots,g\}: \mathbf{P}\left[Y_j \geq Y_k\right] \neq 0.5$$

3.1 DNA Damage Example

```
kruskal.test(length ~ dose, data = dna)
```

Kruskal-Wallis rank sum test

data: length by dose
Kruskal-Wallis chi-squared = 14, df = 3, p-value = 0.002905

- On the 5% level of significance we can reject the null hypothesis.
- R-functie kruskal.test only returns the asymptotic approximation for p-values.
- With only 6 observaties per groep, this is not a good approximation of the p-value
- With the $coin\ R$ package we can calculate the exacte p-value

```
library(coin)
kwPerm <- kruskal_test(length ~ dose,
   data = dna,
   distribution = approximate(B = 100000)
)
kwPerm</pre>
```

Approximative Kruskal-Wallis Test

```
data: length by dose (0, 1.25, 2.5, 5) chi-squared = 14, p-value = 0.00043
```

- We conclude that the difference in the distribution of the DNA damages due to the DMH dose is extremely significantly different.
- Posthoc analysis with WMW tests.

```
pairwise.wilcox.test(dna$length, dna$dose)
```

Pairwise comparisons using Wilcoxon rank sum exact test

data: dna\$length and dna\$dose

```
0 1.25 2.5
1.25 0.013 - -
2.5 0.013 0.818 -
5 0.013 0.721 0.788
```

P value adjustment method: holm

- All DMH behandelingen are significantly different from the control.
- The DMH are not significantly different from one another.
- U1 does not occur in the pairwise.wilcox.test output. Point estimate on probability on higher DNA-damage?

```
nGroup <- table(dna$dose)
probInd <- combn(levels(dna$dose), 2, function(x) {
  test <- wilcox.test(length ~ dose, subset(dna, dose %in% x))
  return(test$statistic / prod(nGroup[x]))
})
names(probInd) <- combn(levels(dna$dose), 2, paste, collapse = "vs")
probInd</pre>
```

```
0vs1.25 0vs2.5 0vs5 1.25vs2.5 1.25vs5 2.5vs5 0.0000000 0.0000000 0.0000000 0.4444444 0.2777778 0.3333333
```

Because there are doubts on the location-shift model we draw our conclusions in terms of the probabilistic index.

3.1.1 Conclusion

- There is an extremely significant difference in the distribution of the DNA-damage measurements due to the treatment with DMH (p < 0.001 KW-test).
- DNA-damage is more likely upon DMH treatment than in the control treatment (all p=0.013, WMW-testen).
- The probability on higher DNA-damage upon exposure to DMH is 100% (Calculation of a CI on the probabilistic index is beyond the scope of the course)
- There are no significant differences in the distributions of the comit-lengths among the treatment with the different DMH concentrations (p = 0.72-0.82).
- DMH shows already genotoxic effects at low dose.
- (Alle paarswise tests are gecorrected for multiple testing using Holm's methode).