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1 Intro
• Until now: one outcome 𝑌 and a single predictor 𝑋.
• Often useful to use multiple predictors to model the response. e.g

1. Association between X and Y is affected by confounder: Smoking and age by youngsters are confounded
and they both affect the lung capacity

2. Which group of variables is associated with a given outcome. E.g Habitat and human activity on the
biodiversity of the rain forest. (Size, age, height of the wood → assess all effects simultaneously.

3. Prediction of outcome for individuals: use as many predictive information simultaneously. E.g predic-
tion of risk on mortality is used on a daily basis in intensive care units to prioritise patient care.

→ Extend simple linear regression to multiple predictors.
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1.1 Prostate cancer example
• Prostate specific antigen (PSA) and a number of clinical variables for 97 males with radical prostatec-

tomy.

• Association of PSA by

– tumor volume (lcavol)
– prostate weight (lweight)
– age
– benign prostate hypertrophy (lbph)
– seminal vesicle invasion (svi)
– capsular penetration (lcp)
– Gleason score (gleason)
– precentage gleason score 4/5 (pgg45)

prostate <- read_csv("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/prostate.csv")
prostate

# A tibble: 97 x 9
lcavol lweight age lbph svi lcp gleason pgg45 lpsa
<dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl>

1 -0.580 2.77 50 -1.39 healthy -1.39 6 healthy -0.431
2 -0.994 3.32 58 -1.39 healthy -1.39 6 healthy -0.163
3 -0.511 2.69 74 -1.39 healthy -1.39 7 20 -0.163
4 -1.20 3.28 58 -1.39 healthy -1.39 6 healthy -0.163
5 0.751 3.43 62 -1.39 healthy -1.39 6 healthy 0.372
6 -1.05 3.23 50 -1.39 healthy -1.39 6 healthy 0.765
7 0.737 3.47 64 0.615 healthy -1.39 6 healthy 0.765
8 0.693 3.54 58 1.54 healthy -1.39 6 healthy 0.854
9 -0.777 3.54 47 -1.39 healthy -1.39 6 healthy 1.05
10 0.223 3.24 63 -1.39 healthy -1.39 6 healthy 1.05
# i 87 more rows
prostate$svi <- as.factor(prostate$svi)
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2 Additive multiple linair model
Separate simple linair models, like

𝐸(𝑌 |𝑋𝑣) = 𝛼 + 𝛽𝑣𝑋𝑣

• Association between lpsa en 1 variabele e.g lcavol.
• More accurate predictions by simultaneously accounting for multiple predictors
• Estimate for parameter 𝛽𝑣 does not only capture the effect of tumor volume.
• 𝛽𝑣 average difference for log-psa for patients that differ in 1 unit of the log tumor volume.
• Even if lcavol is not associated with lpsa then patients with a higher tumor volume can have a higher

lpsa because their semen vesicles are affected (svi status 1). → confounding.
• Compare patients with same svi status
• Is posible in multiple linear model

2.1 Statistical model
• 𝑝 − 1 predictors 𝑋1, ..., 𝑋𝑝−1 and outcome 𝑌 for 𝑛 subjecten.
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𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ... + 𝛽𝑝−1𝑋𝑖𝑝−1 + 𝜖𝑖 (1)
• 𝛽0, 𝛽1, ..., 𝛽𝑝−1 unknown parameters
• 𝜖𝑖 residuals that cannot be explained by predictors
• Estimation by least squares method

Model allows to

1. predict the expected outcome for subjects given their values 𝑥1, ..., 𝑥𝑝−1 for the predictor variables.
𝐸[𝑌 |𝑋1 = 𝑥1, … 𝑋𝑝−1 = 𝑥𝑝−1] = ̂𝛽0 + ̂𝛽1𝑥1 + ... + ̂𝛽𝑝−1𝑥𝑝−1.

2. Does the average outcome differ between two groups of patients that differ by 𝛿 units in predictor 𝑋𝑗
but have the same value for the remaining variables {𝑋𝑘, 𝑘 = 1, ..., 𝑝, 𝑘 ≠ 𝑗}.

𝐸(𝑌 |𝑋1 = 𝑥1, ..., 𝑋𝑗 = 𝑥𝑗 + 𝛿, ..., 𝑋𝑝−1 = 𝑥𝑝−1)
−𝐸(𝑌 |𝑋1 = 𝑥1, ..., 𝑋𝑗 = 𝑥𝑗, ..., 𝑋𝑝−1 = 𝑥𝑝−1)

= 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑗(𝑥𝑗 + 𝛿) + ... + 𝛽𝑝−1𝑥𝑝−1
−𝛽0 − 𝛽1𝑥1 − ... − 𝛽𝑗𝑥𝑗 − ... − 𝛽𝑝−1𝑥𝑝−1

= 𝛽𝑗𝛿
Interpretation 𝛽𝑗:

• difference in mean outcome between subjects that differ in one unit of 𝑋𝑗, but have the same value for
the remaining predictors in the model.

or

• Effect of predictor j corrected for the remaining predictors. e.g. effect of cancer volume correct for
prostate weight and the svi status.

2.1.1 Prostate example

lmV <- lm(lpsa ~ lcavol, prostate)
summary(lmV)

Call:
lm(formula = lpsa ~ lcavol, data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.67624 -0.41648 0.09859 0.50709 1.89672

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.50730 0.12194 12.36 <2e-16 ***
lcavol 0.71932 0.06819 10.55 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7875 on 95 degrees of freedom
Multiple R-squared: 0.5394, Adjusted R-squared: 0.5346
F-statistic: 111.3 on 1 and 95 DF, p-value: < 2.2e-16
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lmVWS <- lm(lpsa ~ lcavol + lweight + svi, prostate)
summary(lmVWS)

Call:
lm(formula = lpsa ~ lcavol + lweight + svi, data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.72966 -0.45767 0.02814 0.46404 1.57012

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.26807 0.54350 -0.493 0.62301
lcavol 0.55164 0.07467 7.388 6.3e-11 ***
lweight 0.50854 0.15017 3.386 0.00104 **
sviinvasion 0.66616 0.20978 3.176 0.00203 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7168 on 93 degrees of freedom
Multiple R-squared: 0.6264, Adjusted R-squared: 0.6144
F-statistic: 51.99 on 3 and 93 DF, p-value: < 2.2e-16
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3 Inference in multiple linear models
If data are representative than the least squares estimators for the intercept and slopes are unbiased.

𝐸[ ̂𝛽𝑗] = 𝛽𝑗, 𝑗 = 0, … , 𝑝 − 1

• Gain insight in the distribution of the parameter estimators so as to generalize the effect in the sample
to the population.

• Additional assumptions are needed for inference.

1. Linearity

2. Independence

3. Homoscedasticity of equal variance

4. Normality: residuals 𝜖𝑖 are normally distributed.

Under these assumptions:
𝜖𝑖 ∼ 𝑁(0, 𝜎2)

and
𝑌𝑖 ∼ 𝑁(𝛽0 + 𝛽1𝑋𝑖1 + … + 𝛽𝑝−1𝑋𝑖𝑝−1, 𝜎2)

• Slopes are again more precise if the predictor values have a larger range.

• Conditional variance (𝜎2) can again be estimated based on the mean squared error (MSE):

�̂�2 = 𝑀𝑆𝐸 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖1 − … − ̂𝛽𝑝−1𝑋𝑖𝑝−1)
2

𝑛 − 𝑝 =

𝑛
∑
𝑖=1

𝑒2
𝑖

𝑛 − 𝑝

Again hypothesis tests and confidence intervals by

𝑇𝑘 =
̂𝛽𝑘 − 𝛽𝑘

𝑆𝐸( ̂𝛽𝑘)
met 𝑘 = 0, … , 𝑝 − 1

If all assumptions are satisfied than the statistics 𝑇𝑘 t-distributed with 𝑛 − 𝑝 degrees of freedom.

When normality thus not hold, but lineariteit, independence and homoscedasticity are valid we can again
adopt the CLT that states that statistic 𝑇𝑘 is approximately normally distributed in large samples.

We can build confidence intervals on the slopes by:

[ ̂𝛽𝑗 − 𝑡𝑛−𝑝,𝛼/2SE ̂𝛽𝑗
, ̂𝛽𝑗 + 𝑡𝑛−𝑝,𝛼/2SE ̂𝛽𝑗

]

confint(lmVWS)

2.5 % 97.5 %
(Intercept) -1.3473509 0.8112061
lcavol 0.4033628 0.6999144
lweight 0.2103288 0.8067430
sviinvasion 0.2495824 1.0827342
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Formal hypothesis tests:
𝐻0 ∶ 𝛽𝑗 = 0
𝐻1 ∶ 𝛽𝑗 ≠ 0

With test statistic

𝑇 =
̂𝛽𝑗 − 0

𝑆𝐸( ̂𝛽𝑗)
which follows a t-distribution with 𝑛 − 𝑝 degrees of freedom under 𝐻0

summary(lmVWS)

Call:
lm(formula = lpsa ~ lcavol + lweight + svi, data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.72966 -0.45767 0.02814 0.46404 1.57012

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.26807 0.54350 -0.493 0.62301
lcavol 0.55164 0.07467 7.388 6.3e-11 ***
lweight 0.50854 0.15017 3.386 0.00104 **
sviinvasion 0.66616 0.20978 3.176 0.00203 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7168 on 93 degrees of freedom
Multiple R-squared: 0.6264, Adjusted R-squared: 0.6144
F-statistic: 51.99 on 3 and 93 DF, p-value: < 2.2e-16

3.1 Assess the model assumptions

plot(lmVWS)
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3.2 The non additive multiple linear model
3.2.1 Interaction between two continuous variables

The previous model is additive because the contribution of the cancer volume on lpsa does not depend on
the height of the prostate weight and the svi status.

The slope for lcavol does not depend on log prostate weight and svi.

𝛽0 + 𝛽𝑣(𝑥𝑣 + 𝛿𝑣) + 𝛽𝑤𝑥𝑤 + 𝛽𝑠𝑥𝑠 − 𝛽0 − 𝛽𝑣𝑥𝑣 − 𝛽𝑤𝑥𝑤 − 𝛽𝑠𝑥𝑠 = 𝛽𝑣𝛿𝑣

The svi status and the log-prostategewicht (𝑥𝑤) do not influence the contribution of the log-tumor volume
(𝑥𝑣) to the average log-PSA and vice versa.

• It is however possible that the association of lpsa and lcavol depends on the prostate weight.
• The average difference in lpsa for patients that differ in one unit of the log-tumor volume can for

instance can be higher for patients wiht a high tumor weight then for those with a low tumor weight.
• The effect of the tumor volume on the PSA depends on the prostate weight.

To model this interactie or effect modification we can add a product term of both variables to the model

𝑌𝑖 = 𝛽0 + 𝛽𝑣𝑥𝑖𝑣 + 𝛽𝑤𝑥𝑖𝑤 + 𝛽𝑠𝑥𝑖𝑠 + 𝛽𝑣𝑤𝑥𝑖𝑣𝑥𝑖𝑤 + 𝜖𝑖

This term quantifies the interactie-effect of predictors 𝑥𝑣 en 𝑥𝑤 on the mean outcome.
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Terms 𝛽𝑣𝑥𝑖𝑣 and 𝛽𝑤𝑥𝑖𝑤 are referred to as main effects of predictors 𝑥𝑣 and 𝑥𝑤.

The difference in lpsa for patients that differ 1 unit in 𝑋𝑣 and have an equal log prostate weight and the
same svi status now becomes:

𝐸(𝑌 |𝑋𝑣 = 𝑥𝑣 + 1, 𝑋𝑤 = 𝑥𝑤, 𝑋𝑠 = 𝑥𝑠) − 𝐸(𝑌 |𝑋𝑣 = 𝑥𝑣, 𝑋𝑤 = 𝑥𝑤, 𝑋𝑠 = 𝑥𝑠)
= 𝛽0 + 𝛽𝑣(𝑥𝑣 + 1) + 𝛽𝑤𝑥𝑤 + 𝛽𝑠𝑥𝑠 + 𝛽𝑣𝑤(𝑥𝑣 + 1)𝑥𝑤 − 𝛽0 − 𝛽𝑣𝑥𝑣 − 𝛽𝑤𝑥𝑤 − 𝛽𝑠𝑥𝑠 − 𝛽𝑣𝑤(𝑥𝑣)𝑥𝑤
= 𝛽𝑣 + 𝛽𝑣𝑤𝑥𝑤

lmVWS_IntVW <- lm(lpsa ~ lcavol + lweight + svi + lcavol:lweight, prostate)
summary(lmVWS_IntVW)

Call:
lm(formula = lpsa ~ lcavol + lweight + svi + lcavol:lweight,

data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.65886 -0.44673 0.02082 0.50244 1.57457

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6430 0.7030 -0.915 0.36278
lcavol 1.0046 0.5427 1.851 0.06734 .
lweight 0.6146 0.1961 3.134 0.00232 **
sviinvasion 0.6859 0.2114 3.244 0.00164 **
lcavol:lweight -0.1246 0.1478 -0.843 0.40156
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7179 on 92 degrees of freedom
Multiple R-squared: 0.6293, Adjusted R-squared: 0.6132
F-statistic: 39.05 on 4 and 92 DF, p-value: < 2.2e-16
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• Note that the interaction effect that is observed is not statistically significant (p=0.4).
• The main effects that are involved in the interaction cannot be interpreted separately from one another.
• We will therefore remove non-significant interaction terms from the model.
• Upon removal of non-significant interaction terms the main effects can be interpreted.

3.3 Interaction between a continuous variable and a factor variable
Interaction between lcavol ↔ svi and lweight ↔ svi.

The model becomes

𝑌 = 𝛽0 + 𝛽𝑣𝑋𝑣 + 𝛽𝑤𝑋𝑤 + 𝛽𝑠𝑋𝑠 + 𝛽𝑣𝑠𝑋𝑣𝑋𝑠 + 𝛽𝑤𝑠𝑋𝑤𝑋𝑠 + 𝜖

lmVWS_IntVS_WS <- lm(lpsa ~ lcavol + lweight + svi + svi:lcavol + svi:lweight, data = prostate)
summary(lmVWS_IntVS_WS)

Call:
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lm(formula = lpsa ~ lcavol + lweight + svi + svi:lcavol + svi:lweight,
data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.50902 -0.44807 0.06455 0.45657 1.54354

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.52642 0.56793 -0.927 0.356422
lcavol 0.54060 0.07821 6.912 6.38e-10 ***
lweight 0.58292 0.15699 3.713 0.000353 ***
sviinvasion 3.43653 1.93954 1.772 0.079771 .
lcavol:sviinvasion 0.13467 0.25550 0.527 0.599410
lweight:sviinvasion -0.82740 0.52224 -1.584 0.116592
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7147 on 91 degrees of freedom
Multiple R-squared: 0.6367, Adjusted R-squared: 0.6167
F-statistic: 31.89 on 5 and 91 DF, p-value: < 2.2e-16

Because 𝑋𝑆 is a dummy variabele we obtain to distinct regression planes:

1. Model for 𝑋𝑠 = 0:
𝑌 = 𝛽0 + 𝛽𝑣𝑋𝑣 + 𝛽𝑤𝑋𝑤 + 𝜖

where the main effects are the slope for lcavol and lweight
2. and model for 𝑋𝑠 = 1:

𝑌 = 𝛽0 + 𝛽𝑣𝑋𝑣 + 𝛽𝑠 + 𝛽𝑤𝑋𝑤 + 𝛽𝑣𝑠𝑋𝑣 + 𝛽𝑤𝑠𝑋𝑤 + 𝜖
= (𝛽0 + 𝛽𝑠) + (𝛽𝑣 + 𝛽𝑣𝑠)𝑋𝑣 + (𝛽𝑤 + 𝛽𝑤𝑠)𝑋𝑤 + 𝜖

with intercept 𝛽0 + 𝛽𝑠 and slopes 𝛽𝑣 + 𝛽𝑣𝑠 and 𝛽𝑤 + 𝛽𝑤𝑠
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4 ANOVA table
The total SSTot is again

SSTot =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2.

The residual sum of squares remains similar

SSE =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)2.

Again the total sum of squares can be decomposed in ,

SSTot = SSR + SSE,

with
SSR =

𝑛
∑
𝑖=1

( ̂𝑌𝑖 − ̄𝑌 )2.
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We have following degrees of freedom and mean sum of squares:

• SSTot has 𝑛 − 1 degrees of freedom and SSTot/(𝑛 − 1) is an estimator for the total variance in 𝑌
(marginal distribution of 𝑌 ).

• SSE has 𝑛 − 𝑝 degrees of freedom and MSE = SSE/(𝑛 − 𝑝) is an schatter for the residual variance of
𝑌 given the predictores (i.e. an estimator for the residual variance 𝜎2 of the error term 𝜖).

• SSR has 𝑝 −1 degrees of freedom and MSR = SSR/(𝑝 −1) is the mean sum of squares of the regression.

The determination coefficients remains as before, i.e.

𝑅2 = 1 − SSE
SSTot = SSR

SSTot
and is the fraction of the total variability that can be explained by the regression model.

Teststatistic 𝐹 = MSR/MSE is under 𝐻0 ∶ 𝛽1 = … = 𝛽𝑝−1 = 0 distributed by an F distribution: 𝐹𝑝−1;𝑛−𝑝.

Call:
lm(formula = lpsa ~ lcavol + lweight + svi, data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.72966 -0.45767 0.02814 0.46404 1.57012

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.26807 0.54350 -0.493 0.62301
lcavol 0.55164 0.07467 7.388 6.3e-11 ***
lweight 0.50854 0.15017 3.386 0.00104 **
sviinvasion 0.66616 0.20978 3.176 0.00203 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7168 on 93 degrees of freedom
Multiple R-squared: 0.6264, Adjusted R-squared: 0.6144
F-statistic: 51.99 on 3 and 93 DF, p-value: < 2.2e-16

4.1 Additional sums of squares
Consider 2 models for the predictors 𝑥1 en 𝑥2:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝜖𝑖,
with 𝜖𝑖 iid 𝑁(0, 𝜎2

1), and
𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝜖𝑖,

with 𝜖𝑖 iid 𝑁(0, 𝜎2
2).

for the first (gereduceerde) model we have decomposition

SSTot = SSR1 + SSE1

en for the second non-reduced model we have

SSTot = SSR2 + SSE2
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(SSTot is of course the same because it only depends on the response and not of the models).

Definition of additional sum of squares The additional sum of squares of predictor 𝑥2 as compared to
the model with only 𝑥1 as predictor is given by

SSR2∣1 = SSE1 − SSE2 = SSR2 − SSR1.

Note that, SSE1 − SSE2 = SSR2 − SSR1 is triviaal is because of the decomposition of the total sum of
squares.

The additional sum of squares SSR2∣1 can simply be interpreted as the additional variability that can be
explained by adding predictor 𝑥2 to the model with predictor 𝑥1.

With this sum of squares we can further decompose the total sum of squares

SSTot = SSR1 + SSR2∣1 + SSE.
which follows directly from the definition SSR2∣1.

Extension: (𝑠 < 𝑝 − 1)
𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑠𝑥𝑖𝑠 + 𝜖𝑖

with 𝜖𝑖 iid 𝑁(0, 𝜎2
1), and (𝑠 < 𝑞 ≤ 𝑝 − 1)

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑠𝑥𝑖𝑠 + 𝛽𝑠+1𝑥𝑖𝑠+1 + ⋯ 𝛽𝑞𝑥𝑖𝑞 + 𝜖𝑖

with 𝜖𝑖 iid 𝑁(0, 𝜎2
2).

The additional sum of squares of predictor 𝑥𝑠+1, … , 𝑥𝑞 compared to a model with only predictors 𝑥1, … , 𝑥𝑠
is given by

SSR𝑠+1,…,𝑞∣1,…,𝑠 = SSE1 − SSE2 = SSR2 − SSR1.

4.1.1 Type I Sums of Squares

Suppose that 𝑝 − 1 predictors are considered, and suppose the following sequence of models (𝑠 = 2, … , 𝑝 − 1)

𝑌𝑖 = 𝛽0 +
𝑠

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖

wuth 𝜖𝑖 iid 𝑁(0, 𝜎2).
• The corresponding sum of squares are denoted as SSR𝑠 and SSE𝑠.
• The sequence of models gives rise to the following sums of squares: SSR𝑠∣1,…,𝑠−1.
• The latter sum of squares is referred to as type I sums of squares. Note that they depend on the order

in which the models were added to the model.

We can show for model Model with 𝑠 = 𝑝 − 1 that

SSTot = SSR1 + SSR2∣1 + SSR3∣1,2 + ⋯ + SSR𝑝−1∣1,…,𝑝−2 + SSE,
with SSE the residual sum of squares of the model with all 𝑝 − 1 predictors

SSR1 + SSR2∣1 + SSR3∣1,2 + ⋯ + SSR𝑝−1∣1,…,𝑝−2 = SSR

with SSR the sum of squares of all 𝑝 − 1 predictors.
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• The interpretation of each term depends on the order of the sequence of the regression models.

• Each type I SSR involves 1 predictor and has 1 degree of freedom (note that multiple dummies for a
factor are typically removed together).

• For each type I SSR term the mean sum of squares is defined by MSR𝑗∣1,…,𝑗−1 = SSR𝑗∣1,…,𝑗−1/1.
• And teststatistic 𝐹 = MSR𝑗∣1,…,𝑗−1/MSE follows a 𝐹1;𝑛−(𝑗+1) distribution under 𝐻0 ∶ 𝛽𝑗 = 0 with 𝑠 = 𝑗.
• These sums of squares are the default sum of squares in the anova function of R.

4.1.2 Type III Sums of squares

Type III sum of squares for predictor 𝑥𝑗 are given by the additional sum of squares

SSR𝑗∣1,…,𝑗−1,𝑗+1,…,𝑝−1 = SSE1 − SSE2

• SSE2 the sum of squares of the residuals of the model with all 𝑝 − 1 predictors.
• SSE1 sum of squares of the residuals with all 𝑝 − 1 predictors, except for predictor 𝑥𝑗.

The type III sum of squares SSR𝑗∣1,…,𝑗−1,𝑗+1,…,𝑝−1 quantify the contribution in the total variance of the
outcome explained by 𝑥𝑗 that cannot be explained by the remaining 𝑝 − 2 predictors.

The type III sum of squares has 1 degree of freedom because it involves 1 𝛽-parameter.

For each type III SSR term the mean sum of squares is defined by MSR𝑗∣1,…,𝑗−1,𝑗+1,…,𝑝−1 = SSR𝑗∣1,…,𝑗−1,𝑗+1,…,𝑝−1/1.

Teststatistiek 𝐹 = MSR𝑗∣1,…,𝑗−1,𝑗+1,…,𝑝−1/MSE is 𝐹1;𝑛−𝑝 distributed under 𝐻0 ∶ 𝛽𝑗 = 0.

4.2 We can obtain these sums of squares using the Anova function from the car
package.

library(car)
Anova(lmVWS, type = 3)

Anova Table (Type III tests)

Response: lpsa
Sum Sq Df F value Pr(>F)

(Intercept) 0.125 1 0.2433 0.623009
lcavol 28.045 1 54.5809 6.304e-11 ***
lweight 5.892 1 11.4678 0.001039 **
svi 5.181 1 10.0841 0.002029 **
Residuals 47.785 93
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-values are identical to those of two-sided t-tests

Note, however, that all dummies for factors with multiple levels will be taken out of the model at once. So
then the type III sum of squares will have as many degrees of freedom as the number of dummies and an
omnibus test is performed for the effect of the factor.
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5 Diagnostics
5.1 Multicollinearity

Call:
lm(formula = lpsa ~ lcavol + lweight + svi, data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.72966 -0.45767 0.02814 0.46404 1.57012

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.26807 0.54350 -0.493 0.62301
lcavol 0.55164 0.07467 7.388 6.3e-11 ***
lweight 0.50854 0.15017 3.386 0.00104 **
sviinvasion 0.66616 0.20978 3.176 0.00203 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7168 on 93 degrees of freedom
Multiple R-squared: 0.6264, Adjusted R-squared: 0.6144
F-statistic: 51.99 on 3 and 93 DF, p-value: < 2.2e-16

Call:
lm(formula = lpsa ~ lcavol + lweight + svi + lcavol:lweight,

data = prostate)

Residuals:
Min 1Q Median 3Q Max

-1.65886 -0.44673 0.02082 0.50244 1.57457

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6430 0.7030 -0.915 0.36278
lcavol 1.0046 0.5427 1.851 0.06734 .
lweight 0.6146 0.1961 3.134 0.00232 **
sviinvasion 0.6859 0.2114 3.244 0.00164 **
lcavol:lweight -0.1246 0.1478 -0.843 0.40156
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7179 on 92 degrees of freedom
Multiple R-squared: 0.6293, Adjusted R-squared: 0.6132
F-statistic: 39.05 on 4 and 92 DF, p-value: < 2.2e-16

• Estimates are different from those in the additive model and the standard errors are much higher!

• This is caused by the multicollinearity problem.

• If 2 predictors are strongly correlated than they share a lot of information.
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• It is therefore difficult to estimate the individual contribution of each predictor on the outcome.

• Least squares estimators become instable.

• Standard errors become inflated.

• As long as we only do predictions on the basis of the regression model without extrapolating beyond
the range of the predictors observed in the sample multicolinearity is not problematic.

• But for inference it is problematic.

cor(cbind(prostate$lcavol, prostate$lweight, prostate$lcavol * prostate$lweight))

[,1] [,2] [,3]
[1,] 1.0000000 0.1941283 0.9893127
[2,] 0.1941283 1.0000000 0.2835608
[3,] 0.9893127 0.2835608 1.0000000

• High correlation between log-tumor volume and interaction.
• It is a known problem for higher order terms (interactions and quadratic terms)

• Detect multicollinearity based on the correlation matrix or scatterplot matrix is suboptimal.
• In models with 3 or more predictors, say X1, X2, X3 we can have high multicollinearity while alle

pairswise correlations between the predictors are low.
• We also have multicollinearity if there is a high correlation between X1 and a linair combination of X2

and X3.

5.1.1 Variance inflation factor (VIF)

For parameter 𝑗 in de regression model
VIF𝑗 = (1 − 𝑅2

𝑗 )−1

• In this expression 𝑅2
𝑗 is the multiple determination coefficient of the linear regression of predictor j on

the remaining predictors in the model.
• VIF is 1 if predictor j is not linear associated with the remaining predictors in the model.
• VIF is larger than 1 in all andere cases.
• VIF is the factor with which the observed variance inflates as compared to a model for which all

predictoren would be independend.
• VIF > 10 → strong multicollinearity.
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5.1.2 Body fat example
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Call:
lm(formula = Body_fat ~ Triceps + Thigh + Midarm, data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-3.7263 -1.6111 0.3923 1.4656 4.1277

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.085 99.782 1.173 0.258
Triceps 4.334 3.016 1.437 0.170
Thigh -2.857 2.582 -1.106 0.285
Midarm -2.186 1.595 -1.370 0.190

Residual standard error: 2.48 on 16 degrees of freedom
Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641
F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

vif(lmFat)
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Triceps Thigh Midarm
708.8429 564.3434 104.6060

Call:
lm(formula = Midarm ~ Triceps + Thigh, data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-0.58200 -0.30625 0.02592 0.29526 0.56102

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.33083 1.23934 50.29 <2e-16 ***
Triceps 1.88089 0.04498 41.82 <2e-16 ***
Thigh -1.60850 0.04316 -37.26 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.377 on 17 degrees of freedom
Multiple R-squared: 0.9904, Adjusted R-squared: 0.9893
F-statistic: 880.7 on 2 and 17 DF, p-value: < 2.2e-16

We evaluate the VIF in the prostate cancer example for the additive model and the model with interactie.
vif(lmVWS)

lcavol lweight svi
1.447048 1.039188 1.409189
vif(lmVWS_IntVW)

lcavol lweight svi lcavol:lweight
76.193815 1.767121 1.426646 80.611657

• Inflation in interaction terms often caused because main effect get another interpretation.

5.2 Influential observations

set.seed(112358)
nobs <- 20
sdy <- 1
x <- seq(0, 1, length = nobs)
y <- 10 + 5 * x + rnorm(nobs, sd = sdy)
x1 <- c(x, 0.5)
y1 <- c(y, 10 + 5 * 1.5 + rnorm(1, sd = sdy))
x2 <- c(x, 1.5)
y2 <- c(y, y1[21])
x3 <- c(x, 1.5)
y3 <- c(y, 11)
plot(x, y, xlim = range(c(x1, x2, x3)), ylim = range(c(y1, y2, y3)))
points(c(x1[21], x2[21], x3[21]), c(y1[21], y2[21], y3[21]), pch = as.character(1:3), col = 2:4)
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abline(lm(y ~ x), lwd = 2)
abline(lm(y1 ~ x1), col = 2, lty = 2, lwd = 2)
abline(lm(y2 ~ x2), col = 3, lty = 3, lwd = 2)
abline(lm(y3 ~ x3), col = 4, lty = 4, lwd = 2)
legend("topleft", col = 1:4, lty = 1:4, legend = paste("lm", c("", as.character(1:3))), text.col = 1:4)
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• It is not desirable that a single observation largely influences the result of a linear regression analysis

• Diagnostics allow us to detect extreme observations.

• Studentized residuals to spot outliers

• Leverage to spot observations with extreem covariate pattern

5.2.1 Cook’s distance

• A statistics to assess the influence the effect of a single observation on the regression analysis

• Cook’s distance for observation i is diagnostic measure for this particular observation on all all predic-
tions or on all estimated parameters.

𝐷𝑖 =
∑𝑛

𝑗=1( ̂𝑌𝑗 − ̂𝑌𝑗(𝑖))2

𝑝MSE

• Observation 𝑖 has a large influence on the regression parameters and predictions if the Cook’s distance
𝐷𝑖 is large.
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• Extreme Cook’s distance if it is larger than the 50% quantile of an 𝐹𝑝+1,𝑛−(𝑝+1)-distribution.
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• Once we established that an observation is influential we can use DFBETAS to find the parameters
for which the estimates are largely affected by the observation

• DFBETAS of observatie i is a diagnostic measure for each model parameter separately.

DFBETAS𝑗(𝑖) =
̂𝛽𝑗 − ̂𝛽𝑗(𝑖)

SD( ̂𝛽𝑗)

• DFBETAS is extreme when it is larger than 1 in small to moderate datasets or exceeds 2/√𝑛 in large
datasets.
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6 Constrasts
• In more complex designs that are modelled using general linear models one often has to assess multiple

hypotheses.
• Moreover these hypotheses can typically not always be translated into a test on one parameter, but in

a linear combination of model parameters.
• A linear combination of model parameters is also referred to as a contrast.

6.1 NHANES example
• Suppose that researchers want to assess the association between age and bloodpressure for American

children.

• Possibly this association will differ between boys and girls.

• They want to assess following hypotheses:

– Is there an association between age and blood pressure for girls?
– Is there an association between age and blood pressure for boys?
– Is the association between age and blood pressure different for boys and girls?

6.2 Model
We fit a model for the average systolic blood pressure (BPSysAve) using age (in months), gender and the
interaction between age and gender for children between 6 and 18 years from the NHANES study.
library(NHANES)
bpData <- NHANES %>%
filter(

Age >=6 &
Age <= 18 &
!is.na(BPSysAve) &
!is.na(AgeMonths)

)

mBp1 <- lm(BPSysAve ~ AgeMonths * Gender, bpData)
par(mfrow = c(2, 2))
plot(mBp1)
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Assumptions?

• No deviations from Lineariteit
• Assumption of homoscedasticity seems to be valid
• Slight deviations from normality, indication for some tail to the right
• Large dataset (n = 703) so we can adopt the CLT

6.3 Inference

summary(mBp1)

Call:
lm(formula = BPSysAve ~ AgeMonths * Gender, data = bpData)

Residuals:
Min 1Q Median 3Q Max

-30.487 -5.871 -0.890 5.265 33.882

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.90682 2.29792 40.431 < 2e-16 ***
AgeMonths 0.05943 0.01371 4.336 1.66e-05 ***
Gendermale -11.35031 3.25237 -3.490 0.000514 ***
AgeMonths:Gendermale 0.09294 0.01943 4.783 2.11e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 9.65 on 699 degrees of freedom
Multiple R-squared: 0.1939, Adjusted R-squared: 0.1904
F-statistic: 56.04 on 3 and 699 DF, p-value: < 2.2e-16

The research questions translate to following nullhypotheses:

1. Association between blood pressure and age for girls?

𝐻0 ∶ 𝛽AgeMonths = 0 vs 𝐻1 ∶ 𝛽AgeMonths ≠ 0

2. Association between blood pressure and age for boys?

𝐻0 ∶ 𝛽AgeMonths + 𝛽AgeMonths:Gendermale = 0 vs 𝐻1 ∶ 𝛽AgeMonths + 𝛽AgeMonths:Gendermale ≠ 0

3. Is the association between blood pressure and age different for girls and boys?

𝐻0 ∶ 𝛽AgeMonths:Gendermale = 0 vs 𝐻1 ∶ 𝛽AgeMonths:Gendermale ≠ 0

• We can assess hypotheses 1 and 3 immediately using the output of the model.
• Hypotheses 2 is a linear combination of two parameters.
• We also need multiple tests for assessing the association between the systolic blood pressure and Age.

We can again use an Anova approach.

1. We first assess the omnibus hypothesis that there is no association between age and blood pressure.

𝐻0 ∶ 𝛽AgeMonths = 𝛽AgeMonths + 𝛽AgeMonths:Gendermale = 𝛽AgeMonths:Gendermale = 0
• which simplifies to assessing

𝐻0 ∶ 𝛽AgeMonths = 𝛽AgeMonths:Gendermale = 0
• We can do this by comparing two models: the full model with an effect for Gender, AgeMonths and

Gender x AgeMonths interaction against a reduced model with only Gender.

2. If we can reject this hypothesis we can again do a posthoc analysis for each of the contrasts.

6.3.1 Omnibus test

mBp0 <- lm(BPSysAve ~ Gender, bpData)
anova(mBp0, mBp1)

Analysis of Variance Table

Model 1: BPSysAve ~ Gender
Model 2: BPSysAve ~ AgeMonths * Gender
Res.Df RSS Df Sum of Sq F Pr(>F)

1 701 78239
2 699 65095 2 13145 70.576 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is an extremely significant association between the systolic blood pressure and Age (𝑝 << 0.001).

6.3.2 Posthoc tests

For the posthoc tests we will again build upon the multcomp package.
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library(multcomp)
bpPosthoc <- glht(mBp1, linfct = c(
"AgeMonths = 0",
"AgeMonths + AgeMonths:Gendermale = 0",
"AgeMonths:Gendermale = 0"

))
bpPosthoc %>% summary()

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = BPSysAve ~ AgeMonths * Gender, data = bpData)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

AgeMonths == 0 0.05943 0.01371 4.336 3.69e-05 ***
AgeMonths + AgeMonths:Gendermale == 0 0.15237 0.01377 11.061 < 1e-05 ***
AgeMonths:Gendermale == 0 0.09294 0.01943 4.783 < 1e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
bpPosthocCI <- bpPosthoc %>% confint()
bpPosthocCI

Simultaneous Confidence Intervals

Fit: lm(formula = BPSysAve ~ AgeMonths * Gender, data = bpData)

Quantile = 2.3215
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

AgeMonths == 0 0.05943 0.02761 0.09124
AgeMonths + AgeMonths:Gendermale == 0 0.15237 0.12039 0.18434
AgeMonths:Gendermale == 0 0.09294 0.04783 0.13805

Note that the glht function allows us to define the contrasts by explicitely defining the nullhypotheses using
the names of the model parameters.

6.4 Conclusion
We can conclude that the association between age and blood pressure is extremely significant (p « 0.001).

The blood pressure for girls that differ in age is on average 0.059 mm Hg higher per month of age difference
for the eldest girl (p « 0.001, 95% CI [0.028, 0.091].

The blood pressure for boys that differ in age is on average 0.152 mm Hg higher per month of age difference
for the eldest boy (p « 0.001, 95% CI [0.12, 0.184].

The average blood pressure difference between subjects that differ in age is on average 0.093 mm Hg/month
higher for boys than for girls (p « 0.001, 95% CI [0.048, 0.138]).
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