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1 Prostacyclin Example

Researchers study the effect of arachidonic acid on prostacyclin level in blood plasma. They use 3 different
concentrations of arachidonic acid:

e low,
¢ medium and

e high dose

Each treatment is adopted to 12 rats. They measure the prostacyclin levels in blood plasma using an elisa
fluorescence measurement.

prostacyclin <- read_tsv("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/prostacyclin.txt")
prostacyclin$dose <- as.factor(prostacyclin$dose)
head(prostacyclin)

# A tibble: 6 x 2
prostac dose
<dbl> <fct>
1 19.2 10
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10.8 10
33.6 10
11.9 10
15.9 10
33.3 10
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1.1 Data exploration

prostacyclin %>7

ggplot(aes(x = dose, y = prostac, fill = dose)) +

geom_boxplot() +
geom_point(position = "jitter") +
ylab("prostacyclin (ng/ml)")
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prostacyclin %>7
ggplot(aes(sample = prostac)) +
geom_qq() +
geom_qgq_line() +
facet_grid(~dose)
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prostacSum <- prostacyclin %>
group_by(dose) %>/
summarize (
mean = mean(prostac, na.rm = TRUE),
sd = sd(prostac, na.rm = TRUE),
n =n(Q
)

prostacSum

# A tibble: 3 x 4

dose mean sd n
<fct> <dbl> <dbl> <int>
110 40.1 23.7 12
2 25 48.4 21.3 12
3 50 83.4 18.7 12

set.seed(112)

mean0 <- prostacyclin %>% pull(prostac) %>’ mean

Sp = sqrt(sum(prostacSum$sd”2* (prostacSum$n-1))/sum(prostacSum$n-1))

par(mfrow = c(3, 3))

set.seed(354)

for (i in 1:9) plot(rnorm(meanO,Sp,n=sum(prostacSum$n)) ~ dose, prostacyclin, ylab = pasteO("iid N(",ro
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The data in the three groups is approximately Normally distributed with equal variance:
Y;|group j ~ N(u;,0°),

with j=1, 2, 3

1.2 Research Question
Research question can translated in the following hypotheses

o H,: the arachidonic acid concentration has no effect on the mean prostacyclin level in blood plasma
in rats

Hy:py = pg = pg

e H,: the arachidonic acid concentration has an effect on the mean prostacyclin level in blood plasma
in rats, which implies that the at least two means are different.

In terms of the model parameters this becomes

Hy s py = g = pig

and
leajake{la'"ag}:uj#ﬂk

Alternative approach: split null hypothesis in partial hypotheses:

Hoji, 1y = py, versus Hyjp + 1y,



Each hypothesis can be tested via two-sample t-tests — multiple testing problem + loss of power.

— assess Hy @ iy = py = g with a single test.

2 Analyse of Variance

Correct solution for testing problem: ANalysis Of VAriance (ANOVA)

o We develop the method for 3 groups (prostacyclin example)

e Model data with linear model by using dummy variables.

e 1 dummy variable less than the number of groups. Here we need 2 dummy variables.
o Generalizing to g groups g > 3 is trivial (extra dummy variables)

2.1 Model
Y; 9(@i1,T0) + €
Yi = Bo+ Bz +Boxint+e
« Y, de outcome for observation i (i = 1,...,n)

o ¢iid.N(0,0?%)
e and dummy variables

S 1  if observation i belongs to middle dose group (M)
71 0 if observation i belongs to other dose group

_J 1 if observation ¢ belongs to high dose group (H)
iz 0 if observation ¢ belongs to other dose group

o Low dose group (L) with z;; = z;, = 0 is reference group
Regression-model can be rewritten as a r}’(lcr(ﬁioesle for each gronp
Yidose=m = DBo+081+¢
Yvﬂdose:H = BO + 52 t€

with €; ~ N(0,02)

Interpretation of mgiel paramatetsreatment with low dose group L]
B, = (By+PB1) — By =E[Y; | treatment M] — E[Y; | treatment L]
B (By + By) — By = E[Y; | treatment H] — E[Y] | treatment L] .
1. f, is the mean outcome for group L
2. 3, is effect (difference in mean concentration) of group M vs group L
3. B, is effect of group H vs group L

We reformulate the model by using p-notations:

Yidose=t. = Bote&=p+¢
Yidoseem = Bo+DB1+e€=ny+e¢
Yidoseeti = Bo+By+e€=p3+e.

with €; ~ N(0,02) and
p; = E[Y; | treatment group j].



Original null hypothese

Hy s py = g = pig
can be formulated as

Hy:py=pP,=0.

Model allows us to use all methods from linear regression.

e Parameter estimators for means, variances and standard errors
e Inference: Confidence intervals, hypothesis tests

— Test Hy : B; = By = 0 with F-test.

2.2 Prostacyclin example

modell <- 1lm(prostac ~ dose, data = prostacyclin)
summary (modell)
Call:
Im(formula = prostac ~ dose, data = prostacyclin)
Residuals:

Min 1Q Median 3Q Max

-35.167 -17.117 -4.958 17.927 41.133

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 40.108 6.150 6.521 2.10e-07 **x
dose25 8.258 8.698 0.949 0.349
doseb0 43.258 8.698 4.974 1.99e-05 **x*
Signif. codes: O '#*x' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.3 on 33 degrees of freedom
Multiple R-squared: 0.458, Adjusted R-squared: 0.4252
F-statistic: 13.94 on 2 and 33 DF, p-value: 4.081e-05

3 Sum of squares and Anova

Similar to simple linear regression we will use sum of squares to derive the F-test.

SSR = ) (¥,-Y)?

i=1

= Y B=Y2+D B+ B =Y+ (By+ B —Y)?
=1 i=1
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with ny, ny en ng the number of observations in each group (here n — 1 =ny, =ny = 12).

SSR = ) (¥,-Y)?

Sum of squares is again equivalent with comparison of model (1) and reduced model with an intercept,
only.

For reduced model the intercept is estimated by the sample mean.
This sum of squares has g-1=2 degrees of freedom:

— g=3 model parameters - 1 parameter to estimate overall sample mean or
— g=3 par. in complex model - 1 par. in reduced model.

Decomposition of Total Sum of Squares

The convention in the Anova setting is to denote the sum of squares as SST, the Sum of Squares of
the Treatment (treatment) or as SSBetween.

The sum of squares of the regression indeed reflects the variability between the groups.

The corresponding mean sum of squares becomes MST = SST/2.

The decomposition of SSTot can be written as

SSTot = SST + SSE

3.1.1 SSTot
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3.1.2 SST
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3.1.3 SSE

= 3 1
= O A";)
S o 1°
?E,, — o | Wi ;
g 1 - 7 | 2 5 8 A
c R S W
— alO) [0} +— 8 S
O To N W ! cs :':;:
g O | :(.ifl‘f ;(.D: g S O S
% :ItID:: . 8 e A
B | e Lee i o
S S A R . 5
o )L ¥ S °
: —o | é
I I I _ — T _ r_
10 25 50 Yi—y YiT™Y Yi7Y,
Arachidonic acid dose
3.2 Anova test
Test Hy : B; = By = 0 with F-test.
P MST
" MSE

with
o MST =SST/(g—1)
o MSE =SSE/(n —p)
o Test statistic compares the variability explained by model (MST) with the residual variability (MSE)

or

o Variability between groups (MST) to variability within groups (MSE)

e Under Hy: F'~F, ,,_,, with g=3.
3.3 Anova Table
Df Sum Sq Mean Sq F value Pr(>F)
Treatment d.f. SST SST MST F-statistiek p-waarde
Error d.f. SSE SSE MSE




anova(modell)

Analysis of Variance Table

Response: prostac

Df Sum Sq Mean Sq F value Pr(>F)
dose 2 12658 6329.0 13.944 4.081e-05 *x*x*
Residuals 33 14979 453.9

Signif. codes: O '#*x' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

3.3.1 F-distribution with critical value («=5%) and observed F-statistic for prostacyclin ex-

ample
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3.3.2 F-distributions with different number of degrees of freedom in the nominator and de-

nominator

o

- F(1,5)

F(5,5)

- F(10,30)
= —— F(20,30)
= F(50,50)
c
QO
a (9]
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c:5 —

0 1 2 3 4 5
F—statistic

3.3.3 Prostacyclin example: which groups are different?

summary (modell)

Call:
Im(formula = prostac ~ dose, data = prostacyclin)

Residuals:
Min 1Q Median 3Q Max
-35.167 -17.117 -4.958 17.927 41.133

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept)  40.108 6.150 6.521 2.10e-07 *x**
dose25 8.258 8.698 0.949 0.349
doseb0 43.258 8.698 4.974 1.99e-05 *xxx*
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

11



Residual standard error: 21.3 on 33 degrees of freedom
Multiple R-squared: 0.458, Adjusted R-squared: 0.4252
F-statistic: 13.94 on 2 and 33 DF, p-value: 4.081le-05

With model output we can assess if the mean prostacyclin concentration differs between middle and low dose
group (B3: dose25), and, between high and low dose group (S,: dose50).

The p-values do not account for multiple testing.

4 Post hoc analysis: Multiple comparisons of means

4.1 Naive method
In the first part we developed the F-test to assess

Hy:py == p, versus Hy : Hy : 3 j,k € {1,...,9} = p; # puy,

o If we reject H, we conclude that at least two means are different
e The method does not allow to identify which means are different.

A first naive method is to split H in partial hypotheses
Hyjy, + py = py, versus Hyjy 2y # py,
o Falsify partial null hypotheses with two-sample t-testen

e Comparison of group j with group k with two-sample ¢-test under the equality of means:

T'k =

With
. Sg the pooled variance estimator,

(n; —1)S87 + (n, —1)S}
n;+mn,—2

§2 =

+ with % and S} the sample variances of group j en k, respectively.
In ANOVA context we assume that the variance of all g groups is equal, i.e. the residual variance o2.
e Use of S]f is not efficient because it does not make use of all data

e We can gain efficiency by using MSE

e The t-tests are thus best based on

12



with(prostacyclin, pairwise.t.test(prostac, dose, "none"))

Pairwise comparisons using t tests with pooled SD

data: prostac and dose

10 25
25 0.34927 -
50 2e-05 0.00031

P value adjustment method: none

When we perform m-tests on the « significance level we cannot correctly control the type I error.

4.2

1.
2.

e

We show with simulation that naive method does not work

We simulate from an ANOVA model with g = 3 groups.
The means in the ANOVA model are equal to each other, so that

Hy:py = pg = pg

For each simulated dataset we conduct m = 3 pairwise two-sample t-test

As soon as one of the p-values is below significance level o = 5%, we reject Hy : u; = py = 15 because
two means are different according to the t-tests.

We rapport the relative frequency of rejection of the global null hypothesis, i.e. the probability on a
type I error Hy : py = g = i3.

g <- 3 # number of treatments (g=3)
ni <- 12 # number of observations in each group

n <- g * ni # total number of observation
alpha <- 0.05 # significance level of individual test
N <- 10000 # number of simulations

set.

trt
cnt
for

#

y

seed(302) # seed to reproduce results ezactly
<- factor(rep(l:g, ni)) # factor

<- 0 # counter for erroneous rejections

(i in 1:N) {

if (i441000==0) cat(i,"/",N,"\n")

<~ rnorm(n)

tests <- pairwise.t.test(y, trt, "none"

reject <- min(tests$p.value, na.rm = T) < alpha
if (reject) cnt <- cnt + 1

}

cnt

[1]

/ N

0.1209

Probability on the type I error equals 12.1%
It is more then twice a = 5%.

If we repeat the simulation with g = 5 groups (i.e. 10 pairwise t-tests) we find a type I error of 28.0%
instead of the desired 5%.

The simulation study illustrates the multiplicity problem

13



— Classical p-values can only be compared with the significance level «, if the conclusion is based
on a single p-value.

— Here the final decision is based on m = g X (g — 1)/2 p-values.

o We first discuss on the extension of the concept of type I errors and then introduce some solutions

4.3 Family-wise error rate

e When m > 1 tests are used to make one decision it is necessary to correct for the risk on false positive
results (type I errors).

e Most procedures for multiple testing assume that all m null hypotheses are true.

o So one tries to control the risk on at least 1 false positive on the family wise error rate (FWER)
o, typical ap = 0.05.

4.4 Bonferroni correction

When we conduct m independent test each on the significance level «, then

ap = Plat least 1 Type I fout]
= 1—-(1—-a)” <ma

o If we assess b tests on the 5% significance level then the FWER ~ 25%. {10pt}
o By conducting them at the 1% significance level the FWER =~ 5%.

e The Bonferroni correction controls the FWER on af by setting
a=ap/m
for each of the m pairwise comparisons

An alternative approach is to report

1. adjusted p-values that can be compared to the FWER a level:
p =min(m x p,1)

2. and (1 — ap/m)100% confidence intervals.

4.4.1 Prostacyclin example

with(prostacyclin, pairwise.t.test(prostac, dose, data = prostacyclin, p.adjust.method = "bonferroni"))

Pairwise comparisons using t tests with pooled SD
data: prostac and dose

10 25
25 1.00000 -
50 6e-05 0.00094

P value adjustment method: bonferroni

o The conclusions remain similar, except that the FWER, is now controlled at ap = 5% and that the
p-values are larger with a factor 3.

14



The same analysis can be conducted in the multcomp R package that is developed for multiple testing in
linear models.

library(multcomp)

modell.mcp <- glht(modell, linfct = mcp(dose = "Tukey"))
summary (modell.mcp, test = adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = prostac ~ dose, data = prostacyclin)

Linear Hypotheses:
Estimate Std. Error t value Pr(>ltl)

26 - 10 =0 8.258 8.698 0.949 1.000000

50 - 10 == 0 43.258 8.698 4.974 5.98e-05 *xx

50 - 256 == 0  35.000 8.698 4.024 0.000943 *xx*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

Note, that the user has to define custum functions to obtain Bonferonni adjusted confidence intervals.
o Bonferonni confidence intervals are not implemented because better methods exist for multiple testing.

e The function below is added here merely for completeness, but we will generally use the default method
for multiple testing in multcomp.

calpha_bon_t <- function(object, level) {

abs (
qt (
(1 - level) / 2 / nrow(object$linfct),
object$df
)
)

}

confint (modell.mcp, calpha = calpha_bon_t)

Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = prostac ~ dose, data = prostacyclin)
Quantile = 2.5222

95% confidence level

Linear Hypotheses:
Estimate lwr upr

15



256 - 10 == 0 8.2583 -13.6790 30.1957
50 - 10 == 0 43.2583 21.3210 65.1957
50 - 26 == 0 35.0000 13.0626 ©56.9374

4.4.2 Evaluate Bonferroni method via simulation

g <- 3 # number of treatments (g=3)
ni <- 12 # number of observations in each group
n <- g * ni # totaal number observation
alpha <- 0.05 # significance level of individual test
N <- 10000 # number of simulaties
set.seed(302) # seed to reproduce results exactly
trt <- factor(rep(l:g, ni)) # factor
cnt <- 0 # counter for erroneous rejections
for (i in 1:N) {
# if (i4%1000==0) cat(i,"/",N,"\n")
y <- rnorm(n)
tests <- pairwise.t.test(y, trt, "bonferroni")
reject <- min(tests$p.value, na.rm = T) < alpha
if (reject) cnt <- cnt + 1

}
cnt / N

[1] 0.0457
e We find an FWER of 4.6%, which is slightly conservative.
 For simulations of g = 5 group the FWER is 4.1% (more conservative).
o By using Bonferroni the probability on at least one false positive result is lower than < ap.

o Power loss because the real FWER is smaller than 5%

4.5 Tukey Method
o Less conservatieve
e Implementation approximates the null distribution of posthoc tests via simulations
e Results can change slightly if the posthoc analysis is repeated
o Details on the method falls outside the scope of the short course
¢ Is the default method in the multcomp package:
— adjusted p-values

— adjusted confidence intervals

4.5.1 Captopril example

modell.mcp <- glht(modell, linfct = mcp(dose = "Tukey"))
summary (modell.mcp)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

16



Fit: lm(formula = prostac ~ dose, data = prostacyclin)

Linear Hypotheses:
Estimate Std. Error t value Pr(>ltl)

26 - 10 == 0 8.258 8.698 0.949 0.613390

50 - 10 == 0  43.258 8.698 4.974 < 1le-04 *x*x*

50 - 26 == 0 35.000 8.698 4.024 0.000835 *xx

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

confint (modell.mcp)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = prostac ~ dose, data = prostacyclin)

Quantile = 2.4539
95%, family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
25 - 10 == 0 8.2583 -13.0849 29.6016
50 - 10 == 0 43.2583 21.9151 64.6016
50 - 256 == 0 35.0000 13.6567 56.3433

plot(confint (modell.mcp))

17



95% family—wise confidence level
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4.5.2 Evaluate Tukey method

g <- 3 # number of treatments (g9=3)

ni <- 12 # number of observations in each group

n <- g * ni # totaal number observation

alpha <- 0.05 # significance level of individual test
N <- 10000 # number of simulations

set.

trt
cnt
for
#
y

m

m.

seed(302) # seed to reproduce results exactly
<- factor(rep(l:g, ni)) # factor

<- 0 # counter for erroneous rejections

(i in 1:N) {

if (i4%1000==0) cat(<,"/",N,"\n")

<~ rnorm(n)

<= 1m(y ~ trt)

mcp <- glht(m, linfct = mcp(trt = "Tukey"))

tests <- summary(m.mcp)$test
reject <- min(as.numeric(tests$pvalues), na.rm = T) < alpha
if (reject) cnt <- cnt + 1

}

cnt

(1]

/ N

0.0503
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5 Conclusions: Prostacyclin example

Entire analysis for prostacyclin example
1. Anova before posthoc tests: F-test has a higher power than pairwise t-test

o F-test uses all data
e For F-test we do not need to correct for multiple testing: one test is conducted for the general
omnibus hypothesis

modell <- 1lm(prostac ~ dose, data = prostacyclin)
anova(modell)

Analysis of Variance Table

Response: prostac

Df Sum Sq Mean Sq F value Pr(>F)
dose 2 12658 6329.0 13.944 4.081e-05 *x*x*
Residuals 33 14979  453.9

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

modell.mcp <- glht(modell, linfct = mcp(dose = "Tukey"))
summary (modell.mcp)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = prostac ~ dose, data = prostacyclin)

Linear Hypotheses:
Estimate Std. Error t value Pr(>[tl)

256 - 10 =0 8.258 8.698 0.949 0.613433

50 - 10 == 0  43.258 8.698 4.974 < 1le-04 *x*x*

50 - 26 == 0 35.000 8.698 4.024 0.000922 *xx

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

confint (modell.mcp)

Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = prostac ~ dose, data = prostacyclin)
Quantile = 2.4526

95% family-wise confidence level

Linear Hypotheses:
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25 -
50 -
50 -

Estimate lwr upr
10 == 0  8.2583 -13.0736 29.5902
10 == 0 43.2583 21.9264 64.5902
25 == 0 35.0000 13.6681 56.3319

There is an extreme significant effect of arachidonic acid on the average prostacyclin blood concentration
in rats (p < 0.001). The average prostacyclin concentration is higher in the high dose group than in
the low and moderate dose group (both p-values are smaller than p < 0.001).

The average concentration in the high dose group is 43.3ng/ml (95% CI [21.9,64.6]ng/ml) and 35ng/ml
(95% BI [13.6,56.4]ng/ml) higher than in the low and middle dose group, respectively.

The difference in average prostacyclin concentration between the moderate and low dose group is not
significant (p=0.61). (All p-values and confidence intervals for post-hoc tests are corrected for multiple

testing using the Tukey method).
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