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1 Breast cancer dataset

o Subset of study https://doi.org/10.1093/jnci/djj052

e 32 breast cancer patients with estrogen recepter positieve tumor that had tamoxifen chemotherapy.
Variabels:

— grade: histological grade of tumor (grade 1 vs 3),

— node: lymph node status (0: not affected, 1: lymph nodes affected and removed),
— size: tumor size in cm,

ESRI and S100A8 gene expression in tumor biopsy (microarray technology)

brca <- read_csv("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/breastcancer.csv")
brca

# A tibble: 32 x 10

sample_name filename treatment er grade node size age ESR1 S100A8

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 OXFT_209 gsm65344 .ce~ tamoxifen 1 3 1 2.5 66 1939. 207.
2 OXFT_1769  gsm65345.ce~ tamoxifen 1 1 1 3.5 86 2752. 37.0
3 OXFT_2093  gsm65347.ce~ tamoxifen 1 1 1 2.2 74 379. 2364.
4 OXFT_1770 gsm65348.ce~ tamoxifen 1 1 1 1.7 69 2532. 23.6
5 OXFT_1342  gsm65350.ce~ tamoxifen 1 3 0 2.5 62 141. 3219.
6 OXFT_2338 gsm65352.ce~ tamoxifen 1 3 1 1.4 63 1495. 108.
7 OXFT_2341  gsm65353.ce~ tamoxifen 1 1 1 3.3 76 3406. 14.0
8 OXFT_1902  gsm65354.ce~ tamoxifen 1 3 0 2.4 61 2813. 68.4
9 OXFT_1982  gsm65355.ce~ tamoxifen 1 1 o 1.7 62 950. 74.2
10 OXFT_5210 gsm65356.ce~ tamoxifen 1 3 0 3.5 65 1053. 182.

# i 22 more rows

« For didactical reasons we first remove 3 outliers in the S100A8 expression data.
e Later in the lecture we will show how to properly deal with all data.

brca %>% ggplot(aes(x = "", y = S100A8)) +
geom_boxplot ()
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library(GGally)
brcaSubset <- brca %>% filter(S100A8 < 2000)
brcaSubset[, -(1:4)] 7>% ggpairs()
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1.1 Association between ESR1 and S100A8 expression
o ESR1 in + 75% of breast cancer tumors.

— Expression of ER gene positive for treatment: tumor responds to hormone therapy
— Tamoxifen interacts with ER and modulates gene expression.

e Proteins of S100 family often dysregulated in cancer

e S100A8 expression represses immune systeem in tumor en creates an environment of inflamation that
promotes tumor growth.

Assess association between ESR1 and S100A8 expression.

1. pipe dataset to ggplot

2. select data ggplot (aes(x=ESR1,y=S100A8))
3. add points geom_point ()

4. add smooth line geom_smooth ()

brcaSubset %>%
ggplot(aes(x = ESR1, y = S100A8)) +
geom_point () +
geom_smooth()
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2 Lineair Regression

 Statistical method to assess association between two variables (X;,Y;), measured on each subject
1=1,..,n.

o Gene expression example

— Response Y : SI00A8 expression
— Predictor X: ESR1 expression

brcaSubset %>%
ggplot(aes(x = ESR1, y = S100A8)) +
geom_point () +
geom_smooth(se = FALSE, col = "grey") +
geom_smooth(method = "Im", se = FALSE)
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2.1 Model

e For fixed X, Y does not necessarly has the same value

observation = signal + noise

Y, = g(X;) +¢
- We define g(x) als the expected outcome for subjects with X; = «
ElY;|X; = 2] = g(z)
Hence, ¢, is on average 0 for subjects with same X;:

Ele;|X;] =0

2.2 Lineair regression

o To obtain accurate and interpretable results one often choose g(x) to be a linear function with unknown
parameter.

E(Y|X =x) = py+ B

unknown intercept 3, and slope j;.



e Lineair model imposes an assumption on the distribution of X and Y, which can be invalid.

o Efficient data-analysis: because it uses all observations to learn on the expected outcome for X = z.

2.3 Use

e Prediction: when Y is unknown but X is known we can predict Y using

E(Y|X =x) =By + fx

o Association: biological relation between variable X and response Y

o Intercept: E(Y|X =0) = f,

e Slope:

EY|X=2+4+6)-E(Y|X=2) = By+p(x+35)—py— B
By0

B, = difference in mean outcome for subjects that differ in one unit of the predictor X.

3 Parameter estimation

e Least squares

brcaSubset %>%
ggplot(aes(x = ESR1, y = S100A8)) +
geom_point () +
geom_smooth(se = FALSE, col = "grey") +
geom_smooth(method = "Im", se = FALSE)
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o Parameters 3, en 5; are unknown.
o Estimate them using sample
e Best fitting line

— Point on regression line for a given x;: (x;, B, + B1x;) as close as possible (z;,y;)
— Choose f, and B; so that the sum between predicted and observed points becomes as small as
possible.

SSE = Z(y, — By — Byx;)? = Ze?

i=1 =1

with residuals e; the vertical distances from the observations to the fitted regression line

3.1 Estimators that minimise SSE

BAO:Q_BP%

Note, that the slope of the least squares fit is proportional to the correlation between the response and the
predictor.

Fitted model allows to:



o predict the response for subjects with a given value x for the predictor:

E[Y|X = z| = B, + Bz

o Assess how the mean response differs between two groups of subjects that differ § units in the predictor:

EY|X=z+0—E[Y|X =2z] =56
3.1.1 Breast cancer example

1ml <- 1m(S100A8 ~ ESR1, brcaSubset)
summary (1m1)

Call:
Im(formula = S100A8 ~ ESR1, data = brcaSubset)

Residuals:
Min 1Q Median 3Q Max
-95.43 -34.81 -6.79 34.23 145.21

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 208.47145 28.57207 7.296 7.56e-08 *x*x
ESR1 -0.05926 0.01212 -4.891 4.08e-05 *x*x*

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.91 on 27 degrees of freedom
Multiple R-squared: 0.4698, Adjusted R-squared: 0.4502
F-statistic: 23.93 on 1 and 27 DF, p-value: 4.078e-05

E(Y|X = x) = 208.47 — 0.059

e FExpected SI00A8 expression is on average 59 units lower for patients with ESR1 expression level that
is 1000 units higher

o Expected S100A8 expression level for patients with an ESR1 expression level of 2000:

208.47 — 0.059 x 2000 = 89.94

o FExpected S100A8 expression level for patients with an ESR1 expression level of 4000:
208.47 — 0.059 x 4000 = —28.58

o Be careful when you extrapolate! (We can only assess the assumption of linearity within the range of
the data).
4 Statistical inference

To draw conclusions based on the regression model
E(Y|X) =6+ /X

we need to know



How the least squares parameter estimators vary from sample to sample, and
how they deviate under the null hypothesis that there is no association between predictor and response

Requires a statistical model

Model the distribution of Y given X explicitly: { {Y|X}(y)

Modelling distribution of Y?

. Besides Linearity we need additional assumptions!
. Independence: Observations (X;,Y;),...,(X,,,Y,,) are made for n independent subjects (is required to

estimate the variance)

. Homoscedasticity or equal variances: observations vary with equal mean around the regression line

o Residuals €; have equal variance for each X; = «
e var(Y|X = 2) = 02 for each X = x
e 0 is referred to as the residual standard deviation

. Normality: the residuals €; are normally distributed
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e Given 2, 3 and 4
€; 1i.d.N(0,0%).

e Together with 1 this implies:
Yi|X; ~ N(By + 1 X;,0°),

o We can show that given these assumption

X2
2 _ El ' o? 2 _ o?
g% = P - X —en oz = n ~
oy -x2 " LY - X)?
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o and the parameter estimators are also normally distributed

o ¥ () e (1)

4.2 High spread of X improves the precision

<t < —
N N
> O > O
N N
1 1
<t <t
1 1

o Conditional variance (02) is unknown
o Estimate using mean squared error (MSE)

n R . 2 n

Z (%*»30*51 Xxi) ‘ €7
52 =MSE ==L ==t
n—2 n—2

o This estimator is based on independence (assumption 2) and equality of the variance (assumption 3).
e Devide by n — 2

11



Upon the estimation of 02 we obtain following standard errors:

> X MSE
SE; =05 = =1 X enSE; =0, =
Bo Bo n — n B1 B1
> (X —X)?
i=1
e Again we can construct tests and confidence intervals using
T = M with k= 1,2.
SE(By)

o If all assumptions are valid T follows t-verdeling with n-2 degrees of freedom.

e If no normality, but independence, linearity, equality of mean and large dataset

— Central Limit theorem

4.2.1 Breast cancer example
e Negative association between S100A8 and ESR1 gene expression.

e Generalize effect in sample to population using the confidence interval on the mean:

[Bl - tn72,a/QSEBI ’ Bl + tn72,a/QSEBI]

confint(1lml)

2.5 % 97.5 Y%
(Intercept) 149.84639096 267.09649989
ESR1 -0.08412397 -0.03440378

o Negative association is significant on 5% significance level.

4.3 Hypothesis test

o Translate the research question to assess the association between the SI00A8 and ESR1 gene expression
to parameters in the model.

e Under the null hypothesis of the absence of an association in the expression of both genes:

Hy:6,=0

e Under the alternative hypothesis, there is an association between the expression of both genes :

Hy: B #0

o Test statistic

B0

SE(By)

o Under H, the statistics follows a t-distribution with n-2 degrees of freedom.

12



4.3.1 BRCA dataset

summary (1m1)

Call:
Im(formula = S100A8 ~ ESR1, data = brcaSubset)

Residuals:
Min 1Q Median 3Q Max
-95.43 -34.81 -6.79 34.23 145.21

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 208.47145 28.57207 7.296 7.56e-08 *xx
ESR1 -0.05926 0.01212 -4.891 4.08e-05 *x**

Signif. codes: O 'x¥xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.91 on 27 degrees of freedom
Multiple R-squared: 0.4698, Adjusted R-squared: 0.4502
F-statistic: 23.93 on 1 and 27 DF, p-value: 4.078e-05

o The association between the S100A8 and ESR1 expression is extremely significant (p«0.001).
e But, we first have to check all assumptions!
e Otherwise the conclusions based on the statistical test and the CI can be incorrect.

5 Assess assumptions

e Independence: design

e Linearity: inference is useless if the association is not linear

o Homoscedasticity: inference/p-value is incorrect if data are heteroscedastic

o Normality: inference/p-value is incorrect if data are not normally distributed in small samples

5.1 Linearity

brcaSubset %>/
ggplot(aes(x = ESR1, y = S100A8)) +
geom_point() +
geom_smooth(se = FALSE, col = "grey") +
geom_smooth(method = "Im", se = FALSE)

13
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5.1.1 Residual analysis

o Assumption of linearity is typically assessed using residual plot. (Especially if the lineair model has
multiple covariates, later chapters)

e predictor of predictions Bo + ,511: on X-axis

o residuals on Y-as

e, =y, —g(x;) =y; — By — By X m,
plot(lmil)

14
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Standardized residuals
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Standardized residuals

5.2

5.3

Residuals vs Leverage
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Homoscedasticity (equal variances)
Residuals and squared residuals cary information on the residual variability
Association with predictors — indication of heteroscedasticity.

Scatterplot of e; vs x; or predictions Bo + Blmi.

Scatterplot van standardized residual versus x; or predictions.

Normality

If the sample size is large the estimators are normally distributed even if the observations are not
normally distributed: central limit theorem

How many observations? — depends on shape and magnitude of deviations

Assumption: Data are Normally distributed conditional on X:

Y| X, ~ N(By + 5, X;,0?)

QQ-plot of response Y is misleading and useless: distribution of Y; are different because they have a
different conditional mean!

QQ-plot of the residuals e;

18
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plot(lml, which = 2)
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Q-Q Residuals

m p—
280
%) _| 140
g 1o
>
S
(7]
o4 4 o
N 5
S o+ _00°
S 00000
oo 00000
N o 00
I
5 ©
fe) O
[ [ [ [ [
-2 -1 0 1 2

Theoretical Quantiles
Im(S100A8 ~ ESR1)

6 Invalid assumptions

e Transformation of predictor does not change distribution of Y for given X:

— not useful to obtain homoscedasticity or Normal distribution
— useful for linearity when normality and homoscedasticity are valid
— Often inclusion of higher order terms: X2, X3, ...

Y, =By + 51 X; + B X+ ..+ ¢

e Transformation of response Y can be useful to obtain normality and homoscedasticity

o V(Y), log(Y), 1/Y, ..

6.1 Breast cancer example
Problems with

e heteroscedasticity

« possibly deviations from normality (skewed to the right)

e mnegative concentration predictions are theoretically impossible
e mnon-linearity

This is often the case for concentration and intensity measurements

o These are often log-normal distributed (normal distribution upon log-transformatie)
e We also observed a kind of exponential relation with the smoother
¢ In gene expression literature often log, transformation is adopted

20



o gene-expression on log scale: differences on log scale are fold changes on original scale!

brca 7>% ggplot(aes(x = ESR1, y = S100A8)) +
geom_point () +
geom_smooth ()
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brca %>% ggplot(aes(x = ESR1 %>% log2(), y = S100A8 %>% log2())) +

geom_point () +
geom_smooth ()

21
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ESR1 %>% log2()

1m2 <- 1m(S100A8 %>% log2() ~ ESR1 %>% log2(), brca)
plot(1m2)
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Residuals

Residuals vs Fitted

Fitted values
Im(S100A8 %>% log2() ~ ESR1 %>% log2())
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Standardized residuals

Q-Q Residuals
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Im(S100A8 %>% log2() ~ ESR1 %>% log2())
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Residuals vs Leverage
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Im(S100A8 %>% log2() ~ ESR1 %>% log2())

summary (1m2)

Call:
1m(formula = S100A8 %>% log2() ~ ESR1 %>% log2(), data = brca)

Residuals:
Min 1Q Median 3Q Max
-1.94279 -0.66537 0.08124 0.68468 1.92714

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 23.401 1.603 14.60 3.57e-15 x*x*x*
ESR1 %>% log2() -1.615 0.150 -10.76 8.07e-12 **x*
Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.026 on 30 degrees of freedom
Multiple R-squared: 0.7942, Adjusted R-squared: 0.7874
F-statistic: 115.8 on 1 and 30 DF, p-value: 8.07e-12

confint (1m2)

2.5 % 97.5 Y,
(Intercept) 20.128645 26.674023
ESR1 %>% log2() -1.921047 -1.308185
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6.1.1 Interpretation 1

A patient with an ESR1 expression that is one unit on log, scale higher than that of another patient on
average has a log, expression for SI00A8 that is 1.61 units lower (95% CI [-1.92,-1.31]).

log, fi; = 23.401 — 1.615 x logESR,, log, fiy = 23.401 — 1.615 x logESR,,
log, fiy — log, ji; = —1.615(log, ESR, — log, ESR, ) = —1.615 x 1 = —1.615

6.1.2 Interpretation 2

Model on log-scale: upon back-transformation we obtain geometric means

z”:log:z:i _ logx; +...+logz,
—~ n n
lo x;
@ log(xy x ... xm,) s (zl:ll )
n n

—

= (i)

e Population mean p is estimated as a geometric mean
o Logarithmic transformation is monotone: we can backtransform confidence intervals on log-scale!

27 1m2$coef [2]
ESR1 %>% log2()
0.3265519
2" -1m2%coef [2]
ESR1 %>% log2()
3.0623
2 -confint (1m2) [2, ]
2.5 % 97.5 %
3.786977 2.476298

A patient with an ESR1 expression that is 2 times the expression of that of another patient will on average
have an S100A8 expression that is 3.06 times lower (95% CI [2.48,3.79]).

log, fi; = 23.401 — 1.615 x logESR,, log, fi, = 23.401 — 1.615 x logESR,
log, i, — log, fi; = —1.615(log, ESR, — log, ESR,)
s ESR,
1 — | =—1.6151
o [ﬁ } o [Esm

~ —1.615
b2 _ [ESRQ} — 271615 — 0.326

or
B 91015 — 306

27



6.1.3 Interpretation 3

A patient with an ESR1 expression that is 1% higher than that of another patient will on average have an
expression-level for S100A8 gen that is approximately -1.61% lower (95% CI [-1.92-1.31])%.

log, fi; = 23.401 — 1.615 x logESR,, log, fiy = 23.401 — 1.615 x logESR,,
log, jiy —log, fi; = —1.615(log, ESR, — log, ESR,)

log, [/fz} = —1.6151og, [
My

fih

i [ESRQ

~1.615
= =1.017161% = 0,984 ~ —1.6

This is valid for low to moderate values of 3;:

By
-1 1 1.01%1 — 1 ~ L.
0<p, <10 — 1.01% 100

6.2 Inference on the mean outcome

A regression model can also be used for prediction
Inference on average outcome for a given value of X =z, i.e.

g(x) = Bo + le

g(x) is an estimator of the conditional mean E[Y|X = x]
Parameter estimators are Normally distributed and unbiased — estimator g(z) is also Normally dis-
tributed and unbiased.

—X)2
> (X — X)?
=1
_ g(@) —g(z)
he SEye

Mean response and confidence intervals for the mean response in R via de predict(.) functie.
newdata argument: predictor values (x-values) at which we want to calculate the mean response
interval="confidence" argument to obtain CI.

Without newdata argument we perform predictions for all predictor values in the dataset used to fit
the model.

grid <- 140:4000
g <- predict(lm2, newdata = data.frame(ESR1 = grid), interval = "confidence")
head(g)

DO WN -

11.
11.
11.
11.
11.
11.

fit lwr upr
89028 10.76082 13.01974
87370 10.74721 13.00019
85724 10.73370 12.98078
84089 10.72028 12.96151
82466 10.70696 12.94237
80854 10.69372 12.92336

28



Note, that we do not have to transform the new data that we specified for the ESR1 expression because we
fitted the model with a call to the 1m function and specified the transformation within the lm formula using
the pipe command!

brca %>% ggplot(aes(x = ESR1 %>% log2(), y = S100A8 > log2())) +
geom_point () +
geom_smooth(method = "Im")

12.5- -

50-

1
7 8 9 10 11 12

ESR1 %>% log2()

6.3 Back-transformation

newdata <- data.frame(cbind(grid, 27g))
brca 7>% ggplot(aes(x = ESR1, y = S100A8)) +
geom_point () +
geom_line(aes(x = grid, y = fit), newdata) +
geom_line(aes(x = grid, y = lwr), newdata, color = "grey") +
geom_line(aes(x = grid, y = upr), newdata, color = "grey")

29
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7 Prediction-intervals

e We can also make a prediction for the location of a new observation that would be collected in a new
experiment for a patient with a particular value for their ESR1 expression

e It is important to notice that this experiment still has to be conducted. So we want to predict the
non-observed individual expression value for a novel patient.

e For a novel independent observation Y*
Y*=g(z)+ €'
with €* ~ N(0,0?) and ¢* independent of the observations in the sample Y;,...,Y,,.

e We predict a new log-S100A8 for a patient with a known log2-ESR1 expression level x
§(x) =By + By x x

e The estimated mean outcome and prediction for a new observation are equal.
e But, their sample distributions are different!

— Uncertainty on the estimated mean outcome ¢ uncertainty on estimated model parameters Bo

en 3.
— Uncertainty on new observation $ < uncertainty on estimated mean and additional uncertainty
because the new observation will deviate around the mean!
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P 1 —X)2
SEp () = ,/02+U§(z) = |MSE 1+7+7n(x )7
oYX - Xy
i=1
Y(z)—Y
SE N ~ tn72
Y (z)
o Note, that a prediction-interval (PI) is an improved version of a reference-interval when the model
parameters are unknown: Uncertainty on model parameters + t-distribution.

p <~ predict(lm2, newdata = data.frame(ESR1 = grid), interval = "prediction")
head (p)

fit lwr upr
1 11.89028 9.510524 14.27004
2 11.87370 9.495354 14.25205
3 11.85724 9.480288 14.23419
4 11.84089 9.465324 14.21646
5 11.82466 9.450461 14.19886
6 11.80854 9.435698 14.18138

preddata <- data.frame(cbind(grid = grid %>% log2(), p))
brca %>% ggplot(aes(x = ESR1 %>% log2(), y = S100A8 %>% log2())) +
geom_point () +

geom_smooth(method = "Im") +
geom_line(aes(x = grid, y = lwr), preddata, color = "blue") +
geom_line(aes(x = grid, y = upr), preddata, color = "blue'")
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S100A8 %>% log2()

9 10 11

ESR1 %>% log2()

preddata <- data.frame(cbind(grid, 27p))
brca 7>% ggplot(aes(x = ESR1, y = S100A8)) +

geom_point() +

geom_line(aes(x =

geom_line(aes(x
geom_line(aes(x

geom_line(aes(x =

geom_line(aes(x

grid,
grid,
grid,
grid,
grid,

<K< <

fit),
lwr),
upr) ,
lwr),
upr),

newdata) +

newdata, color = "grey") +
newdata, color = "grey") +
preddata, color = "blue") +
preddata, color = "blue")
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7.1 NHANES example
o Replace reference interval for cholesterol level from chapter 2 by prediction-interval.

¢ Reference interval

library (NHANES)
fem <- NHANES %>J, filter(Gender == "female" & !is.na(DirectChol))

exp(fem$DirectChol %>% log() %>% mean() + c(-1, 1) * gnorm(0.975) * (fem$DirectChol %>} log() %>% sd())

[1] 0.8361311 2.4397130

e prediction interval

1mChol <- 1m(DirectChol %>% log2() ~ 1, data = fem)
predInt <- predict(lmChol, interval = "prediction", newdata = data.frame(noPred = 1))
round (2 predInt, 2)

fit 1lwr wupr
1 1.43 0.84 2.44

Note, that the prediction interval is almost similar to the reference interval for the large sample. Indeed we
could estimate the parameters very precise.

We will do the same thing for the small sample size of 10 patients.

¢ Reference interval



set.seed (1)

fem10 <- NHANES %>%
filter (Gender == "female" & !is.na(DirectChol)) %>%
sample_n(size = 10)

27 (fem10$DirectChol %>% log2() %>% mean() + c(-1, 1) * gnorm(0.975) * (feml0$DirectChol %> log2() %>%

[1] 0.8976012 2.2571645

¢ Prediction interval

1mChol10 <- 1m(DirectChol %>% log2() ~ 1, data = feml0)
predIntl10 <- predict(1mCholl0, interval = "prediction", newdata = data.frame(noPred = 1))
round (2 predInt10, 2)

fit 1lwr wupr
11.42 0.81 2.49

o Note, that the PI now captures uncertainty in parameter estimators (mean and standard error). And
that the interval becomes much wider! This is particularly important here for the upper limit because
we back-transformed the data!

e The interval is almost as wide as the one based on the large sample.

e In small samples it is very important to account for this additional uncertainty.

8 Sum of squares and Anova-table

8.1 Total sum of squares

SSTot = Y (V; —Y)2.

i=1
o SStot can be used to estimate the variance of the marginal distribution of the response f(Y).
o In this chapter we focused on the conditional distribution f(Y|X = z).

o We known that MSE is a good estimate of the variance of the conditional distribution of Y| X = z.
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S100A8 expression (log2)
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ESR1 expression (log2)

SSR=) (V; =Y =3 (j(z;) ~¥)

i=1

n

Is a measure for the deviation of the predictions on the regression line and the marginal mean of the

response.

Another interpretation: difference between two models

— Estimated model g(z) = Bo + Bz
— BEstimated model without predictor (only intercept): g(z) = 8, — 3, will be equal to Y.

SSR measures the size of the effect of the predictor
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S100A8 expression (log2)

7 8 9 10 11 12
ESR1 expression (log2)

8.3 Sum of Squares of the Error

n

SSE = (¥~ 97 = 30 (i — g ).

i=1
e The smaller SSE the better the fit.

e Least squares method!
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S100A8 expression (log2)

9 10

ESR1 expression (log2)

We can show that SST can be decomposed in

SSTot =

(Y, = Y)2 4 ) (Y, - Y)?
=1
SSE + SSR

« Total variability in the data (SSTot) is partially explained by the predictor (SSR).
 Variability that we cannot explain with the regression model is the residual variability (SSE).

8.4 Determination coefficient

R?>=1

_ SSE _ SSR
SSTot =~ SSTot

e Fraction of total variability of the sample outcomes explained by the model.

 Large R? indicates that the model has the potential to make good predictions (small SSE).

o Not very indicative for p-value of the test Hy: 8; =0 vs H; : 5 # 0.
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— p-value is largely determined by SSE and sample size n, but not by SSTot.
— R? is determined by SSE and SSTot but not by sample size n.

e Model with low R? is still useful to study associations as long as the association is modelled correctly!

8.4.1 Breast cancer example

summary (1m2)

Call:
Im(formula = S100A8 %>% log2() ~ ESR1 %>% log2(), data = brca)

Residuals:
Min 1Q Median 3Q Max
-1.94279 -0.66537 0.08124 0.68468 1.92714

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 23.401 1.603 14.60 3.57e-15 **x*
ESR1 %>% log2() -1.615 0.150 -10.76 8.07e-12 *x*x
Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.026 on 30 degrees of freedom
Multiple R-squared: 0.7942, Adjusted R-squared: 0.7874
F-statistic: 115.8 on 1 and 30 DF, p-value: 8.07e-12

8.5 F-Test in simple linear model

e Sum of squares are the bases for F-tests
MSR

F = ISE

with MSR = 558 and MSE = 552,
e MSR mean sum of squares of the regression,
e denominators 1 en n — 2 are the degrees of freedom of SSR and SSE.

e Under Hy: 3, =0
MSR

Hy: F= MSE ~ Fl,n72’

o F-test is always two-sided! H; : 5; # 0
p=FR[F=fl=1-Fp(f;1,n—-2)

summary (1m2)

Call:
Im(formula = S100A8 %>% log2() ~ ESR1 %>% log2(), data = brca)

Residuals:

Min 1Q Median 3Q Max
-1.94279 -0.66537 0.08124 0.68468 1.92714
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Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 23.401 1.603 14.60 3.57e-15 *x*x
ESR1 %>% log2() -1.615 0.150 -10.76 8.07e-12 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.026 on 30 degrees of freedom
Multiple R-squared: 0.7942, Adjusted R-squared: 0.7874
F-statistic: 115.8 on 1 and 30 DF, p-value: 8.07e-12

stribution with 1 df in the nominator and 30 in the denomina

Density
0.4
I

0.0

8.6 Anova Table

Df Sum Sq Mean Sq F value Pr(>F)
Regression  degrees of freedom SSR SSR MSR f-statistic = p-value
Error degrees of freedom SSE SSE MSE

anova(1lm2)

Analysis of Variance Table
Response: S100A8 7%>% log2()

Df Sum Sq Mean Sq F value Pr(>F)
ESR1 %>% log2() 1 121.814 121.814 115.8 8.07e-12 *xx*x
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Residuals 30 31.559 1.052

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

9 Dummy variables

e Linear regression model can also be used to compare two group means.
e brca: difference in average age between patients with unaffected and affected lymph nodes.

e Define dummy variabele
S 1 affected lymph nodes
© 71 0 unaffected lymph nodes

o group with x; = 0 is referred to as the reference group.
e Regression model remains unaltered,
Y =By + frz; + €
with ¢, iid N(0,02)

Because x; only can take two values, we can study the regression model for each value of x; separately:

Y, = By+e unaffected lymph nodes(z; = 0)
Y, = By+05; +¢ affected lymph nodes(x; = 1).
So
ElYi|z;=0] = B
ElY; |z, =1 = By+ b,

Hence, the interpretation of f;:
fr=E[Y; |z, =1 -E[Y;|z; =0

B is the average age difference between patients with affected and patients with unaffected lymph nodes
(reference group).

With notation py = E[Y; | ; = 0] and puy = E[Y; | ; = 1] this becomes

Br = 11 — po-
We can show that ~ ~
By =Y, (sample mean of reference group)
B, = Y,—Y, (estimator of effect size)

MSE = &2

Tests Hy : 5, = 0 vs. H; : B; # 0 can be used to assess the null hypothesis of the two-sample ¢-test,
Ho: puy = pig vs Hy 2 iy F pig.

brca$node <- as.factor(brca$node)

t.test(age ~ node, brca, var.equal = TRUE)
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Two Sample t-test

data: age by node
t = -2.7988, df = 30, p-value = 0.008879
alternative hypothesis: true difference in means between group O and group 1 is not equal to O
95 percent confidence interval:
-15.791307 -2.467802
sample estimates:
mean in group O mean in group 1

59.94737 69.07692
1m3 <- 1lm(age ~ node, brca)
summary (1m3)

Call:

lm(formula = age ~ node, data = brca)

Residuals:
Min 1Q Median 3Q Max
-19.9474 -5.3269 0.0526 5.3026 18.0526

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept)  59.947 2.079 28.834 < 2e-16 *x*x*
nodel 9.130 3.262 2.799 0.00888 *x
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.063 on 30 degrees of freedom
Multiple R-squared: 0.207, Adjusted R-squared: 0.1806
F-statistic: 7.833 on 1 and 30 DF, p-value: 0.008879

plot (1m3)
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Standardized residuals
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Residuals vs Leverage
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Im(age ~ node)

brca %>% ggplot(aes(x = node %>/, as.factor(), y = age)) +
geom_boxplot ()
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node %>% as.factor()

par(mfrow = c(3, 3))

set.seed(354)

mu0 <- brca %>% pull(age) %>, mean

Sp <- sigma(lm3)

for (i in 1:9) plot(rnorm(32, mean=mu0, sd=Sp) ~ node, brca, ylab = "Age under HO")
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Observational study

We cannot conclude that age causes a higher risk for affected lymph nodes.

Possibly confounding: no randomisation — groups of patients with affected and unaffected lymph
nodes. They can also differ in other characteristics.

We can only conclude that there is an association between lymph node status and age.
However, the association does not have to be causal!
Note, that this is also the case for the linear model for log,-S100A8-expression.

— Because we were not able to fix the ESR1-expression experimentally we cannot conclude that a
higher ESR1-expression causes a decrease in the SI00A8-expression.

— We can only conclude that there is a negative association.

— To assess the impact of a gene on other gene typically knockout mutants are used in the lab.
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