
5. Statistical Inference

Lieven Clement

statOmics, Ghent University (https://statomics.github.io)

Contents
1 Introduction 1

1.1 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Experimental Design 2

3 Data exploration and Descriptive Statistics 3

4 Estimation 8
4.1 Point estimator the sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Interval estimators 37
5.1 Normally distributed data with known variance . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Unknown variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Reporting? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Hypothesis tests 46
6.1 Captopril Example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Test-statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.5 Critical value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Decision Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 Conclusions captopril example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.8 One-sided or two-side testing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Nature column on testing 69

1 Introduction
1.1 Population

• The aim of a scientific study is to draw conclusions on the general population.

• Here, we study the effect of captopril on the blood pressure of patients with hypertension.

• We will collect data and we will model the data

• Therefore, we always have to translate the research question into an effect size that can be estimated
with a model parameter or a combination of model parameters.

• e.g. the population mean
𝐸(𝑋) = 𝜇

1

https://statomics.github.io


• Does the blood pressure decreases on average after administering captopril to patients with hyperten-
sion?

1.2 Overview
• Experimental Design & Data Exploration
• Point estimators (Estimation)
• Interval estimators (Statistical inference)
• Hypothesis tests (Statistical inference)

2 Experimental Design
• 15 patients were drawn at random from the population of patients with hypertension
• pre-test/post-test design: the systolic and diasystolic blood pressure are measured before and after

administering captopril
• Advantage: we can assess the effect of administering captopril on the blood pressure for each individual

patient.
• Disadvantage?
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3 Data exploration and Descriptive Statistics

captopril <- read_csv("https://raw.githubusercontent.com/GTPB/PSLS20/master/data/captopril.txt")
head(captopril)

# A tibble: 6 x 5
id SBPb DBPb SBPa DBPa

<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 210 130 201 125
2 2 169 122 165 121
3 3 187 124 166 121
4 4 160 104 157 106
5 5 167 112 147 101
6 6 176 101 145 85
summary(captopril)

id SBPb DBPb SBPa DBPa
Min. : 1.0 Min. :146.0 Min. : 98.0 Min. :129 Min. : 82.0
1st Qu.: 4.5 1st Qu.:163.5 1st Qu.:103.0 1st Qu.:146 1st Qu.: 98.0
Median : 8.0 Median :174.0 Median :112.0 Median :157 Median :103.0
Mean : 8.0 Mean :176.9 Mean :112.3 Mean :158 Mean :103.1
3rd Qu.:11.5 3rd Qu.:192.5 3rd Qu.:121.5 3rd Qu.:168 3rd Qu.:108.0
Max. :15.0 Max. :210.0 Max. :130.0 Max. :201 Max. :125.0

captopril_tidy <- captopril %>% gather(type, bp, -id)
captopril_summary <- captopril_tidy %>%
group_by(type) %>%
summarize(

mean = mean(bp, na.rm = TRUE),
sd = sd(bp, na.rm = TRUE),
n = n()

) %>%
mutate(se = sd / sqrt(n))
captopril_summary

# A tibble: 4 x 5
type mean sd n se
<chr> <dbl> <dbl> <int> <dbl>

1 DBPa 103. 12.6 15 3.24
2 DBPb 112. 10.5 15 2.70
3 SBPa 158 20.0 15 5.16
4 SBPb 177. 20.6 15 5.31
captopril_summary %>%
ggplot(aes(x = type, y = mean)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .2) +
ylim(0, 210) +
ylab("blood pressure (mmHg)")
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• This figure is not informative! It does not show the raw data.

We see that a lot of the space that was taken by the barplot does not contain data!
captopril_tidy %>%
ggplot(aes(x = type, y = bp)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = "jitter")
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• This plot would have been informative if the data was gathered on different individuals.

• However, the blood pressures are measured op the same subject!

• We will make a plot by filtering the systolic blood pressures
captopril_tidy %>%
filter(type %in% c("SBPa", "SBPb")) %>%
mutate(type = factor(type, levels = c("SBPb", "SBPa"))) %>%
ggplot(aes(x = type, y = bp)) +
geom_line(aes(group = id)) +
geom_point()
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• We have paired data. So we might estimate the effect of the treatment directly by comparing the blood
pressure after treatment to the blood pressure before the treatment.

captopril$deltaSBP <- captopril$SBPa - captopril$SBPb
captopril %>%
ggplot(aes(x = "Systolic blood pressure", y = deltaSBP)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = "jitter") +
ylab("Difference (mm mercury)") +
xlab("")
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captopril %>%
summarize(

mean = mean(deltaSBP, na.rm = TRUE),
sd = sd(deltaSBP, na.rm = TRUE),
n = n()

) %>%
mutate(se = sd / sqrt(n))

# A tibble: 1 x 4
mean sd n se

<dbl> <dbl> <int> <dbl>
1 -18.9 9.03 15 2.33

• Pre-test/post-test design: Effect of captopril in sample using 𝑋 = Δafter-before!

• How will we model 𝑋 = Δafter-na and estimate the effect of captopril?
captopril %>%
ggplot(aes(sample = deltaSBP)) +
stat_qq() +
stat_qq_line()
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The systolic blood pressure differences are approximately normally distributed.

4 Estimation
• No substantial deviations from normality

• We can assume that the differences 𝑋 ∼ 𝑁(𝜇, 𝜎2).
• Effect of captopril in the population is captured by the average blood pressure difference 𝜇.
• The average blood pressure 𝜇 in the population can be estimated using the sample mean ̄𝑥=-18.93

• The standard deviation 𝜎 with the sample standard deviation S=9.03.

• Is the effect that we observe in the sample large enough to conclude that there is an effect of the
captopril treatment on the blood pressure at population level?

• Our estimates will change from sample to sample!

• How are the estimators 𝑋̄ and 𝑆 distributed?

4.1 Point estimator the sample mean
• Suppose that 𝑋 is a random sample from the population and assume that 𝑋 ∼ 𝑁(𝜇, 𝜎2)
• Estimate 𝜇 based on sample 𝑋1, ..., 𝑋𝑛, using the sample mean

𝑋̄ = 𝑋1 + 𝑋2 + ... + 𝑋𝑛
𝑛 = ∑𝑛

𝑖=1 𝑋𝑖
𝑛
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of random variables 𝑋1, 𝑋2, ..., 𝑋𝑛.

• Sample mean 𝑋̄ is a random variable that varies from sample to sample

• Study the theoretical distribution of the sample mean to get insight

1. in how the sample mean can vary in a new similar study
2. how far 𝑋̄ can be from the population mean 𝜇

4.1.1 Overview

1. The sample mean is unbiased
2. Precision of sample mean
3. Distribution of sample mean

4.1.2 The sample mean is unbiased

• We can generalize our observations based on the sample towards the population if the estimate is good
approximation of the population value.

• A representative sample is required to generalize the results from the sample towards the population

• Avoid bias (so that the population mean is not systematically under or overestimated)

• Report how the sample is taken!

• Randomisation!

• Draw the subjects at random from population so every subject has the same probability to end up in
the sample.

• Subjects with hypertension are sampled at random from the population

• Simple random sample: 𝑋1, ..., 𝑋𝑛 for characteristic 𝑋
• 𝑋1, ..., 𝑋𝑛 have same distribution

• They have same mean 𝜇 and variance 𝜎2

• 𝐸(𝑋1) = ... = 𝐸(𝑋𝑛) = 𝜇 and Var(𝑋1) = ... = Var(𝑋𝑛) = 𝜎2

• 𝑋̄ is an unbiased estimator for 𝜇
Click to see proof

𝐸(𝑋̄) = 𝐸 (𝑋1 + 𝑋2 + ... + 𝑋𝑛
𝑛 )

= 𝐸(𝑋1) + 𝐸(𝑋2) + ... + 𝐸(𝑋𝑛)
𝑛

= 𝜇 + 𝜇 + ... + 𝜇
𝑛

= 𝜇

9



4.1.3 Imprecision/standard error

• Also for representative samples the results are imprecise.

• Different samples from the same population give different results.

• We illustrated this by using the NHANES

– We will draw 15 females at random from the NHANES study and we will register their log2 direct
cholesterol values

– We repeat this 50 times to assess the variation from sample to sample
– We will plot the boxplot for each sample and will indicate the mean

library(NHANES)

fem <- NHANES %>%
filter(Gender == "female" & !is.na(DirectChol)) %>%
select("DirectChol")

n <- 15 # number of subjects per sample
nSim <- 50 # number of simulations

femSamp <- matrix(nrow = n, ncol = nSim)
for (j in 1:nSim) {

femSamp[, j] <- sample(fem$DirectChol, n)
if (j < 4) {

p <- data.frame(log2(femSamp)) %>%
gather(key = "sample", value = "log2cholesterol") %>%
ggplot(aes(x = sample, y = log2cholesterol)) +
geom_boxplot(na.rm = TRUE) +
stat_summary(

fun = mean, geom = "point",
size = 3, color = "red", na.rm = TRUE

) +
geom_hline(yintercept = mean(fem$DirectChol %>% log2())) +
ylab("cholesterol (log2)")

print(p)
}

}
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data.frame(log2(femSamp)) %>%
gather(key = "sample", value = "log2cholesterol") %>%
ggplot(aes(x = sample, y = log2cholesterol)) +
geom_boxplot() +
stat_summary(

fun = mean, geom = "point",
size = 3, color = "red", na.rm = TRUE

) +
geom_hline(yintercept = mean(fem$DirectChol %>% log2())) +
ylab("cholesterol (log2)")

13



−1

0

1

X1X10X11X12X13X14X15X16X17X18X19X2X20X21X22X23X24X25X26X27X28X29X3X30X31X32X33X34X35X36X37X38X39X4X40X41X42X43X44X45X46X47X48X49X5X50X6X7X8X9
sample

ch
ol

es
te

ro
l (

lo
g2

)

We observe that the mean nicely fluctuates around the population mean.

Copy the code, increase the sample size to 100 subjects and observe what happens!

4.1.4 How to do this based on a single sample?

• Insight in how close we can expect 𝑋̄ to 𝜇?
• How varies 𝑋̄ from sample to sample?

• Variability on 𝑋̄
• We have to determine this based on a single sample!

• We need to make assumptions

• We assume that the random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 originate from 𝑛 independent subjects.

• For the captopril study we had dependent observations.

– Blood pressure measurements before (𝑌𝑖,𝑏𝑒𝑓𝑜𝑟𝑒) and after (𝑌𝑖,𝑎𝑓𝑡𝑒𝑟) administering captopril for the
same subject 𝑖 = 1, … , 𝑛.

– We turned them into n independent measurements by taking the difference 𝑌𝑖,𝑎𝑓𝑡𝑒𝑟 − 𝑌𝑖,𝑏𝑒𝑓𝑜𝑟𝑒

4.1.5 Variance estimator for 𝑋̄

𝜎2
𝑋̄ = 𝜎2

𝑛
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• The standard deviation of 𝑋̄ around 𝜇 is
√𝑛 times smaller that the deviation around the original

observations 𝑋.

• The more observations we have the more precise 𝑋̄.

Click to see proof

Var(𝑋̄) = Var(𝑋1 + 𝑋2 + ... + 𝑋𝑛
𝑛 )

= Var(𝑋1 + 𝑋2 + ... + 𝑋𝑛)
𝑛2

∗= Var(𝑋1) + Var(𝑋2) + ... + Var(𝑋𝑛)
𝑛2

= 𝜎2 + 𝜎2 + ...𝜎2

𝑛2

= 𝜎2

𝑛 .

• (*) this is based on the assumption of independence.

Var[𝑋1 + 𝑋2] = Var[𝑋1] + Var[𝑋2] + 2Covar[𝑋1, 𝑋2]

– With 𝐶𝑜𝑣𝑎𝑟[𝑋1, 𝑋2] = 0 when 𝑋1 and 𝑋2 are independent.

Definition: standard error

The standard deviation of 𝑋̄ is 𝜎/√𝑛 and is also referred to as the standard error of the mean. Generally
one refers to the standard deviation of an estimator for a particular parameter 𝜃 with the term standard
error of the estimator, which is denoted as 𝑆𝐸.

4.1.6 Captopril example

• 𝑛 = 15 differences in systolic blood pressure

• Suppose that the standard deviation of the blood pressure differences in the population is 𝜎 = 9.0
mmHg

• Then, the standard error (SE) on the average systolic blood pressure differs 𝑋̄ becomes:

𝑆𝐸 = 9.0√
15 = 2.32mmHg.

• Generally 𝜎, and thus the SE on the sample mean are unknown.

• So we also have to estimate the standard deviation of the sample to obtain the standard error

• Estimator: 𝑆𝐸 = 𝑆/√𝑛,
• with 𝑆2 the sample variance of 𝑋1, ..., 𝑋𝑛 and 𝑆 the sample standard deviation

• For the captopril example we obtain:
n <- length(captopril$deltaSBP)
se <- sd(captopril$deltaSBP) / sqrt(n)
se

[1] 2.330883
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4.1.7 Standard deviation vs standard error

4.1.7.1 Illustrate via repeated sampling

• Different sample sizes: 10, 50, 100

• Draw 1000 samples per sample size from the NHANES study, for each sample we calculate

– The mean
– The sample standard deviation
– The standard error

• We make a boxplot of the sample standard deviations and the standard errors for the different sample
sizes

• Instead of using a for loop we will use the sapply function which is more efficient. It takes a vector or
a list as input and applies a function on each element of the vector or on each list element.

set.seed(1)
femSamp10 <- replicate(1000, sample(fem$DirectChol, size = 10))
femSamp50 <- replicate(1000, sample(fem$DirectChol, size = 50))
femSamp100 <- replicate(1000, sample(fem$DirectChol, size = 100))

## Calculate log2 and convert to data.frame
femSamp10_log2 <- data.frame(log2(femSamp10))
femSamp50_log2 <- data.frame(log2(femSamp50))
femSamp100_log2 <- data.frame(log2(femSamp100))

## Custom function to calculate summary statistics
calculate_stats <- function(x) {

x %>%
gather(sample, log2Chol) %>%
group_by(sample) %>%
summarize(

median = median(log2Chol, na.rm = TRUE),
mean = mean(log2Chol, na.rm = TRUE),
sd = sd(log2Chol, na.rm = TRUE),
n = n()

) %>%
mutate(se = sd / sqrt(n))

}

res <- rbind(
calculate_stats(femSamp10_log2),
calculate_stats(femSamp50_log2),
calculate_stats(femSamp100_log2)

)

Means We first illustrate the impact of sample size on the distribution of the means of the different samples
res %>%
ggplot(aes(x = as.factor(n), y = mean)) +
geom_boxplot() +
ylab("Direct cholesterol (log2)") +
xlab("sample size")
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• Note, that the variation of the sample means indeed reduces as the sample size increases. So the
estimation gets more precise with increasing sample size.

Standard deviation We now illustrate the impact of sample size on the distribution of the standard
deviation of the different samples
res %>%
ggplot(aes(x = as.factor(n), y = sd)) +
geom_boxplot() +
ylab("standard deviation") +
xlab("sample size")
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• The standard deviation remains similar across sample size. It is centred around the same value: the
standard deviation in the population. Indeed increasing the sample size does affect the variability in
the population!

• Again we see that the variability of the standard deviation reduces with increasing sample size. So the
standard deviation can also be estimated more precise with increasing sample size.

Standard error on the mean Finally, we illustrate the impact of sample size on the distribution of the
standard deviation on the mean of the different samples
res %>%
ggplot(aes(x = as.factor(n), y = se)) +
geom_boxplot() +
ylab("standard error") +
xlab("sample size")
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• The standard error, the estimator for the precision of the sample mean, however, reduces considerably
with increasing sample size again confirming that the estimation of the sample mean gets more precise.

4.1.8 Normally distributed data

• For normally distributed data we have multiple estimators for the population mean 𝜇 e.g mean and
median.

• But, 𝑋̄ is the unbiased estimator of 𝜇 with the smallest standard error

• 𝑋̄ deviates less from the mean 𝜇 than the median

• We illustrate this for repeated sampling with sample size 10
res %>%
filter(n == 10) %>%
select(mean, median) %>%
gather(type, estimate) %>%
ggplot(aes(x = type, y = estimate)) +
geom_boxplot() +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
ggtitle("10 subjects")
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Next, we compare the distribution of mean and median in repeated samples of sample size 50.
res %>%
filter(n == 50) %>%
select(mean, median) %>%
gather(type, estimate) %>%
ggplot(aes(x = type, y = estimate)) +
geom_boxplot() +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
ggtitle("50 subjects")
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4.1.9 Distribution of sample mean

• How varies 𝑋̄ from sample to sample?
• Distribution of 𝑋̄?
• If 𝑋̄ is normally distributed the standard error has a good interpretation: the s.e. is the standard

deviation of the sample mean.
• If the data 𝑋𝑖 are normally distributed, the sample mean is also normally distributed.

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2) → 𝑋̄ ∼ 𝑁(𝜇, 𝜎2/𝑛)

4.1.9.1 NHANES: cholesterol We illustrate this again with simulation using the NHANES study. The
log2 cholesterol levels were normally distributed.
fem %>%
ggplot(aes(x = DirectChol %>% log2())) +
geom_histogram(aes(y = ..density.., fill = ..count..)) +
xlab("Direct cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(log2(fem$DirectChol)), sd = sd(log2(fem$DirectChol)))

) +
ggtitle("All females in Nhanes study")
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fem %>%
ggplot(aes(sample = log2(DirectChol))) +
stat_qq() +
stat_qq_line() +
ggtitle("All females in Nhanes study")
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set.seed(1)
femSamp5 <- replicate(1000, sample(fem$DirectChol, size = 5))
femSamp5_log2 <- data.frame(log2(femSamp5))

femSamp5_log2 %>%
ggplot(aes(x = X1)) +
geom_histogram(aes(y = ..density.., fill = ..count..), bins = 10) +
xlab("Direct cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp5_log2$X1), sd = sd(femSamp5_log2$X1))

) +
ggtitle("5 random females") +
xlim(range(log2(fem$DirectChol)))
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Evaluate distribution for samples with 5 subjects
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femSamp5_means <- colMeans(femSamp5_log2)
ggplot(data.frame(means = femSamp5_means), aes(x = means)) +
geom_histogram(aes(y = ..density.., fill = ..count..), bins = 15) +
xlab("Mean cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp5_means), sd = sd(femSamp5_means))

) +
ggtitle("Means on 5 females")
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data.frame(means = femSamp5_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 5 females")
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Explore the distribution of the mean for samples of size 10 Now we explore the results for the
sample size of 10.

We first illustrate the plot for the first sample.
femSamp10_log2 %>%
ggplot(aes(x = X1)) +
geom_histogram(aes(y = ..density.., fill = ..count..), binwidth = 0.5) +
xlab("Direct cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp10_log2$X1), sd = sd(femSamp10_log2$X1))

) +
ggtitle("10 random females") +
xlim(range(log2(fem$DirectChol)))
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Next we look at the distribution of the sample mean over 1000 samples of sample size 10.
femSamp10_means <- colMeans(femSamp10_log2)
ggplot(data.frame(means = femSamp10_means), aes(x = means)) +
geom_histogram(aes(y = ..density.., fill = ..count..), bins = 15) +
xlab("Mean cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp10_means), sd = sd(femSamp10_means))

) +
ggtitle("Means on 10 females")
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data.frame(means = femSamp10_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 10 females")
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So we confirmed that the mean is approximately normally distributed for studies with 5 and
10 females when the original data are approximately normally distributed.

4.1.9.2 Captopril study

• For Captopril study the systolic blood pressure differences are approximatively normally distributed.

• s.e.= 2.32 mm Hg

• In 95 out of 100 studies with n = 15 subjects we expect the sample mean of the systolic blood pressure
differences (𝑋̄) on less then 2 × 2.32 = 4.64mm Hg of the real population mean of the blood pressure
differences (𝜇).

4.1.10 Non-normally distributed data

• When individual observations do not have a normal distribution, 𝑋̄ is still approximately Normally
distributed when the number observations are large enough.

• How large does the sample needs to be for the Normal approximation to work?

• This depends on the skewness of the distribution!

NHANES: cholesterol

• When can evaluated this in the NHanes study if we do not log2 transform the data.
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ggplot(fem, aes(x = DirectChol)) +
geom_histogram(aes(y = ..density.., fill = ..count..)) +
xlab("Direct cholesterol") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(fem$DirectChol), sd = sd(fem$DirectChol))) +

ggtitle("All females in Nhanes study")
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ggplot(fem, aes(sample = DirectChol)) +
stat_qq() +
stat_qq_line() +
ggtitle("All females in Nhanes study")
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The cholesterol data is clearly non-Normally distributed.

## Calculating the means of the simulated samples WITHOUT first log2-transforming
femSamp5_means <- colMeans(femSamp5)
femSamp10_means <- colMeans(femSamp10)
femSamp50_means <- colMeans(femSamp50)
femSamp100_means <- colMeans(femSamp100)

ggplot(data.frame(means = femSamp5_means), aes(x = means)) +
geom_histogram(aes(y = ..density.., fill = ..count..), bins = 15) +
xlab("Mean cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp5_means), sd = sd(femSamp5_means))

) +
ggtitle("Means on 5 females")
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Distribution of the sample mean for different sample sizes

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.5 2.0
Mean cholesterol (log2)

de
ns

ity

count

0

50

100

150

200

Means on 5 females

data.frame(means = femSamp5_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 5 females")
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ggplot(data.frame(means = femSamp10_means), aes(x = means)) +
geom_histogram(aes(y = ..density.., fill = ..count..), bins = 15) +
xlab("Mean cholesterol (log2)") +
stat_function(

fun = dnorm, color = "red",
args = list(mean = mean(femSamp10_means), sd = sd(femSamp10_means))

) +
ggtitle("Means on 10 females")
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data.frame(means = femSamp10_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 10 females")
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data.frame(means = femSamp50_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 50 females")
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data.frame(means = femSamp100_means) %>%
ggplot(aes(sample = means)) +
stat_qq() +
stat_qq_line() +
ggtitle("Means on 100 females")
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• We observe that when the data are not normally distributed the distribution of the sample
mean is not normally distributed in small samples

• For large samples, however, the sample mean of non normal data is still approximately
normally distributed.

4.1.11 Central Limit Theorem

Let 𝑋1, … , 𝑋𝑛 are sequence of random variables that are drawn independently from the same distribution
(population). As long as the sample size n is sufficiently large, the sample mean 𝑋̄ is approximately normally
distributed, irrespective of the distribution of the observations 𝑋𝑖.

4.1.12 Overview on the distribution of the mean

https://www.nature.com/articles/nmeth.2613.pdf

5 Interval estimators
• 𝑋̄ varies around 𝜇
• Here we will develop an interval around 𝑋̄ that will contain the value of 𝜇 with a probability of 95%

for a random sample.

• We first assume 𝜎2 to be known and we will later relax this assumption.
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5.1 Normally distributed data with known variance
• 𝑋 ∼ 𝑁(𝜇, 𝜎2) → 𝑋̄ ∼ 𝑁 (𝜇, 𝜎2

𝑛 )
• 95% reference-interval for sample mean

[𝜇 − 1.96 𝜎√𝑛, 𝜇 + 1.96 𝜎√𝑛]

• The interval contains the sample mean of a random sample with a probability of 95%.

• We can not calculate it because 𝜇 is unknown.

• Estimate 𝜇 by 𝑋̄.
[𝑋̄ − 1.96 𝜎√𝑛, 𝑋̄ + 1.96 𝜎√𝑛]

• More useful interpretation:

• Rewrite 𝜇 − 1.96 𝜎/√𝑛 < 𝑋̄ as 𝜇 < 𝑋̄ + 1.96 𝜎/√𝑛.
So that we can write

95% = 𝑃(𝜇 − 1.96 𝜎/√𝑛 < 𝑋̄ < 𝜇 + 1.96 𝜎/√𝑛)
= 𝑃(𝑋̄ − 1.96 𝜎/√𝑛 < 𝜇 < 𝑋̄ + 1.96 𝜎/√𝑛)

Definition of 95% confidence interval on mean For a random sample, the interval

[𝑋̄ − 1.96 𝜎/√𝑛, 𝑋̄ + 1.96 𝜎/√𝑛], (1)

contains the population mean 𝜇 with a probability of 95%.

• The probability that the CI for a random sample contains the population parameter 𝜇, i.e. 95%, is also
referred to as the confidence level.

• Note, that the lower and upper limit of the interval are also random variables that vary from sample
to sample. Different samples indeed result in different confidence intervals because they are based on
different observation.

• So they are stochastic intervals

• 95% of the samples will produce a 95% confidence interval that will contain the population mean 𝜇.
The remaining 5% will produce intervals that do not contain the population mean.

• Based on one interval you cannot conclude that it contains the real population parameter, because its
value is unknown.

Generally the standard deviation is unknown and has to be estimated e.g. by 𝑆
• For large 𝑛 [𝑋̄ − 1.96 𝑠/√𝑛, 𝑋̄ + 1.96 𝑠/√𝑛] will contain the population mean with a probability of

approximately 95%.

38



5.1.1 NHANES log2 cholesterol example

samp50 <- sample(fem$DirectChol, 50)

ll <- mean(samp50 %>% log2()) - 1.96 * sd(samp50 %>% log2()) / sqrt(50)
ul <- mean(samp50 %>% log2()) + 1.96 * sd(samp50 %>% log2()) / sqrt(50)
popMean <- mean(fem$DirectChol %>% log2())

c(ll = ll, ul = ul, popMean = popMean)

5.1.1.1 One sample

ll ul popMean
0.3992544 0.5866900 0.5142563

res$ll <- res$mean - 1.96 * res$se
res$ul <- res$mean + 1.96 * res$se
mu <- fem$DirectChol %>%
log2() %>%
mean()

res$inside <- res$ll <= mu & mu <= res$ul
res$n <- as.factor(res$n)
res %>%
group_by(n) %>%
summarize(coverage = mean(inside)) %>%
spread(n, coverage)

5.1.1.2 Repeated sampling

# A tibble: 1 x 3
`10` `50` `100`

<dbl> <dbl> <dbl>
1 0.901 0.946 0.953

• Note, that the coverage in the samples with 10 observations is too low because we do not account for
the uncertainty in the estimation of the standard deviation.

• If we look to the first 20 intervals, 2 out of 20 do not contain the population mean.
res %>%
filter(n == 10) %>%
slice(1:20) %>%
ggplot(aes(x = sample, y = mean, color = inside)) +
geom_point() +
geom_errorbar(aes(ymin = mean - 1.96 * se, ymax = mean + 1.96 * se)) +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
ggtitle("20 CI for N=10") +
ylim(range(fem$DirectChol %>% log2()))
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• For large sample sizes (100) the coverage is fine because we can estimate the standard deviation with
a relative high precision.

res %>%
filter(n == 50) %>%
slice(1:20) %>%
ggplot(aes(x = sample, y = mean, color = inside)) +
geom_point() +
geom_errorbar(aes(ymin = mean - 1.96 * se, ymax = mean + 1.96 * se)) +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
ggtitle("20 CI for N=50") +
ylim(range(fem$DirectChol %>% log2()))
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res %>%
filter(n == 100) %>%
slice(1:20) %>%
ggplot(aes(x = sample, y = mean, color = inside)) +
geom_point() +
geom_errorbar(aes(ymin = mean - 1.96 * se, ymax = mean + 1.96 * se)) +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
ggtitle("20 CI for N=100") +
ylim(range(fem$DirectChol %>% log2()))
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• What have you observed for the interval width?

5.1.2 Other confidence levels

• We can replace the 𝑧2.5% = 1.96 by another quantile of the normal distribution 𝑧𝛼/2 to obtain an
interval with another confidence level 1 − 𝛼.

• Confidence intervals are not only used for the mean but also for other population parameters.

5.2 Unknown variance
In real examples 𝜎 is unknown and estimated based on the sample using the sample standard deviation 𝑆.

• The previous intervals were a bit to small because they did not account for the uncertainty on the
estimation of 𝑆.

• When 𝑛 is large, 𝑆 is close to 𝜎.
• Hence, (𝑋̄ − 𝜇)/(𝑆/√𝑛) is approximately standard normal and

[𝑋̄ − 𝑧𝛼/2
𝑆√𝑛, 𝑋̄ + 𝑧𝛼/2

𝑆√𝑛]

is an approximate (1 − 𝛼)100% CI for 𝜇.
• For small samples this no longer holds (e.g. n=10)
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The estimation of 𝑆 introduces additional uncertainty in the standardized value (𝑋̄ − 𝜇)/(𝑆/√𝑛). Its distri-
bution

• is still symmetric but has heavier tails that the normal distribution.

• it depends on 𝑛 how much heavier the tails are

• is a (Student) 𝑡-distribution with 𝑛 − 1 degrees of freedom.

5.2.1 T-distribution

More formally: Let 𝑋1, 𝑋2, ..., 𝑋𝑛 be an independent random sample from a Normal distribution 𝑁(𝜇, 𝜎2),
then (𝑋̄ − 𝜇)/(𝑆/√𝑛) follows a 𝑡-distribution with 𝑛 − 1 degrees of freedom.

The density of a t-distribution can be calculated in R using the function dt. It has arguments x for the
quantile and df for the degrees of freedom.
grid <- seq(-5, 5, .1)
densDist <- cbind(grid, dnorm(grid), sapply(c(2, 5, 10), dt, x = grid))
colnames(densDist) <- c("x", "normal", paste0("t", c(2, 5, 10)))

densDist %>%
as.data.frame() %>%
gather(dist, dens, -x) %>%
ggplot(aes(x = x, y = dens, color = dist)) +
geom_line() +
ylab("Density")

t-distributions have heavier tails then the normal distribution → larger quantiles so broader intervals for the
same confidence level.

• This captures the additional uncertainty for estimating 𝑆.
• If 𝑛 → ∞ then 𝑡(𝑑𝑓) → 𝑁(0, 1)
• Quantiles of the 𝑡-distribution can be calculated in R using qt. e.g. 95%, 97.5%, 99.5% quantile for a

t-distribution with 14 degrees of freedom:
qt(.975, df = 14)

[1] 2.144787
qt(c(.95, .975, .995), df = 14)

[1] 1.761310 2.144787 2.976843

• These quantiles can be used to calculate 90%, 95% and 99% CI.

• 97.5% quantile 2.14 of a t-distribution with 𝑛 − 1 = 14 degrees of freedom is indeed larger than that
of a standard Normal distribution 1.96.

5.2.2 Confidence interval based on the t-distribution

The 100%(1 − 𝛼) CI for the mean 𝜇 of a Normal distributed random variable 𝑋 with unknown variance is

[𝑋̄ − 𝑡𝑛−1,𝛼/2
𝑠√𝑛, 𝑋̄ + 𝑡𝑛−1,𝛼/2

𝑠√𝑛]
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• We simply replace the (1 − 𝛼/2)100% quantile of the Normal distribution by that of the t-distribution
with 𝑛 − 1 degrees of freedom.

5.2.2.1 Captopril example 95% CI for the average blood pressure change becomes
mean(captopril$deltaSBP) - qt(.975, df = 14) * sd(captopril$deltaSBP) / sqrt(15)

[1] -23.93258
mean(captopril$deltaSBP) + qt(.975, df = 14) * sd(captopril$deltaSBP) / sqrt(15)

[1] -13.93409

The 99% CI is given by
mean(captopril$deltaSBP) - qt(.995, df = 14) * sd(captopril$deltaSBP) / sqrt(15)

[1] -25.87201
mean(captopril$deltaSBP) + qt(.995, df = 14) * sd(captopril$deltaSBP) / sqrt(15)

[1] -11.99466

Note, that zero is outside the interval and that the entire interval is negative indicating that there is on
average a large effect by administrating captopril on the blood pressure of patients with hypertension.

5.2.3 Interpretation of the confidence interval

• We will revisit the results for sampling log2 cholesterol levels from the large NHANES study. We first
focus on the repeated experiments with sample size 10.

res$n <- as.character(res$n) %>% as.double(res$n)
res$ll <- res$mean - qt(0.975, df = res$n - 1) * res$se
res$ul <- res$mean + qt(0.975, df = res$n - 1) * res$se
mu <- fem$DirectChol %>%
log2() %>%
mean()

res$inside <- res$ll <= mu & mu <= res$ul
res$n <- as.factor(res$n)
res %>%
group_by(n) %>%
summarize(coverage = mean(inside)) %>%
spread(n, coverage)

# A tibble: 1 x 3
`10` `50` `100`

<dbl> <dbl> <dbl>
1 0.941 0.948 0.955

We observe that all the coverages of the intervals are now controlled at their nominal 95% confidence level.
res %>%
filter(n == 10) %>%
slice(1:20) %>%
ggplot(aes(x = sample, y = mean, color = inside)) +
geom_point() +
geom_errorbar(aes(ymin = mean - qt(0.975, df = 9) * se, ymax = mean + qt(0.975, df = 9) * se)) +
geom_hline(yintercept = mean(log2(fem$DirectChol))) +
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ggtitle("20 CI for N=10") +
ylim(range(fem$DirectChol %>% log2()))
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https://www.nature.com/articles/nmeth.2659.pdf

5.3 Reporting?
• Always report the uncertainty on the results!

• Conclusions based on a point estimate can be very misleading.

• Upon a statistical analysis we therefore always report confidence intervals

• They are small enough to be informative but almost never misleading

• They form a good trade-off between statistical significance and biological relevance.

• We conclude that the population parameter lays in the interval and know that this statement holds
with a probability of 95% for random samples.

5.3.1 Captopril example

We conclude that the blood pressure decreases on average with 18.9mmHg upon administering captopril
(95% CI [-23.9,-13.9]mmHg).

Based on these results it is obvious that the treatment causes a strong blood pressure drop for patients with
hypertension.
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6 Hypothesis tests
6.1 Captopril Example:
Researchers want to assess if the drug captopril decreases the blood pressure for patients with hypertension.

• Is there no/an effect of administering captopril on the systolic blood pressure?

• It is not obvious to draw such conclusions based on a small sample

• It is uncertain if we can generalized the observations in the sample towards the population!

• Is the apparent beneficial effect systematic or random?
captopril_tidy %>%
filter(type %in% c("SBPa", "SBPb")) %>%
mutate(type = factor(type, levels = c("SBPb", "SBPa"))) %>%
ggplot(aes(x = type, y = bp)) +
geom_line(aes(group = id)) +
geom_point()
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captopril$deltaSBP <- captopril$SBPa - captopril$SBPb
captopril %>%
ggplot(aes(x = "Systolic blood pressure", y = deltaSBP)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = "jitter") +
ylab("Difference (mm mercury)") +
xlab("")
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• The average blood pressure difference 𝑋̄ is a natural basis to base our decision on.

̄𝑥=-18.93 (s=9.03, SE=2.33)

• It is not enough that ̄𝑥 < 0 to conclude that the systolic blood pressure is on average lower upon
administrating captopril at the level of the entire population.

• To generalize the effect we observe in the sample to the population it has to be sufficiently large.

• But, how large?

6.1.1 Hypothesis tests

• For this purpose statistical hypothesis tests have been developed

• They give a black/white answer

• It is almost impossible to read a scientific publication without results of statistical tests.

• According to the falsification principle of Popper we can never prove a hypothesis based on data.

– Hence we will introduce two hypotheses: a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1.

– We will try to falsify the null hypothesis based on the statistical test.

6.1.1.1 Captopril

• Based on the sample we cannot prove that there is an effect of administering captopril (𝐻1 , alternative
hypothesis).
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• We therefore suppose that there is no effect of captopril.

– We refer to this as the null hypothesis 𝐻0.

– Falsify (“try to reject”) the 𝐻0.

– How likely is it to observe an effect that is at least as large as what we have observed in our
sample in a novel random sample when 𝐻0 is true?

6.1.1.2 Permutation test

• Under 𝐻0 the blood pressure measurements before and after administering captopril are two base line
blood pressure measurements for a patient

• Under H0 we can shuffle (permute) the blood pressure measurements for each patient.
captoprilSamp <- captopril
perm <- sample(c(FALSE, TRUE), 15, replace = TRUE)
captoprilSamp$SBPa[perm] <- captopril$SBPb[perm]
captoprilSamp$SBPb[perm] <- captopril$SBPa[perm]
captoprilSamp$deltaSBP <- captoprilSamp$SBPa - captoprilSamp$SBPb
captoprilSamp %>%
gather(type, bp, -id) %>%
filter(type %in% c("SBPa", "SBPb")) %>%
mutate(type = factor(type, levels = c("SBPb", "SBPa"))) %>%
ggplot(aes(x = type, y = bp)) +
geom_line(aes(group = id)) +
geom_point()
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data.frame(
deltaSBP = c(captopril$deltaSBP, captoprilSamp$deltaSBP),
shuffled = rep(c(FALSE, TRUE), each = 15)
) %>%
ggplot(aes(x = shuffled, y = deltaSBP)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = "jitter") +
stat_summary(fun = mean, geom = "point", size = 3, color = "red") +
ylab("Difference (mm mercury)")
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And we permute again
captoprilSamp <- captopril
perm <- sample(c(FALSE, TRUE), 15, replace = TRUE)
captoprilSamp$SBPa[perm] <- captopril$SBPb[perm]
captoprilSamp$SBPb[perm] <- captopril$SBPa[perm]
captoprilSamp$deltaSBP <- captoprilSamp$SBPa - captoprilSamp$SBPb

captoprilSamp %>%
gather(type, bp, -id) %>%
filter(type %in% c("SBPa", "SBPb")) %>%
mutate(type = factor(type, levels = c("SBPb", "SBPa"))) %>%
ggplot(aes(x = type, y = bp)) +
geom_line(aes(group = id)) +
geom_point()
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data.frame(
deltaSBP = c(captopril$deltaSBP, captoprilSamp$deltaSBP),
shuffled = rep(c(FALSE, TRUE), each = 15)
) %>%
ggplot(aes(x = shuffled, y = deltaSBP)) +
geom_boxplot(outlier.shape = NA) +
geom_point(position = "jitter") +
stat_summary(fun = mean, geom = "point", size = 3, color = "red") +
ylab("Difference (mm mercury)")
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• We will do this 10000 times and we will keep track of the mean.
• We basically only have to swap the signs of the observed blood pressure differences 𝑥 when we shuffle.

# generate a matrix with 15 rows and 10000 columns which consist of -1 and 1
permH <- sample(c(-1, 1), 150000, replace = TRUE)
dim(permH) <- c(15, 10000)

# calculate the means for the permuted data
muPerm <- colMeans(permH * captopril$deltaSBP)
muPerm %>%
as.data.frame() %>%
ggplot(aes(x = .)) +
geom_histogram() +
geom_vline(xintercept = mean(captopril$deltaSBP), col = "blue")
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• We observe that not one of the means that were obtained under 𝐻0 (by permutation) were as extreme
as the sample mean we observed in the captopril study.

• So the probability to observe a blood pressure drop that is larger then the one in the captopril study
in a random sample generated under the null hypothesis is smaller then 1 out of 10000.

So we have strong evidence that 𝐻0 is incorrect and we thus we reject it and conclude 𝐻1: There is an effect
of administering captopril on the blood pressure of patients with hypertension.

6.1.2 Pivot

• In practice we always use statistics that balance the effect size (average difference) to the noise (standard
error)

• When we falsify the null hypothesis, we standardize the mean around 𝜇0 = 0 the mean under 𝐻0

𝑡 = 𝑋̄ − 𝜇0
𝑠𝑒𝑋̄

• for the captopril example this becomes:

−18.93 − 0
2.33 = −8.12

We now determine the null distribution of test statistic t with permutation.
deltaPerms <- permH * captopril$deltaSBP
tPerm <- colMeans(deltaPerms) / (apply(deltaPerms, 2, sd) / sqrt(15))

53



tOrig <- mean(captopril$deltaSBP) / sd(captopril$deltaSBP) * sqrt(15)

tPermPlot <- tPerm %>%
as.data.frame() %>%
ggplot(aes(x = .)) +
geom_histogram(aes(y = ..density.., fill = ..count..)) +
geom_vline(xintercept = tOrig, col = "blue")

tPermPlot
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• Again, none of the permutations gives a t-statistic as extreme as the one observed in the captopril
study.

When there is no effect of captopril it is nearly impossible to obtain a test statistic as extreme as the one
that was observed ( t=-8.12).

• The probability to observe a larger blood pressure drop then the one we observed in our sample in a
random sample under 𝐻0 is smaller 1/10000.

• We refer to this probability with the p-value.

• It measures the strength of the evidence against the null: the smaller the p-value the more evidence
we have that the null is not true.

• The distribution has a nice bell shape.
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6.1.3 How do we decide?

When is the p-value sufficiently small to conclude that there is strong evidence against the null hypothesis?

• We typically work at a significance level of 𝛼 = 0.05
• We state that we conducted the test at the 5% significance level

6.1.4 Permutation tests are computationally demanding

• Can we assess how extreme the blood pressure drop was without permutation?

• We know that the blood pressure differences are approximately Normally distributed, so

𝑡 = 𝑋̄ − 𝜇
𝑠𝑒𝑋̄

follows a t-distribution (with 14 df for the captopril example).

• Under H0 𝜇 = 0 and

𝑡 = 𝑋̄ − 0
𝑠𝑒𝑋̄

∼ 𝑓𝑇 ,14

tPermPlot +
stat_function(fun = dt, color = "red", args = list(df = 14))
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• Note, the permutation null distribution indeed corresponds to a t-distribution with 14 degrees of
freedom.
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• So we can conduct the statistical test using statistical modelling of the data.

• We need to make assumptions for this, which we verify in the data exploration phase.

6.2 Hypotheses
Click to see more formal details

Translate the research question to a null hypothesis (𝐻0) and an alternative hypothesis (𝐻1)

First the we need to translate the research question to a parameterized statistical model.

• From the experimental design it follows that

𝑋1, ..., 𝑋𝑛 i.i.d 𝑓(𝑋),

with 𝑓(𝑋) the density function of blood pressure differences.

• Simplify: assume that 𝑓(𝑋) is known except for an finite dimensional set of parameters � that still
has to be estimated (parametric statistic model).

6.2.1 Captopril example

Click to see more formal details

𝑋 ∼ 𝑁(𝜇, 𝜎2) with � = (𝜇, 𝜎2), the mean 𝜇 and variance 𝜎2.

The research question is now translated in terms of the average blood pressure drop: 𝜇 = 𝐸𝑓 [𝑋].
The alternative hypothesis is formulated in terms of a parameter of 𝑓(𝑋) and has to express what the
researchers want to prove with the study.

• Here:
𝐻1 ∶ 𝜇 < 0.

On average the blood pressure of patients with hypertension decreases upon administering captopril.

The null hypothesis generally expresses a null condition, i.e. when notting exceptional happens.

• Researchers typically aim to prove via empirical research that observing the data under the null is
highly unlikely so that they can reject the null hypothesis: Falsification principle.

• The null hypothesis is typically expressed with the same model parameter as the one used
for 𝐻1.

• Here:
𝐻0 ∶ 𝜇 = 0

i.e. on average the systolic blood pressure remains unchanged upon administering captopril.

6.3 Test-statistic
Click to see more formal details

Once the population, the parameters, and, 𝐻0 and 𝐻1 are determined the concept of hypothesis testing is
as follows:

Construct a test statistic so that it

1. measures evidence in the sample,
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2. against the null hypothesis, and

3. in favour of the alternative hypothesis.

A test statistic thus has to be a function of the observations in the sample.

6.3.1 Captopril example

Click to see more formal details

𝑇 = 𝑋̄ − 𝜇0
SE𝑋̄

With 𝜇0 = 0 under 𝐻0

Again

• If 𝐻0 holds there is no effect of captopril on the blood pressure in the population and then we expect
test statistic 𝑇 close to 0.

• If 𝐻1 is true we expect 𝑇 < 0.
• In the captopril example we observe 𝑡 = (−18.93 − 0)/2.33 = −8.12.
• Is 𝑡 = −8.12 large enough in absolute value to conclude that 𝜇 < 0 and with which confidence can we

make this conclusion?

• We known that t follows a t-distribution with 14 d.f. under 𝐻0

6.4 p-value
The p-value is the probability to balance between 𝐻0 and 𝐻1.

The way how we calculate it is context dependent

• For the captopril example we have

𝑝 = 𝑃 [𝑇 ≤ 𝑡 ∣ 𝐻0] = P0 [𝑇 ≤ 𝑡] ,
with the index “0” in P0 [.] indicates that the probability is calculated under 𝐻0.

It gives the probability to observe a test statistic 𝑇 lower or equal to the value observed in the current sample
in a random sample under 𝐻0

- i.e. a test statistic $T$ in the random sample under $H_0$ with a value that is more extreme, more in the direction of $H_1$ then the one observed in the current sample.

6.4.1 Captopril example

Click to see more formal details

• The 𝑝-value for the captopril example is calculated as follows

𝑝 = P0 [𝑇 ≤ −8.12] = 𝐹𝑡(−8.12; 14) = 0.6 10−6.

with 𝐹𝑡(; 14) the cumulative distribution function of a t-distribution with 14 degrees of freedom:

𝐹𝑡(𝑥; 14) =
𝑥

∫
−∞

𝑓𝑡(𝑥; 14).

and 𝑓𝑡(.; 14) the density function of the t-distribution.
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• We calculate this probability in R with pt(x,df)

– the value of the observed test statistic x en
– the number of degrees of freedom of the t-distribution df.

• pt(x,df) calculates the probability to observe a value smaller or equal to x when we would draw a
random sample from a t-distribution with df degrees of freedom.

n <- length(captopril$deltaSBP)
stat <- (mean(captopril$deltaSBP) - 0) / (sd(captopril$deltaSBP) / sqrt(n))
stat

[1] -8.122816
pt(stat, n - 1)

[1] 5.731936e-07

In practice we will not calculate the test ourself, but we will use the function t.test:
t.test(captopril$deltaSBP, alternative = "less")

One Sample t-test

data: captopril$deltaSBP
t = -8.1228, df = 14, p-value = 5.732e-07
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf -14.82793
sample estimates:
mean of x
-18.93333

Note, that we need to specify the argument alternative="less" so that the p-value would be calculated
in the left tail.

The function also gives a one-sided interval because we test in one direction.

6.4.2 Definition of the p-value

The p-value (also referred to as the observed significance level) is the probability to observe a test
statistic in a random sample under the null hypothesis that is as or more extreme then the test statistic
observed in the current sample.

• The smaller the probability the more evidence against 𝐻0.

• Note, that the p-value is not the probability that null hypothesis is true!

• The word “extreme” indicates on the direction in which the test statistic is more likely under the
alternative hypothesis.

• In the example 𝐻1 ∶ 𝜇 < 0 and we thus expect very negative values for 𝑡 under 𝐻1.

• From the definition small 𝑝-values indicate that observed test statistic is unlikely under the assumption
that 𝐻0 is correct.

• Thus a small value of 𝑝-value means that we have to reject 𝐻0 in favour of 𝐻1.

• The threshold that we use to compare the 𝑝-value with is referred to as the significance level and is
denoted with 𝛼.
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• A statistical test conducted on the 𝛼 significance level is also referred to as a level-𝛼 test.

A test result is statistically significant if 𝑝 < 𝛼
• 𝛼 is commonly set at 5%.

• The smaller the p-value the more ‘significant’ the test result deviates from what can be expected under
𝐻0.

• It summarizes the evidence against the null.

> 0.10 non significant (no evidence)
0.05 − 0.10 marginal significant, weak evidence (do not use this yourself)
0.01 − 0.05 significant
0.001 − 0.01 strongly significant

< 0.001 extremely significant

6.5 Critical value
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Reality
Conclusion H0 H1
Accept H0 OK Type II ($\beta$)
Reject H0 Type I ($\alpha$) OK

6.6 Decision Errors
The decision to accept or reject 𝐻0 is made based on a single sample. A wrong decision could have been
made.

• Type I error, 𝛼: wrongly reject the null hypothesis (false positive)

• Type II error, 𝛽: wrongly accept the null hypothesis

• Decision is also stochastic! See first chapter of the course

6.6.1 Captopril Example

• 𝐻0: administering captopril has no effect on the systolic blood pressure

• 𝐻1: administering captopril an average leads to a decrease in blood pressure

• Type I error: there is on average no blood pressure drop upon administering captopril, but we
conclude that there is an effect of captopril.

• Type II error: there is on average a blood pressure drop upon administering captopril, but it is not
picked up by the statistical test.

6.6.2 Type I error is controlled

The type I error is controlled by the construction of the statistical test.

P [type I error] = P [reject 𝐻0 ∣ 𝐻0] = P0 [𝑇 < 𝑡𝑛−1;1−𝛼] = 𝛼
• The significance-level 𝛼 is the probability to make a type I error.

• The statistical test ensures that the probability on a type I error is controlled at the significance level
𝛼.

• The probability to correctly accept 𝐻0 is 1 − 𝛼.
• We can show that the p-value under 𝐻0 is uniform distributed.

• So statistical hypothesis testing leads to a uniform decision strategy.

We will illustrate this in a simulation study

• n=15
• 𝜇 = 0 mmHg
• 𝜎 = 9 mmHg
• number of simulations 1000

nsim <- 10000
n <- 15
sigma <- 9
mu <- 0
mu0 <- 0
alpha <- 0.05
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# simulate nsim samples of size n
deltaSim <- matrix(rnorm(n * nsim, mu, sigma), nrow = n, ncol = nsim)
pSim <- apply(deltaSim, 2, function(x, mu, alternative) t.test(x, mu = mu, alternative = alternative)$p.value, mu = mu0, alternative = "less")

mean(pSim < alpha)

[1] 0.0471
pSim %>%
as.data.frame() %>%
ggplot(aes(x = .)) +
geom_histogram() +
xlim(0, 1)
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• The type I error is indeed about 0.05
• The p-values are uniform

6.6.3 Type II error

• Determine the type II error is less evident.

• We have to reason under 𝐻1

• In the captopril voorbeeld is 𝐻1 ∶ 𝜇 < 0
• Many alternatives are possible
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• The distribution under 𝐻1 is not fully specified

• work-around: choose one specific distribution under 𝐻1.

𝐻1(𝛿) ∶ 𝜇 = 0 − 𝛿 for 𝛿 > 0.
• e.g. a blood pressure difference of 2 mmHg

• 1-type II is also referred to as the power. It is the probability to pick up the alternative.

• It is not guaranteed by the design of the test

• It depends on the experimental design of the study
nsim <- 10000
n <- 15
sigma <- 9
mu <- -2
mu0 <- 0
alpha <- 0.05

# simulate nsim samples of size n
deltaSim <- matrix(rnorm(n * nsim, mu, sigma), nrow = n, ncol = nsim)
pSim <- apply(deltaSim, 2, function(x, mu, alternative) t.test(x, mu = mu, alternative = alternative)$p.value, mu = mu0, alternative = "less")

mean(pSim < alpha)

[1] 0.2026
pSim %>%
as.data.frame() %>%
ggplot(aes(x = .)) +
geom_histogram() +
xlim(0, 1)
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• We observe that a power of 0.2026 or a type II error of 0.7974.

• When we increase the sample size
nsim <- 10000
n <- 30
sigma <- 9
mu <- -2
mu0 <- 0
alpha <- 0.05

# simulate nsim samples of size n
deltaSim <- matrix(rnorm(n * nsim, mu, sigma), nrow = n, ncol = nsim)
pSim <- apply(deltaSim, 2, function(x, mu, alternative) t.test(x, mu = mu, alternative = alternative)$p.value, mu = mu0, alternative = "less")

mean(pSim < alpha)

[1] 0.3221
pSim %>%
as.data.frame() %>%
ggplot(aes(x = .)) +
geom_histogram() +
xlim(0, 1)
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• Increasing the sample size leads to a higher power.
• Still the power to pick up such a small blood pressure drop remains very low.
• A drop of 2 mmHg is also not relevant for drug companies.

https://www.nature.com/articles/nmeth.2738.pdf

6.6.4 Interpretation

Suppose that given a particular sample 𝑝 < 𝛼, i.e. reject 𝐻0

• Two possibilities

– correct decision,
∗ or type I error.

• We known that the probability on a type error is low, i.e. 𝛼 = 0.05.
On the other hand, when 𝑝 ≥ 𝛼 and we do not reject 𝐻0 we also have two options:

• Correct decision,
• or we made a type II error.

The probability on a type II error (𝛽) is not controlled at a specific value.

Statistical test is constructed to only control the probability on a type I error at 𝛼.
To be scientifically correct we have to take a pessimistic attitude and we have to admit that 𝛽 can be large
(i.e. a small power to detect the alternative).

Hence,
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• 𝑝 < 𝛼 we reject 𝐻0

– We conclude that 𝐻1 is probably correct.
∗ We refer to this as a strong conclusion.

• 𝑝 ≥ 𝛼 accept 𝐻0

– Does not imply that we accept 𝐻0 correctly.
– We can only conclude that the data do not have enough evidence against the 𝐻0 in favour of 𝐻1.
– We refer to this as a weak conclusion.
– We typically conclude that the effect of the treatment is not significant.

6.7 Conclusions captopril example
The test we have performed is referred to as

• the one sample t-test on the difference or

• a paired t-test. Indeed we dispose of paired observations for each patient!

• The test is done one-sided because we test against the alternative of a blood pressure drop.

• Both tests (one sample t-test on the difference and paired t-test) give the same results:
t.test(captopril$deltaSBP, alternative = "less")

One Sample t-test

data: captopril$deltaSBP
t = -8.1228, df = 14, p-value = 5.732e-07
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf -14.82793
sample estimates:
mean of x
-18.93333
t.test(captopril$SBPa, captopril$SBPb, paired = TRUE, alternative = "less")

Paired t-test

data: captopril$SBPa and captopril$SBPb
t = -8.1228, df = 14, p-value = 5.732e-07
alternative hypothesis: true mean difference is less than 0
95 percent confidence interval:

-Inf -14.82793
sample estimates:
mean difference

-18.93333

6.7.1 Conclusion

There is on average an extremely significant blood pressure drop upon administering captopril to patients
with hypertension. The systolic blood pressure decreases on average with 18.9 mmHg upon the treatment
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with captopril (95% CI [−∞, −14.82] mmHg).

Note that

1. A one-sided interval is reported because we are only interested in a blood pressure drop.

2. Because of the pre-test/post-test design we cannot distinguish between the effect of the treatment
and a placebo effect. There was no good control! The lack of a good control typically occurs in
pre-test/post-test designs. How could we have improved the design?

6.8 One-sided or two-side testing?
De test in the captopril example was a one-sided test. We only aim to detect if the captopril treatment on
average reduces the blood pressure.

Suppose that we defined the blood pressure difference as 𝑋′
𝑖 = 𝑌 before

𝑖 − 𝑌 after
𝑖

• Now, a positive value indicates a blood pressure drop

• The average change in blood pressure is now denote as 𝜇′ = E[𝑋′].
• So now we should use a one-sided test to assess 𝐻0 ∶ 𝜇′ = 0 against 𝐻1 ∶ 𝜇′ > 0.
• p-value now becomes:

𝑝 = P0 [𝑇 ≥ 𝑡] .

Analysis based on 𝑋′: Argument alternative="greater" so that we use 𝐻1 ∶ 𝜇′ > 0:
t.test(captopril$SBPb - captopril$SBPa, alternative = "greater")

One Sample t-test

data: captopril$SBPb - captopril$SBPa
t = 8.1228, df = 14, p-value = 5.732e-07
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
14.82793 Inf

sample estimates:
mean of x
18.93333

Of course we obtain the same results. Only the sign is swapped.

6.8.1 Two-sided test

Suppose that researchers wanted to assess the mode of action of the new drug captopril in the design phase
and suppose that healthy subjects were used in an early phase of the drug development.

In this case it would have been interesting to observe blood pressure drops as well as gains.

Then we would require a two-sided test strategy

𝐻0 ∶ 𝜇 = 0
against the alternative hypothesis
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𝐻1 ∶ 𝜇 ≠ 0,

so that the mean under the alternative is different from zero.

It can be positive as well as negative changes and we did not know upfront in which direction the real mean
will deviate from 𝐻1.

We can conduct a two-sided test on the 𝛼 = 5% significance level by
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The argument alternative of the t.test function is by default alternative="two.sided".
t.test(captopril$deltaSBP)

One Sample t-test

data: captopril$deltaSBP
t = -8.1228, df = 14, p-value = 1.146e-06
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-23.93258 -13.93409

sample estimates:
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mean of x
-18.93333

• We still obtain an extremely significant result.
• The p-value is double as large because we test two-sided.

Indeed

𝑝 = 𝑃0[𝑇 ≤ −|𝑡|] + 𝑃0[𝑇 ≥ |𝑡|] = 𝑃0[|𝑇 | ≥ |𝑡|] = 2 × 𝑃0[𝑇 ≥ |𝑡|]
• We also obtain a two-sided confidence interval

6.8.2 One-sided or two-sided test?

With a one-sided test we can more easily reject 𝐻0 on condition that 𝐻1 is true than with a two-sided test.

• All information is used to test into one direction

• The decision to test one-sided has to be done in the design phase before the experiment is conducted

• Even if we have strong a priori presumptions, we are not entirely sure otherwise we would have no
reason to do the research.

• If we propose a one-sided test in the design phase and we observe a result in the opposite direction
that would be statistically significant we can not draw conclusions from the experiment.

• In the design phase we have excluded this result because it is so unexpected that it has to be a false
positive.

• Hence, one-sided tests are not recommended.

A two-sided test can always be defended and allows you to detect any deviation of 𝐻0 and is highly recom-
mended.

It is never allowed to change a two-sided test into a one-sided test based on what has been observed in the
sample! Otherwise the type I error of the test strategy is not correctly controlled.

We illustrate this in the simulation study below:

1. correct two-sided test and
2. one-sided test with its sign based on what was observed in the sample.

mu <- 0
sigma <- 9.0
nSim <- 1000
alpha <- 0.05
n <- 15
pvalsCor <- pvalsInCor <- array(0, nSim)
for (i in 1:nSim)
{

x <- rnorm(n, mean = mu, sd = sigma)
pvalsCor[i] <- t.test(x)$p.value
if (mean(x) < 0) {

pvalsInCor[i] <- t.test(x, alternative = "less")$p.value
} else {

pvalsInCor[i] <- t.test(x, alternative = "greater")$p.value
}

}
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mean(pvalsCor < 0.05)

[1] 0.041
mean(pvalsInCor < 0.05)

[1] 0.094

• Type I error correctly controlled at 𝛼 for two-sided test.
• Type I error not correctly controlled when we test one-sided based on what we observed in the sample.

7 Nature column on testing
https://www.nature.com/articles/nmeth.2698.pdf
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