SCIENCE MEETS LIFE

PROTEIN IDENTIFICATION

lennart martens

lennart.martens@vib-ugent.be @compomics computational omics and systems biology group Ghent University and VIB, Ghent, Belgium

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

Peptides subjected to fragmentation analysis can yield several types of fragment ions

There are several other ion types that can be annotated, as well as 'internal fragments'. The latter are fragments that no longer contain an intact terminus. These are harder to use for 'ladder sequencing', but can still be interpreted.

In an ideal world, the peptide sequence will produce directly interpretable ion ladders

LENNART

CC BY-SA 4.0

Real spectra usually look quite a bit worse, which introduces ambiguity in interpretation

CC BY-SA 4.0

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

Database search engines match experimental spectra to known peptide sequences

experimental spectra

Three popular algorithms illustrate the three types of scoring systems

SEQUEST (UWashington, Thermo Fisher Scientific) Intensity-based scoring system

MASCOT (Matrix Science) / Andromeda (Jürgen Cox)
Peak counting-based scoring system

X!Tandem (The Global Proteome Machine Organization)
Hybrid scoring system

SEQUEST is the original search engine, and is based on ion intensity matching

Can be used for MS/MS (PFF) identifications

Based on a cross-correlation score (includes peak height)

Published core algorithm (patented, licensed to Thermo), Eng, JASMS 1994

Provides preliminary (Sp) score, rank, cross-correlation score (XCorr),

and score difference between the top tow ranks (deltaCn, Δ Cn)

Thresholding is up to the user, and is commonly done *per* charge state

Many extensions exist to perform a more automatic validation of results

The correlation score (R_i) is calculated as the matched ion intensity

The cross-correlation score (Xcorr) is R_0 calibrated by the average random correlation

$$XCorr = R_0 - \frac{1}{150} \left(\sum_{i=-75/R_0}^{+75} Ri \right)$$

Eng, JASMS 1994

The best theoretical match is then compared to the second-best theoretical match

Mascot is an equally recognized search engine, but is based on peak counting

Very well established search engine, Perkins, *Electrophoresis* 1999

Can do MS (PMF) and MS/MS (PFF) identifications

Based on the MOWSE score,

Unpublished core algorithm (trade secret)

Predicts an *a priori* threshold score that identifications need to pass

From version 2.2, Mascot allows integrated decoy searches

Provides rank, score, threshold and expectation value per identification

Customizable confidence level for the threshold score

Through Andromeda, we understand MASCOT

$$s = -10 \times \log_{10} \sum_{j=k}^{n} \left[\binom{n}{j} (p)^{j} (1-p)^{n-j} \right]$$

n = number of theoretical peaks

k = number of matched peaks (within a given fragment tolerance)

p = probability of finding a single, matched peak by chance

p is calculated by dividing the number of highest intensity peaks (q)

by a mass-window size (100 Da)

q is limited by a maximum value, and is optimized for maximum s

based on peak counting instead of intensity sums

X!Tandem introduces a hybrid score, based on both peak counting and ion intensity

A successful open source search engine, Craig and Beavis, RCMS 2003

Can be used for MS/MS (PFF) identifications

Based on a hyperscore (*Pi* is either 0 or 1):

$$HyperScore = \left(\sum_{i=0}^{n} I_{i} * P_{i}\right) * N_{b}! * N_{y}!$$

Relies on a hypergeometric distribution (hence hyperscore)

Published core algorithm, and is freely available

Provides hyperscore and expectancy score (the discriminating one)

X!Tandem is fast and can handle modifications in an iterative fashion

Has rapidly gained popularity as (auxiliary) search engine

X!Tandem's significance calculation for scores can be seen as a general template

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

Sequence tags are as old as SEQUEST, and still have a role to play today

The concept of sequence tags was introduced by Mann and Wilm

GutenTag, DirecTag, TagRecon

Tabb, *Anal. Chem.* 2003, Tabb, *JPR* 2008, Dasari, *JPR* 2010

Recent implementations of the sequence tag approach

Refine hits by peak mapping in a second stage to resolve ambiguities

Rely on a empirical fragmentation model

Published core algorithms, DirecTag and TagRecon freely available

GutenTag/DirecTag extracts tags, TagRecon matches tags to database

Very useful to retrieve unexpected peptides (modifications, variations)

Entire workflows exist (e.g., combination with IDPicker)

GutenTag: two stage, hybrid tag searching

De novo sequencing tries to read the entire peptide sequence from the spectrum

Example of a manual de novo of an MS/MS spectrum No more database necessary to extract a sequence!

RapidNovor	Ma 2015
PepNovo	Frank 2005, Grossmann 2005
PEAKS	Ma 2003, Zhang 2004
Sherenga	Fernandez-de-Cossio 2000
Lutefisk	Dancik 1999, Taylor 2000
<u>Algorithms</u>	<u>References</u>

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

All hits, good and bad together, form a distribution of scores

If we know how scores for bad hits distribute, we can distinguish good from bad by score

The separation is not perfect, which leads to the calculation of a local false discovery rate

Decoy databases are false positive factories, assumed to deliver representative bad hits

Three main types of decoy DB's are used:

- Reversed databases (easy)

LENNARTMARTENS → SNETRAMTRANNEL

- Shuffled databases (slightly more difficult)

LENNARTMARTENS → NMERLANATERTTN

(for instance)

- Randomized databases (as difficult as you want it to be)

LENNARTMARTENS > GFVLAEPHSEAITK

(for instance)

The concept is that each peptide identified from the decoy database is an incorrect identification. By counting the number of decoy hits, we can estimate the number of false positives in the original database, provided that the decoys have similar properties as the forward sequences.

With the help of the scores of decoy hits, we can assess the score distribution of bad hits

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

Our MS2PIP fragmentation model accurately predicts peptide fragmentation behaviour

Vaudel, Nat. Biotech., 2015 PeptideShaker

https://iomics.ugent.be/ms2pip Degroeve, Bioinformatics, 2013 Degroeve, Nucleic Acids Research, 2015

Our DeepLC model accurately predicts retention times of peptides with unseen modifications

31

MS2PIP and DeepLC in MS²Rescore dramatically boost identification in immunopeptidomics

MS²Rescore can also be applied to generic peptidomics data

MS²Rescore also boosts metaproteomics, opening up the prospect of meta-immunopeptidomics

MS2PIP and DeepLC power ionbot, a novel open modification search engine with high reliability

sensitive and highly accurate identification of (modified) peptides

ionbot shows the value of open modification searches, and of accurate prediction models

When all PTMs are considered, our view of proteins is changed

000571 Summary

Peptides Structures

Mutations

Zooming in shows that not all residues are created equal

The 3D structure view also becomes rather crowded

MS/MS spectra and identification

Database search algorithms in three phases

Sequencial search algorithms

Decoys and false discovery rate calculation

The future: machine learning

Protein inference: bad, ugly, and not so good

Protein inference is a question of conviction

The complexity of protein inference is linked to the information ratio of a database

In real life, protein inference issues will be mainly bad, often ugly, and occasionally good

Protein inference can create issues in quantification due to degenerate peptides

A nice example of the mess of degenerate peptides in quantification

