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Peptides subjected to fragmentation analysis <
can yield several types of fragment ions
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There are several other ion types that can be annotated, as well as
‘internal fragments’. The latter are fragments that no longer contain an intact
terminus. These are harder to use for ‘ladder sequencing’, but can still be interpreted.
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This nomenclature was coined by Roepstorff and Fohlmann (Biomed. Mass Spec., 1984) and Klaus Biemann (Biomed.
I CCBY-5A 4.0

Environ. Mass Spec., 1988) and is commonly referred to as ‘Biemann nomenclature’. Note the link with the Roman alphabet.




In an ideal world, the peptide sequence will 4
produce directly interpretable ion ladders
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Real spectra usually look quite a bit worse, <
which introduces ambiguity in interpretation

N
intensity S
R : :

LE /EL N NA/AN
[EL] - IAN]
Bl [as)
300 1 Ik6]

[QN] : P P
[KN] : : NART;

LEN : Lo LENNART
LENNA LENNART

—_— =]




MS/MS spectra and identification

Database search algorithms in three phases
Sequencial search algorithms

Decoys and false discovery rate calculation
The future: machine learning

Protein inference: bad, ugly, and not so good

v




Database search engines match experimental 4
spectra to known peptide sequences

database peptide seq. theoretical spectra peptide scores
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Three popular algorithms illustrate ‘
the three types of scoring systems

SEQUEST (UWashington, Thermo Fisher Scientific)
Intensity-based scoring system

MASCOT (Matrix Science) / Andromeda (Jirgen Cox)
Peak counting-based scoring system

X!Tandem (The Global Proteome Machine Organization)
Hybrid scoring system

CCBY-5A 4.0



SEQUEST is the original search engine,
and is based on ion intensity matching

Can be used for MS/MS (PFF) identifications
Based on a cross-correlation score (includes peak height)
Published core algorithm (patented, licensed to Thermo), Eng, JASMS 1994
Provides preliminary (Sp) score, rank, cross-correlation score (XCorr),

and score difference between the top tow ranks (deltaCn, ACn)
Thresholding is up to the user, and is commonly done per charge state

Many extensions exist to perform a more automatic validation of results
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The correlation score (R)) is calculated <
as the matched ion intensity
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Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017
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The cross-correlation score (Xcorr) is R, 4
calibrated by the average random correlation
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The best theoretical match is then compared <
to the second-best theoretical match

XCorri1— XCorr:
XCorri

deltaCn =

38293
33507
28720
7391
191 47
14360

973

o |

000 . ]

000 21502 43003 4505 88007 107508 129010 150512 172014
Precursor MZ $86 9068 (2+) Resolution 340 Filename CapLC4384.081 2 2 mgf

.ntuLLLLACorrl XCorr, Int[|.|_|_|.|.

m/z

1
|
|
|
|
[R5 Rosl/Rg | [R5 Rysl/Ro
|
Rq
corre| lation

SSSSSSSSSS

Frequency

Eng, JASMS 1994
Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017

@ :i_'_(_j;:r ©

BY <A
CCBY-5A 4.0




Mascot is an equally recognized search
engine, but is based on peak counting

Very well established search engine, Perkins, Electrophoresis 1999

Can do MS (PMF) and MS/MS (PFF) identifications

Based on the MOWSE score,

Unpublished core algorithm (trade secret)

Predicts an a priori threshold score that identifications need to pass
From version 2.2, Mascot allows integrated decoy searches

Provides rank, score, threshold and expectation value per identification

Customizable confidence level for the threshold score

CCBY-5A 4.0



Through Andromeda,
we understand MASCOT
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n = number of theoretical peaks
k = number of matched peaks (within a given fragment tolerance)
p = probability of finding a single, matched peak by chance
p is calculated by dividing the number of highest intensity peaks (q)
by a mass-window size (100 Da)
g is limited by a maximum value, and is optimized for maximum s

based on peak counting instead of intensity sums
Cox, J Prot Res, 2011

Yilmaz, Proteome Bioinformatics (MMB), Springer, 2017 CCBY-SA 4.0




X!Tandem introduces a hybrid score, based ‘
on both peak counting and ion intensity

A successful open source search engine, Craig and Beavis, RCMS 2003

Can be used for MS/MS (PFF) identifications

Based on a hyperscore (Pi is either 0 or 1): HyperScore =(Znol li ~ Pi]*Nb!* Ny !
Relies on a hypergeometric distribution (hence hyperscore) )

Published core algorithm, and is freely available

Provides hyperscore and expectancy score (the discriminating one)

X!Tandem is fast and can handle modifications in an iterative fashion

Has rapidly gained popularity as (auxiliary) search engine
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X!Tandem’s significance calculation for 4
scores can be seen as a general template
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Sequence tags are as old as SEQUEST, <
and still have a role to play today
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The concept of sequence tags was introduced by Mann and Wilm
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GutenTag, DirecTag, TagRecon ‘

Tabb, Anal. Chem. 2003, Tabb, JPR 2008, Dasari, JPR 2010

Recent implementations of the sequence tag approach

Refine hits by peak mapping in a second stage to resolve ambiguities
Rely on a empirical fragmentation model

Published core algorithms, DirecTag and TagRecon freely available
GutenTag/DirecTag extracts tags, TagRecon matches tags to database
Very useful to retrieve unexpected peptides (modifications, variations)

Entire workflows exist (e.g., combination with IDPicker)
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GutenTag: two stage, hybrid tag searching

1. Generate sequence tags
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Tabb, Analytical Chemistry, 2003

1 ]
400

2. Search DB for matches

DDG —» -DDGNSDRS
YVD —» -YVDVNKFKD
VDD 3 KLLSYVDDEAFIR
DDE —» EGDEANSDDEEEDL
DDV — -DDVDIDEN

VVD —» SSCTAVVD-

DVY — AFQYLKDVY-

3. Score DB Sequences

KLLSYVDDEAFIR 19.36
-DDVDIDEN 8.56
-~-DDGNSDRS 6.94
-YVDVNKFKD 6.25
SSCTAVVD- 5.74
EGDEANSDDEEEDL 5.64
AFQYLKDVY- 5.61

@) 01©
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De novo sequencing tries to read the entire <
peptide sequence from the spectrum

Spectrum for Label: H10, Spot_Id: 521419, Peak_List_Id: 656036, M5MS Job_Run_Id: 23581, Comment: 1Ol x|
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Precursor MiZ: 185239033 (1+)  Resolution: 1.54  Filename: Spectrum

Example of a manual de novo of an MS/MS spectrum
No more database necessary to extract a sequence!

Algorithms References

Lutefisk Dancik 1999, Taylor 2000
Sherenga Fernandez-de-Cossio 2000
PEAKS Ma 2003, Zhang 2004
PepNovo Frank 2005, Grossmann 2005
RapidNovor Ma 2015
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All hits, good and bad together,
form a distribution of scores
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If we know how scores for bad hits distribute, ‘
we can distinguish good from bad by score

100% 7B
7 | | v = = negative distribution
fl M [ hits
[ )
80% HH H
] \
| \
60% ,F— || _‘Jk
] \
/ \
40% I O I
u \
[ )
/ \
20% A R R _\;
,ﬂ \ﬂ, — = positive distribution
o 1=l R AT I e
score

@ {_QII II_@II

BY <A
CCBY-5A 4.0




The separation is not perfect, which leads to 4
the calculation of a local false discovery rate
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Decoy databases are false positive factories, 4
assumed to deliver representative bad hits

Three main types of decoy DB’s are used:

- Reversed databases (easy)

LENNARTMARTENS > SNETRAMTRANNEL

- Shuffled databases (slightly more difficult)
LENNARTMARTENS = NMERLANATERTTN (for instance)

- Randomized databases (as difficult as you want it to be)

LENNARTMARTENS - (for instance)

The concept is that each peptide identified from the decoy database is an incorrect
identification. By counting the number of decoy hits, we can estimate the number of
false positives in the original database,

E22
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With the help of the scores of decoy hits,
we can assess the score distribution of bad hits
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Our MS2PIP fragmentation model accurately <
predicts peptide fragmentation behaviour
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Vaudel, Nat. Biotech., 2015 =~ . i Degroeve, Bioinformatics, 2013
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Our DeepLC model accurately predicts retention <
times of peptides with unseen modifications

acetylation succinylation propionylation
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MS2PIP and DeepLC in MS?Rescore dramatically <
boost identification in immunopeptidomics
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Declercq, MCP, 2022 CCBY-5A 4.0




MS2Rescore can also be applied
to generic peptidomics data

# IDed spectra

0.1% FDR 1% FDR
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MS?Rescore also boosts metaproteomics, opening<
up the prospect of meta-immunopeptidomics
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MS2PIP and DeeplLC power ionbot, a novel open
modification search engine with high reliability

improved ML-based algorithms

|

MS2PIP ML models

predictions

fully machine learning-based scoring

sensitive and highly accurate
identification of (modified) peptides

https://ionbot.cloud
Degroeve, https://www.biorxiv.org/content/10.1101/2021.07.02.450686v2
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ionbot shows the value of open modification
searches, and of accurate prediction models

PSMs peptides
spectrum_file  search
D&t closed I 204 244 I = 544
P I 272 45 I 57 265
HEK239 closed I <59 .823 1 121,519
open I 717 571 [ 140,764
Brain closed I 22 572 I, 72 o2
open 1, 420.708 I =3.408
Breast losed I 75 562 | RS
P L[4 L EE
TMTCPTAC closed I 255 459 1, 155534
open I 445,281 L ______________________________________ R

0K 100K 200K 300K 400K 500K 600K 700K 800 0K 20K 40K 60K 80K 100K 120K 140K 160K 180K

predicted
A E-EEEE-

0K 50K 100K 150K 200K 250K 300K 350K 0K 20K 40K 60K 80K 100K

corrected observed observed ed observed corrected observed
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When all PTMs are considered,
our view of proteins is changed

@
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Zooming in shows that not all residues

are created equal
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The 3D structure view also becomes rather 4
crowded
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Protein inference is a question of conviction <

peptides a b ¢ d
proteins
| prot X X X |
Minimal set { rYZYAY %
Occam prot Z X X X
peptides a b ¢ d
proteins
_ prot X X X
Ma).(lmal set { prot ¥ X
anti-Occam prot XX
peptides a b ¢ d
proteins
prot X == ==
Minimal set with { | protY X |
maximal annotation | prot Z X X X |

true Occam?

Martens, Molecular Biosystems, 2007



The complexity of protein inference is
linked to the information ratio of a database
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In real life, protein inference issues will be
mainly bad, often ugly, and occasionally good




Protein inference can create issues in
guantification due to degenerate peptides
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A nice example of the mess of degenerate peptides in quantification
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