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Why should we be re-using data?




Mass spectrometry data is high-content, meaning that
much more data is acquired than is used in most papers
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Mass spectrometry is also high throughput, 4
meaning there is lots of data available!
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As the volume and content of data increases in a field,
the role of bioinformatics in that field changes as well
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The data life cycle shows how in silico re-use of data 4
fits in with the overall flow of information
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And this is seen in practice in proteomics 4
as data is increasingly re-used
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Large-scale data reprocessing can harness heterogeneity

to dig very deep into the proteome
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Four types of (proteomics) data re-use




In general, data re-use can take four distinct forms,
all of which are somehow applied in our example
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Unbiased proteome-wide (PT)M discovery as example




Our MS2PIP fragmentation model accurately predicts 4
peptide behaviour in varying conditions
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DeeplLC is a retention time predictor that can accurately predic

retention times of as-yet unseen modifications
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The performance of DeeplLC is on par with the state-of-the-art 4

Predicted retention time (min)
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DeepLC can accurately predict t; for many modifications, 4
despite never having seen these before
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MS2PIP and DeepLC were crucial in the development of
a targeted MS-based COVID-19 test that runs in 38 mins
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MS2PIP and DeepLC power ionbot, a novel and extensible 4
open modification search engine with high reliability

improved ML-based algorithms
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lonbot shows the value of open modification searches,

as well as the value of accurate prediction models
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Interestingly, many identifications from the closed search
are overruled by ionbot in the open search

level
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Overruled identifications are better, as shown for results
obtained with, and without predictions provided to ionbot
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We reprocessed a large amount of phosphoproteomics
data using ionbot, and made it available through Scop3P
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Scop3PTM integrates protein information at the residue level 4
from a variety of resources
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Scop3P shows these results interactively on the web,

and presents REST APIs for 3™ party re-use
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Closing the circle, Scop3P itself becomes
a resource for use and re-use by others!
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And we are now running ionbot on all human spectra 4
contained in the PRIDE database
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Scop3PTM will become a proteome-wide
PTM detection knowledgebase
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A subject of sociological study




A sociological take on work of my group
highlights the key benefits of open science

"This desire to reactivate data is widespread, and Klie et al. are not alone in
wanting to show that ‘far from being places where data goes to die’ (Klie et al.,
2007: 190), such data collections can be mined for valuable information that
could not be obtained in any other way.”

"In attempting to reactivate sedimented data in order to enable its re-use,
their first step was ..."

"... they are experiments in seeing, in furnishing ways of seeing how data on
proteins could become re-usable, could be reactivated as collective property
rather than the by-product of publication."

Mackenzie and McNally, Theory, Culture and Society, 2013
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