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This is part of the online course Proteomics Data Analysis (PDA)

o Playlist PDA Preprocessing

Outline

o Francisella tularensis Example
e Hypothesis testing
o Multiple testing


https://statomics.github.io
https://statomics.github.io/PDA/
https://www.youtube.com/watch?v=1mhg3BCuEm8&list=PLZH1hP8_LbJKqnPSS4hxTkn-tQolSCGjP

¢ Moderated statistics
e Experimental design

Note, that the R-code is included for learners who are aiming to develop R/markdown scripts to automate
their quantitative proteomics data analyses. According to the target audience of the course we either work
with a graphical user interface (GUI) in a R/shiny App msqrob2gui (e.g. Proteomics Bioinformatics course of
the EBI and the Proteomics Data Analysis course at the Gulbenkian institute) or with R/markdowns scripts
(e.g. Bioinformatics Summer School at UCLouvain or the Statistical Genomics Course at Ghent University).

1 Francisella tularensis experiment

o Pathogen: causes tularemia

o Metabolic adaptation key for intracellular life cycle of pathogenic microorganisms.

o Upon entry into host cells quick phasomal escape and active multiplication in cytosolic compartment.

o Franciscella is auxotroph for several amino acids, including arginine.

e Inactivation of arginine transporter delayed bacterial phagosomal escape and intracellular multiplica-
tion.

e Experiment to assess difference in proteome using 3 WT vs 3 ArgP KO mutants

1.1 Import the data in R

Click to see code



1. Load libraries

library(tidyverse)
library(limma)
library (QFeatures)
library (msqrob2)
library(plotly)
library(ggplot2)

2. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities
summarized at the peptide level.

peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/francisella/peptid

3. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We
can retreive the column names with the intensity data with the code below:

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))

4. Read the data and store it in QFeatures object

pe <- readQFeatures(
peptidesFile,
g
ecols,
"peptideRaw", "\t")

5. Update data with information on design

colData(pe)$genotype <- pel[1]1]1 %>%
colnames %>%
substr(12,13) %>%
as.factor %>%
relevel ("WT")
pe %>% colData

## DataFrame with 6 rows and 1 column

## genotype
## <factor>
## Intensity.1WT_20_2h_n3_3 WT
## Intensity.1WT_20_2h_n4_3 WT
## Intensity.1WT_20_2h _n5_3 WT
## Intensity.3D8_20_2h _n3_3 D8
## Intensity.3D8_20_2h_n4_3 D8
## Intensity.3D8_20_2h_nb5_3 D8

1.2 Preprocessing

Click to see code to log-transfrom the data



1. Log transform

« Calculate number of non zero intensities for each peptide

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pel[["peptideRaw"]]) > 0)

o Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

pe <- zeroIsNA(pe, "peptideRaw") # convert O to NA

o Logtransform data with base 2

pe <- logTransform(pe, 28 "peptideRaw", "peptideLog")

2. Filtering

e Handling overlapping protein groups

pe <- filterFeatures(pe, ~ Proteins %in), smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))

o Remove reverse sequences (decoys) and contaminants. Note that this is indicated by the column names
Reverse and depending on the version of maxQuant with Potential.contaminants or Contaminants.

pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Contaminant != "+")

e Drop peptides that were only identified in one sample

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]1])

## [1] 6525
We keep 6525 peptides upon filtering.

3. Normalization by median centering

pe <- normalize(pe,
"peptidelog",
"peptideNorm",
"center.median")

4. Summarization. We use the standard sumarisation in aggregateFeatures, which is a robust summari-
sation method.



pe <- aggregateFeatures(pe,
i = "peptideNorm",

fcol = "Proteins",
na.rm = TRUE,
name = "protein")

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

Plot of preprocessed data

pel["peptideNorm"1] %>%

assay %>%

as.data.frame() %>%

gather (sample, intensity) %>%

mutate(genotype = colData(pe) [sample,"genotype"]) %>%

ggplot(aes(x = intensity,group = sample,color = genotype)) +
geom_density() +
ggtitle("Peptide-level")

## Warning: Removed 7561 rows containing non-finite values (stat_density).
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pel["protein"]] %>%

assay %>%

as.data.frame() %>%

gather (sample, intensity) %>%

mutate(genotype = colData(pe) [sample,"genotype"]l) %>%

ggplot(aes(x = intensity,group = sample,color = genotype)) +
geom_density() +
ggtitle("Protein-level")

## Warning: Removed 428 rows containing non-finite values (stat_density).
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1.3 Summarized data structure
1.3.1 Design
pe %%

colData %>%
knitr::kable()



genotype

Intensity. IWT_20_2h n3 3 WT
Intensity. IWT_20_2h n4 3 WT
Intensity. IWT_20_2h_n5_3 WT
Intensity.3D8_20_2h_ n3 3 D8
Intensity.3D8_20_2h_n4 3 D8
Intensity.3D8_20_2h_nb_3 D8

e WT vs KO
e 3 vs 3 repeats

1.3.2 Summarized intensity matrix

pel["protein"]] %>% assay() %>% head() %> knitr::kable()

Intensity. IWT_ Aot @lsitmd WT At Aisitgd WT At AlsitpB3 DR 20n@nsit3.3BS_ 2(0ntnsitist.3B8 20 2h_nd_ 3

WP_ 0030137312748775 -0.0856247 0.1595370 -0.2809009 0.0035526 0.0567110
WP_ 003013860 NA NA -0.2512039 NA NA -0.4865646
WP _0030139496851118 -0.8161658 -0.7557906 -0.4591476 -0.5449424 -0.4962482
WP_ 0030140686495386 0.8522239 1.1344852 0.5459176 0.9187714 0.5974741
WP_ 0030141227630863 -1.0430741 -0.8091715 -1.1743951 -1.1924725 -1.2565893
WP_ 0030141282051672 -0.3361704 -0.2151930 -0.3855747 -0.2802011 -0.5801771

e 1115 proteins



1.3.3 Hypothesis testing: a single protein
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WP_003023392 <- data.frame(
intensity = assay(pel["protein"]]["WP_003023392",1) %>% cQO,
genotype = colData(pe)[,1])

WP_003023392 %>%
ggplot (aes(x=genotype,y=intensity)) +
geom_point () +
ggtitle("Protein WP_003023392")
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e Ist = -24.7 indicating that there is an effect?
e How likely is it to observe t = -24.7 when there is no effect of the argP KO on the protein expression?
1.3.3.2 Null hypothesis (Hp) and alternative hypothesis (H;)

o With data we can never prove a hypothesis (falsification principle of Popper)
o With data we can only reject a hypothesis

e In general we start from alternative hypothese Hi: we want to show an effect of the KO on a protein

Hy: On average the protein abundance in WT is different from that in KO

o But, we will assess this by falsifying the opposite:
Hy: On average the protein abundance in WT is equal to that in KO<-

t.test(intensity ~ genotype, WP_003023392, TRUE)

##
## Two Sample t-test



##

## data: intensity by genotype
## t = 24.747, df = 4, p-value = 1.582e-05

## alternative hypothesis: true difference in means between group WT and group D8 is not equal to O

## 95 percent confidence interval:

##

1.267666 1.588058

## sample estimates:
## mean in group WT mean in group D8

##

1.4

-0.1821147 -1.6099769
How likely is it to observe an equal or more extreme effect than the one observed in the sample when
the null hypothesis is true?

When we make assumptions about the distribution of our test statistic we can quantify this probability:
p-value. The p-value will only be calculated correctly if the underlying assumptions hold!

When we repeat the experiment, the probability to observe a fold change for this gene that is more
extreme than a 2.69 fold (log, F'C' = —1.43) down or up regulation by random change (if Hy is true)
is 16 out of 1 000 000.

If the p-value is below a significance threshold « we reject the null hypothesis. We control the probability
on a false positive result at the a-level (type I error)

Note, that the p-values are uniform under the null hypothesis, i.e. when Hj is true all p-values are
equally likely.

Multiple hypothesis testing

Consider testing DA for all m = 1066 proteins simultaneously

What if we assess each individual test at level a? — Probability to have a false positive (FP) among
all m simultatenous test >>> a = 0.05

Indeed for each non DA protein we have a probability of 5% to return a FP.
In a typical experiment the majority of the proteins are non DA.

So an upperbound of the expected FP is m x a or 1066 x 0.05 = 53.

— Hence, we are bound to call many false positive proteins each time we run the experiment.

1.4.1 Multiple testing

1.4.1.1 Family-wise error rate The family-wise error rate (FWER) addresses the multiple testing
issue by no longer controlling the individual type I error for each protein, instead it controls:

FWER =P [FP > 1].

The Bonferroni method is widely used to control the type I error:

assess each test at

Q

Qadj = E

10



e or use adjusted p-values and compare them to a:

Padj = min (p x m, 1)

Problem, the method is very conservative!

1.4.1.2 False discovery rate

o FDR: Expected proportion of false positives on the total number of positives you return.

e An FDR of 1% means that on average we expect 1% false positive proteins in the list of proteins that
are called significant.

o Defined by Benjamini and Hochberg in their seminal paper Benjamini, Y. and Hochberg, Y. (1995).
“Controlling the false discovery rate: a practical and powerful approach to multiple testing”. Journal
of the Royal Statistical Society Series B, 57 (1): 289-300.

The False Discovery Proportion (FDP) is the fraction of false positives that are returned, i.e.

FP
FDP = —
R

o However, this quantity cannot be observed because in practice we only know the number of proteins
for which we rejected Hy, R.
e But, we do not know the number of false positives, F'P.

Therefore, Benjamini and Hochberg, 1995, defined The False Discovery Rate (FDR) as

FDR = E Hﬂ — E[FDP)

the expected FDP.

o Controlling the FDR allows for more discoveries (i.e. longer lists with significant results), while the
fraction of false discoveries among the significant results in well controlled on average. As a consequence,
more of the true positive hypotheses will be detected.

1.4.1.3 Intuition of BH-FDR procedure Consider m = 1000 tests

e Suppose that a researcher rejects all null hypotheses for which p < 0.01.
o If we use p < 0.01, we expect 0.01 x mq tests to return false positives.

e A conservative estimate of the number of false positives that we can expect can be obtained by con-
sidering that the null hypotheses are true for all features, mg = m = 1000.

o We then would expect 0.01 x 1000 = 10 false positives (F'P = 10).
o Suppose that the researcher found 200 genes with p < 0.01 (R = 200).

e The proportion of false positive results (FDP = false positive proportion) among the list of R = 200
genes can then be estimated as

—— FP 10 0.01 x 1000
FDP= — = — = ———— =0.05.
R 200 200

11



1.4.1.4 Benjamini and Hochberg (1995) procedure for controlling the FDR at «

1. Let p1y < ... < pim) denote the ordered p-values.

2. Find the largest integer k so that
Lk) xm <«
3 <
or

Py <k xa/m

3. If such a k exists, reject the & null hypotheses associated with p(y),...,px). Otherwise none of the

null hypotheses is rejected.

The adjusted p-value (also known as the ¢g-value in FDR literature):

4(i) = P =min | min_(mpy;)/j), 1.

=ty

In the hypothetical example above: k = 200, p(x) = 0.01, m = 1000 and « = 0.05.

1.4.1.5 Francisella Example Click to see code

ttestMx <- function(y,group) {

test <- try(t.test(ylgroupl,yl[!group], TRUE) , TRUE)
if (is(test,"try-error")) {
return(c( NA, NA, NA,p=NA))
} else {
return(c( (test$estimatel*¥%c(1,-1)), test$stderr, test$statistic,
}

}

res <- apply(
assay(pe[["protein"]]),
1,
ttestMx,
colData(pe)$genotype=="D8") %>%
t
colnames(res) <- c("logFC","se","tstat","pval")
res <- res >% as.data.frame %>/, na.exclude %>}, arrange(pval)
res$adjPval <- p.adjust(res$pval, "fdr")
alpha <- 0.05
res$adjAlphaForm <- pasteO(l:nrow(res)," x ",alpha,"/",nrow(res))
res$adjAlpha <- alpha * (1l:nrow(res))/nrow(res)
res$"pval < adjAlpha" <- res$pval < res$adjAlpha
res$"adjPval < alpha" <- res$adjPval < alpha

FWER: Bonferroni method:aag; = a/m = 0.05/1066 = 5 x 107°

pval < adjPval <
logFC pval  adjPval adjAlphaForm adjAlpha adjAlpha alpha
WP__003038940 - 0.0000146 0.0084347 1 x 0.0000469 TRUE TRUE

0.2876290 0.05/1066

12
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pval < adjPval <
logFC pval  adjPval adjAlphaForm adjAlpha adjAlpha alpha
WP__ 003023392 - 0.0000158 0.0084347 2 x 0.0000938 TRUE TRUE
1.4278622 0.05/1066
WP__ 003039212 - 0.0000820 0.0291520 3 x 0.0001407 TRUE TRUE
0.2658247 0.05/1066
WP__ 003026016 - 0.0001395 0.0346124 4 x 0.0001876 TRUE TRUE
1.0800305 0.05/1066
WP__003039615 - 0.0001623 0.0346124 5 x 0.0002345 TRUE TRUE
0.3992190 0.05/1066
WP_ 011733588 - 0.0002291 0.0407034 6 x 0.0002814 TRUE TRUE
0.4323262 0.05/1066
WP__ 003014552 - 0.0003224 0.0440266 7 x 0.0003283 TRUE TRUE
0.9843865 0.05/1066
WP__ 003040849 - 0.0003304 0.0440266 8 x 0.0003752 TRUE TRUE
1.2780743 0.05/1066
WP__003038430 - 0.0004505 0.0489078 9 x 0.0004221 FALSE TRUE
0.4331987 0.05/1066
WP__003033975 - 0.0005047 0.0489078 10 x 0.0004690 FALSE TRUE
0.2949061 0.05/1066
WP_0117336453531405 0.0005171 0.0489078 11 x 0.0005159 FALSE TRUE
0.05/1066
WP_ 011733723 - 0.0005506 0.0489078 12 x 0.0005629 TRUE TRUE
0.3935768 0.05/1066
WP__003038679 - 0.0007083 0.0580821 13 x 0.0006098 FALSE FALSE
0.3909725 0.05/1066
WP_ 003033719 - 0.0008426 0.0603810 14 x 0.0006567 FALSE FALSE
1.1865453 0.05/1066
WP__0030405620039480 0.9976429 0.9985797 1065 x 0.0499531 FALSE FALSE
0.05/1066
WP__0030411300002941  0.9992812 0.9992812 1066 x 0.05 FALSE FALSE
0.05/1066
1.4.1.6 Results Click to see code
volcanoT <- res %>%
ggplot (aes( logFC, -logl0(pval), adjPval < 0.05)) +
geom_point( 2.5) +

scale_color_manual (

theme_minimal ()

volcanoT

alpha(c("black", "red"), 0.5)) +

13
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1.5 Moderated Statistics

Problems with ordinary t-test

Click to see code

problemPlots <- 1list()
problemPlots[[1]] <- res %>%
ggplot(aes(x = logFC, y = se, color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal ()

for (i in 2:3)
{
problemPlots[[i]] <- colData(pe) %>%
as.data.frame %>%
mutate(intensity = pel[["protein"]] [rownames(res) [i],] %>%
assay %>%
c) %%
ggplot (aes (x=genotype,y=intensity)) +
geom_point() +
ylim(-3,0) +
gegtitle(rownames(res) [1])

14
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A general class of moderated test statistics is given by

mod ¥ 1 ) 2
Tg _ -9 - g ;
c 3,

where S, is a moderated standard deviation estimate.

o (' is a constant depending on the design e.g. \/1/n1 + 1/ny for a t-test and of another form for linear
models.

. Sg = Sy + So: add small positive constant to denominator of t-statistic.

e This can be adopted in Perseus.

Click to see code

simI<-sapply(res$se/sqrt(1/3+1/3) ,function(n,mean,sd) rnorm(n,mean,sd),n=6, 0) %% t
resSim <- apply(
simI,
1,
ttestMx,
colData(pe)$genotype=="D8") %>%
t
colnames(resSim) <- c("logFC",'"se","tstat","pval")
resSim <- as.data.frame(resSim)
tstatSimPlot <- resSim %>
ggplot(aes(x=tstat)) +
geom_histogram(aes(y=. .density. ., ..count..), 30) +

17



stat_function(fun=dt,
color="red",
args=list(df=4)) +
y1lim(0,.6) +
ggtitle("t-statistic")

resSim$C <- sqrt(1/3+1/3)
resSim$sd <- resSim$se/resSim$C
tstatSimPerseus <- resSim ¥>%
ggplot (aes (x=1logFC/((sd+.1)*C))) +
geom_histogram(aes(y=..density.., fill=..count..),bins=30) +
stat_function(fun=dt,
color="red",
args=list(df=4)) +
y1lim(0, .6) +
ggtitle("Perseus")

gridExtra::grid.arrange(tstatSimPlot,tstatSimPerseus,nrow=1)

t—statistic Perseus

0.6- 0.6-

0.4- count 0.4- count
200
150
2 150 2
% % 100
g 100 9
50 50
0.2- 0.2-
0 0
0.0- 0.0-
1 1 1 1 1 1 1 1
-10 -5 0 5 -4 -2 0 2
tstat logFC/((sd + 0.1) * C)

e The choice of Sy in Perseus is ad hoc and the t-statistic is no-longer t-distributed.
o Permutation test, but is difficult for more complex designs.
e Allows for Data Dredging because user can choose Sy

18



1.5.1 Empirical Bayes

Shrinkage of Standard
Deviations
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e empirical Bayes theory provides formal framework for borrowing strength across proteins,
e Implemented in popular bioconductor package limma and msqrob2

g dgS2 + doS§
TN dg+do
¢ S2Z: common variance (over all proteins)

o Moderated t-statistic is t-distributed with do + dy degrees of freedom.
e Note that the degrees of freedom increase by borrowing strength across proteins!

Click to see the code

1. We model the protein level expression values using the msqrob function. By default msqrob2 estimates
the model parameters using robust regression.

We will model the data with a different group mean for every genotype. The group is incoded in the variable
genotype of the colData. We can specify this model by using a formula with the factor genotype as its
predictor: formula = ~genotype.

Note, that a formula always starts with a symbol ‘~’.

pe <- msqgrob( pe, "protein", ~genotype)

2. Inference

We first explore the design of the model that we specified using the the package ExploreModelMatrix

19



library (ExploreModelMatrix)
VisualizeDesign(colData(pe) ,~genotype)$plotlist [[1]]

P81 genotypeD8

genotype

WT 1

We have two model parameters, the (Intercept) and genotypeD8. This results in a model with two group
means:

1. For the wild type (WT) the expected value (mean) of the log2 transformed intensity y for a protein
will be modelled using

E[Y|genotype = WT] = (Intercept)

2. For the knockout genotype D8 the expected value (mean) of the log2 transformed intensity y for a
protein will be modelled using
E[Y|genotype = D8] = (Intercept) + genotypeD8
The average log2FC between D8 and WT is thus

log, FCps—wr = E[Y|genotype = D8] — E[Y |genotype = WT] = genotypeD8

Hence, assessing the null hypothesis that there is no differential abundance between D8 and WT can be
reformulated as

20



Hj : genotypeD8 = 0

We can implement a hypothesis test for each protein in msqrob2 using the code below:

L <- makeContrast("genotypeD8 = 0",
pe <- hypothesisTest( pe,

"protein",

c("genotypeD8"))

L)

We can show the list with all significant DE proteins at the 5% FDR using

rowData(pe[["protein"]])$genotypeD8 %>%
arrange(pval) %>%
filter(adjPval<0.05)

## logFC se

## WP_003023392 -1.4278622 0.09546104 6
## WP_003040849 -1.2857733 0.12226820 6
## WP_003014552 -0.9843865 0.10770682 6
## WP_003033719 -1.1970073 0.13408775 6
## WP_003040790 -1.3531336 0.16187947 6
## WP_003026016 -1.0584448 0.11240892 5
## WP_003033905 -0.8815374 0.12199689 6
## WP_003039713 -0.7635044 0.10902744 6
## WP_003039530 -0.9184399 0.13755363 6
## WP_003014581 -0.9789058 0.12767782 5
## WP_003038816 -1.3800203 0.20369907 6
## WP_003033046 -0.7657848 0.11307420 6

df

.3563267
.236222
.353267
.220667
.3563267
.442252
.353267
.353267
.353267
.3563267
.080188
.033034

We can also visualise the results using a volcanoplot

volcano <- ggplot(
rowData(pe[["protein"]])$genotypeD8,
aes( logFC, -logl0(pval),

) +
geom_point( 2.5) +
scale_color_manual (
theme_minimal() +
ggtitle("msqrob2")

gridExtra: :grid.arrange(
volcanoT +
x1im(-3,3) +
ggtitle("ordinary t-test"),
volcano +
x1im(-3,3)
, 2)

adjPval < 0.05)

t
.957538
.516007
.139501
.927044
.358896
.416022
.225901
.002865
.676959
.667000
LTT4799
.772410

PP WONDER, R 000 WWw

pval

.435824e-06
.372825e-05
.920701e-05
.983461e-05
.174333e-04
.429981e-04
.740575e-04
.279672e-04
.299645e-04
.409838e-04
.777868e-04
.947588e-04

alpha(c("black", "red"), 0.5)) +

## Warning: Removed 109 rows containing missing values (geom_point).
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.003456439
.016965307
.022593404
.022593404
.023627585
.023976009
.039385984
.041241874
.041477282
.041477282
.041477282
.041477282
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e The volcano plot opens up when using the EB variance estimator

e Borrowing strength to estimate the variance using empirical Bayes solves the issue of returning proteins
with a low fold change as significant due to a low variance.

1.5.2 Shrinkage of the variance and moderated t-statistics

gplot(
sapply (rowData(pe[["protein"]])$msqrobModels,getSigma),
sapply (rowData(pe[["protein"]])$msqrobModels,getSigmaPosterior)) +
xlab("SD") +
ylab("moderated SD") +
geom_abline( 0, 1) +
geom_hline( )

## Warning: Removed 109 rows containing missing values (geom_point).
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2.0-

=
(3]
1

moderated SD
[y
o

0.5-

SD

Small variances are shrunken towards the common variance resulting in large EB variance estimates
Large variances are shrunken towards the common variance resulting in smaller EB variance estimates

Pooled degrees of freedom of the EB variance estimator are larger because information is borrowed
across proteins to estimate the variance

1.6 Plots

sigNames <- rowData(pe[["protein"]])$genotypeD8 %>%
rownames_to_column("protein") %>%
filter(adjPval < 0.05) %>%
pull(protein)

heatmap(assay(pe[["protein"]]) [sigNames, 1)
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WP_003039530
WP_003040790
WP_003040849
WP_003023392
WP_003026016
WP_003014552
WP_003033905
WP_003014581
WP_003039713
WP_003033046
WP_003038816
WP_003033719

o™
#
c
=

’h_n5_3
’h_ n3_3
’h n3 3
’h_n5_3
’h_n4_3

for (protName in sigNames)
{

pePlot <- pelprotName, , c("peptideNorm", "protein")]

pePlotDf <- data.frame(longFormat(pePlot))

pePlotDf$assay <- factor(pePlotDf$assay,
c("peptideNorm", "protein")

)

pePlotDf$genotype <- as.factor(colData(pePlot) [pePlotDf$colname, "genotype'"])

# plotting
pl <- ggplot(
pePlotDf,
aes( colname, value, rowname)
)+
geom_line() +
geom_point () +
facet_grid(~assay) +
theme ( element_text( 70, 1, 0.5)) +
ggtitle(protName)
print(p1)

# plotting 2
p2 <- ggplot(pePlotDf, aes( colname, value, genotype)) +
geom_boxplot( NA) +
geom_point (
position_jitter( 23 ¢
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value

aes(shape = rowname)
)+
scale_shape_manual(values = 1:nrow(pePlotDf)) +
labs(title = protName, x = "sample", y = "peptide intensity (log2)") +
theme(axis.text.x = element_text(angle = 70, hjust = 1, vjust = 0.5)) +
facet_grid(~assay)
print (p2)
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2 Experimental Design
2.1 Sample size
10g2 FC = ypl — gpg

T - log, FC
g S€log, FC

signal
7, - Sl

Noise

If we can assume equal variance in both treatment groups:

1 1
S€log, FC = SDy | — + —
niy %)

— if number of bio-repeats increases we have a higher power!

o cfr. Study of tamoxifen treated Estrogen Recepter (ER) positive breast cancer patients
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2.2 Randomized complete block designs
02 = Ul%io + UIZab + ngtraction + Ul?un +..

o Biological: fluctuations in protein level between mice, fluctations in protein level between cells, ...
o Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, ...

2.3 Nature methods: Points of significance - Blocking

https://www.nature.com/articles/nmeth.3005.pdf

2.3.1 Mouse example

Dereg mice

7 biological replicates

Cell sorting by FACS

Teonv

01 100 10t 1ef

o o
o 168 10 w0t w0 o 1 10 w0t w0

Foxp3 Foxp3
! ¥ |
% Protein extraction %
| ¥ |
- In-gel protein —
l digestion l
7 k__ M /%..
N nanoLC-MS/MS Y]

analysis

¥

N
Label-free
MS1 quantitative I
analysis

Fic. 1. Label-free quantitative analysis of conventional and reg-
ulatory T cell proteomes. General analytical workflow based on cell
sorting by flow cytometry using the DEREG mouse model and parallel
proteomic analysis of Tconv and Treg cell populations by nanoLC-
MS/MS and label-free relative quantification.

Duguet et al. (2017) MCP 16(8):1416-1432. doi: 10.1074/mcp.m116.062745

g‘.i

o All treatments of interest are present within block!
e We can estimate the effect of the treatment within block!

To illustrate the power of blocking we have subsetted the data of Duguet et al. in a

e completely randomized design with

— four mice for which we only have measurements on the ordinary T-cells
— four mice for which we only have measurements on the regulatory T-cells
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https://www.nature.com/articles/nmeth.3005.pdf

o randomized complete block design with four mice for which we both have

— measurements on ordinary T-cells as well as
— measurements on regulatory T-cells

2.3.2 Data
Click to see code

library(tidyverse)
library(limma)
library (QFeatures)
library (msqrob2)
library(plotly)
library(gridExtra)

peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/pepti
peptidesFile2 <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/pept
peptidesFile3 <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/mouseTcell/pept

ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))
pe <- readQFeatures(

table = peptidesFile,

fnames = 1,

ecol = ecols,

name = "peptideRaw", sep="\t")

ecols2 <- grep("Intensity\\.", names(read.delim(peptidesFile2)))
pe2 <- readQFeatures(

table = peptidesFile2,

fnames = 1,

ecol = ecols2,

name = "peptideRaw", sep="\t")

ecols3 <- grep("Intensity\\.", names(read.delim(peptidesFile3)))
pe3 <- readQFeatures(

table = peptidesFile3,

fnames = 1,

ecol = ecols3,

name = "peptideRaw", sep="\t")

### Design

colData(pe)$celltype <- substr(
colnames(pe[["peptideRaw"]]),
11,
14) %>h
unlist %>%
as.factor

colData(pe)$mouse <- pel[[1]1] %>%
colnames %>%
strsplit(split="[.1") %>%
sapply (function(x) x[31) %>%
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as.factor

colData(pe2)$celltype <- substr(
colnames (pe2[["peptideRaw"]]),
11,
14) %>%
unlist %>%
as.factor

colData(pe2)$mouse <- pe2[[11] %>%
colnames %>%

strsplit( CLIMY B> %
sapply (function(x) x[31) %>%
as.factor

colData(pe3)$celltype <- substr(
colnames(pe3[["peptideRaw"]]),
11,
14) %>%
unlist %>%
as.factor

colData(pe3)$mouse <- pe3[[11] %>%
colnames %>%
strsplit( SO R 554
sapply(function(x) x[3]1) %>%
as.factor

2.3.3 Preprocessing

2.3.3.1 Log-transform Click to see code to log-transfrom the data

e We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pel[["peptideRaw"]]) > 0)
rowData(pe2[["peptideRaw"]])$nNonZero <- rowSums(assay(pe2[["peptideRaw"]]) > 0)

rowData(pe3[["peptideRaw"]])$nNonZero <- rowSums(assay(pe3[["peptideRaw"]]) > 0)

e Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
0.

pe <- zeroIsNA(pe, "peptideRaw") # convert O to NA
pe2 <- zerolIsNA(pe2, "peptideRaw") # convert 0 to NA

pe3 <- zeroIsNA(pe3, "peptideRaw") # convert O to NA

o Logtransform data with base 2

o1



pe <- logTransform(pe, 2, "peptideRaw", "peptideLog")
pe2 <- logTransform(pe2, 28 "peptideRaw", "peptideLog")

pe3 <- logTransform(pe3, 2, "peptideRaw", "peptideLog")

2.3.3.2 Filtering Click to see details on filtering
1. Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in
a smaller subgroup.

pe <- filterFeatures(pe, ~ Proteins %inJ, smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
pe2 <- filterFeatures(pe2, ~ Proteins %inJ, smallestUniqueGroups(rowData(pe2[["peptideLog"]])$Proteins))

pe3 <- filterFeatures(pe3, ~ Proteins %inJ, smallestUniqueGroups(rowData(pe3[["peptideLog"]])$Proteins))

2. Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only
identified by peptides with modifications.

pe <- filterFeatures(pe,~Reverse != "+")

pe <- filterFeatures(pe,~ Potential.contaminant != "+")
pe2 <- filterFeatures(pe2,~Reverse != "+")

pe2 <- filterFeatures(pe2,~ Potential.contaminant != "+")
pe3 <- filterFeatures(pe3,~Reverse != "+")

pe3 <- filterFeatures(pe3,~ Potential.contaminant != "+")

3. Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]1])

## [1] 44449

pe2 <- filterFeatures(pe2,~ nNonZero >=2)
nrow(pe2[["peptideLog"]])

## [1] 43401
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pe3 <- filterFeatures(pe3,~ nNonZero >=2)
nrow(pe3[["peptideLog"]])

## [1] 47431

2.3.3.3 Normalization Click to see code to normalize the data

pe <- normalize(pe,
"peptidelog",
"peptideNorm",
"center.median")

pe2 <- normalize(pe2,
"peptidelog",
"peptideNorm",
"center.median")

pe3 <- normalize(pe3,
"peptidelog",
"peptideNorm",
"center.median")

2.3.3.4 Summarization Click to see code to summarize the data

pe <- aggregateFeatures(pe,
"peptideNorm",
"Proteins",
TRUE,
"protein")

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

pe2 <- aggregateFeatures(pe2,
"peptideNorm",
"Proteins",
TRUE,
"protein")

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

pe3 <- aggregateFeatures(pe3,
"peptideNorm",
"Proteins",
TRUE,
"protein")
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## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

2.3.4 Data Exploration: what is impact of blocking?
Click to see code

levels(colData(pe3)$mouse) <- pasteO('m",1:7)
mdsObj3 <- plotMDS(assay(pe3[["protein"]]), FALSE)
mdsOrig <- colData(pe3) %>%

as.data.frame %>%

mutate( mds0Obj3$x,
mds0bj3$y,
paste(mouse,celltype, M) wh
ggplot (aes( mds1, mds2, lab, celltype, mouse)) +
geom_text ( FALSE) +
geom_point ( 21) +
geom_line( "black", "dashed") +
xlab(
paste0(
mdsObj3$axislabel,
1,
n (u s
paste0(
round (mdsObj3$var.explained[1] *100,0),
I|%ll
b
II)H
)
)+
ylab(
paste0(
mdsObj3$axislabel,
2,
n (ll’
paste0(

round (mdsObj3$var.explained[2] *100,0),
l|%ll
),
|l) n
)
) +
ggtitle("Original (RCB)")

levels(colData(pe)$mouse) <- pasteO("m",1:4)
mdsObj <- plotMDS(assay(pel["protein"]]), FALSE)
mdsRCB <- colData(pe) %>%
as.data.frame %>
mutate ( mdsObj$x,
mds0Obj$y,
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paste(mouse,celltype, oY W%

ggplot (aes( mds1, mds2, lab, celltype, mouse)) +
geom_text ( FALSE) +
geom_point ( 21) +
geom_line( "black", "dashed") +
xlab(
paste0(
mdsObj$axislabel,
1,
n (l|’
paste0(

round (mdsObj$var.explained[1] *100,0),
||°/0||
g
ll) n
)
) +
ylab(
paste0(
mdsObj$axislabel,

n n
>

2,

S

paste0(
round (mdsObj$var.explained[2] *100,0),
I|%ll
),

H) n

)

) +
ggtitle("Randomized Complete Block (RCB)")

levels(colData(pe2)$mouse) <- pasteO('m",1:8)
mds0bj2 <- plotMDS(assay(pe2[["protein"]]), FALSE)
mdsCRD <- colData(pe2) %>%

as.data.frame %>%

mutate ( mdsObj2$x,
mds0bj2$y,
paste(mouse,celltype, ") Wk
ggplot (aes( mds1, mds2, lab, celltype, mouse)) +
geom_text ( FALSE) +
geom_point ( 21) +
xlab(
paste0(
mdsObj$axislabel,
1,
n (H ,
paste0(
round (mdsObj2$var.explained[1] *100,0),
I|%ll
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),
ll)ll
)
)+
ylab(
paste0(
mdsObj$axislabel,
2,
n (II’
paste0(

round (mdsObj2$var.explained[2] *100,0),

Il%ll
),
II) "
)

) +

ggtitle("Completely Randomized Design (CRD)")
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Randomized Complete Block (RCB)
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Completely Randomized Design (CRD)
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e We observe that the leading fold change is according to mouse
e In the second dimension we see a separation according to cell-type
o With the Randomized Complete Block design (RCB) we can remove the mouse effect from the analysis!

e We can isolate the between block variability from the analysis using linear model:

— Formula in R
y ~ celltype 4+ mouse

— Formula
Yi = Bo + BrregTi,Treg + Bm2Ti,m2 + Bm3Tim3s + BmaTima + €
with
1 Treg
* FiTreg = 0 Tcon

0 otherwise

1 m3
® Tjm3 — .
0 otherwise

{1 m2
® Tim2 =
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1 m4
o I =
bmd 0 otherwise

e Possible in msqrob2 and MSstats but not possible with Perseus!

2.4 Modeling and inference
2.4.1 RCB analysis

pe <- msqrob(

pe,
"protein",
~ celltype + mouse)

2.4.2 CRD analysis

pe2 <- msqrob(
pe2,
"protein",
~ celltype)
2.4.3 Estimation, effect size and inference

Effect size in RCB

library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~ celltype + mouse)$plotlist

# [[1]1]
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Treg- celltypeTreg ltypeTreg celltypeTreg +

(Intercept) + (Intercept) + (Intercept) +
celltypeTreg +

(Intercept) + celltypeTreg +
mousem3 mousem4

(¢b]
o
2
©
(]
| (Intercept) + (Intercept) + (Intercept) +
Teon (Intercept) mousem?2 mousema3 mousem4
m1 m2 m3 m4
mouse

Effect size in CRD
VisualizeDesign(colData(pe2),~ celltype)$plotlist

## [[1]]
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| (Intercept) +
Treg celltypeTreg

celltype

Tcon+ (Intercept)

Click to see code for statistical inference

L <- makeContrast("celltypeTreg = 0", parameterNames = c("celltypeTreg"))

pe <- hypothesisTest(object = pe, i = "protein", contrast = L)
= "protein", contrast = L)

pe2 <- hypothesisTest(object = pe2, i

2.4.4 Comparison of results

Click to see code
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—log10(pval)

RCB:

128 significant

@
adjPval < 0.05
@ FALSE
© TRUE
e ® NA
o®
-3 0 3 6
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CRD:
21 significant

4
= adjPval < 0.05
>
=t ® @ FALSE
3
2 ® TRUE
<, ° ® NA

0

-6 -3 0 3 6

logFC

2.4.5 Comparison of standard deviation

Click to see code

accessions <- rownames(pe[["protein"]]) [rownames(pe[["protein"]])%inlrownames(pe2[["protein"]])]
dat <- data.frame(

sapply(rowData(pe[["protein"]])$msqrobModels[accessions], getSigmaPosterior),
sigmaCRD <- sapply(rowData(pe2[["protein"]])$msqrobModels[accessions], getSigmaPosterior)
)

plotRBCvsCRD <- ggplot( dat, aes(sigmaRBC, sigmaCRD)) +
geom_point( 0.1, 20) +
scale_x_logl0() +
scale_y_logl0() +
geom_abline ( 0, 1)

plotRBCvsCRD

## Warning: Removed 743 rows containing missing values (geom_point).
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sigmaCRD

3.0-

1.0-

sigmaRBC

We clearly observe that the standard deviation of the protein expression in the RCB is smaller for the
majority of the proteins than that obtained with the CRD

Why are some of the standard deviations for the RCB with the correct analysis larger than than of
the RCB with the incorrect analysis that ignored the mouse blocking factor?

Can you think of a reason why it would not be useful to block on a particular factor?

Software & code
Our R/Bioconductor package msqrob2 can be used in R markdown scripts or with a GUI/shinyApp
in the msqrob2gui package.

The GUI is intended as a introduction to the key concepts of proteomics data analysis for users who
have no experience in R.

However, learning how to code data analyses in R markdown scripts is key for open en reproducible
science and for reporting your proteomics data analyses and interpretation in a reproducible way.

More information on our tools can be found in our papers (L. J. Goeminne, Gevaert, and Clement
2016), (L. J. E. Goeminne et al. 2020) and (Sticker et al. 2020). Please refer to our work when using
our tools.

Clips on the code on importing the data and preprocessing can be found in Part I Preprocessing

A clip on the code for modelling and statistical inference with msqrob2 is included below
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./pda_quantification_preprocessing.html
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