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1 Introduction

1.1 Motivation

The SVD is one of the most well used and general purpose tools from linear algebra for data processing!
Methodologically

• Dimension reduction (e.g. images, gene expression data, movie preferences)
• Used as a first step in many data reduction and machine learning approaches
• Taylor a coordinate system driven by the data
• Solve system of linear equations for non-square matrices: e.g. linear regression
• Basis for principal component analysis (PCA) and multidimensional scaling (MDS).

– PCA is one of the most widely used methods to study high dimensional data and to understand
them in terms of their dominant patterns and correlations

Applications:

• At the heart of search engines: Google
• Basis of many facial recognition methods: e.g. Facebook
• Recommender systems such as Amazon and Netflix
• A standard tool for data exploration and dimension reduction in Genomics

1.2 Disclaimer

When you want to run the script you will have to comment out the eval=FALSE statement in some R
chunks. Because the SVD takes a while on the faces example we save the svd for later use. So you have to
comment the eval=FALSE statement in this chunk when you run the script for the first time.
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1.3 Data

• Extended Yale Face Database B
• Cropped and aligned images of 38 individuals under 64 lighting conditions.
• Each image is 192 pixels tall and 168 pixels wide.
• Each of the facial images in our library will be reshaped into a large vector with 192 × 168 = 32 256

elements.
• We will use the 64 images of 36 people to build our models

library(pixmap)
library(tidyverse)
library(gridExtra)
library(grid)
library(ggmap)
library(downloader)
library(imager)

## Download and unzip data
if(!dir.exists("raw-data")) dir.create("raw-data")
download(
"https://github.com/statOmics/HDA2020/raw/data/yalefaces_cropped.zip",
destfile = "raw-data/yalefaces_cropped.zip", mode = "wb", quiet = TRUE

)
unzip ("raw-data/yalefaces_cropped.zip", exdir = "./raw-data")

dir <- "./raw-data/CroppedYale"

people <- list.files(dir)
people2 <- sapply(people,
function(x) list.files(
paste0(dir,"/",x),
full.names=TRUE
)

)

facesList <- lapply(people2, function(x) read.pnm(x))

grid.arrange(
grobs=lapply(facesList[1+(0:35)*64],

function(x) getChannels(x) %>%
ggimage(.,coord_equal=TRUE)
),

ncol=6)
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1.4 Method

Let X be an 𝑛 × 𝑝 matrix e.g.

• gene expression of 𝑝 = 40000 genes for 𝑛 = 30 subjects
• n = 100 000 000 webpages indexed with p search terms, or
• 𝑛 images each stored as a 𝑝 = 32256 vector with the intensity of each pixel

Note: the emoji characters will not be visible in the PDF output.

𝑋 =
⎡
⎢
⎢
⎢
⎣

− x𝑇
1 −

⋮ ⋮ ⋮
− x𝑇

𝑖 −
⋮ ⋮ ⋮

− x𝑇
𝑛 −

⎤
⎥
⎥
⎥
⎦𝑛×𝑝

�

�

�

The data matrix X can be decomposed with the SVD into 3 matrices:

X = U𝑛×𝑛Δ𝑛×𝑝V𝑇
𝑝×𝑝

• an orthonormal matrix U𝑛×𝑛 with left singular vectors: u𝑇
𝑗 u𝑘 = 1 if 𝑘 = 𝑗 and u𝑇

𝑗 u𝑘 = 0 if 𝑗 ≠ 𝑘, i.e.

U𝑇 U = I
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• a matrix Δ𝑛×𝑝 with only singular values: the singular values 𝛿𝑖 are the only non-zero elements of the
matrix and are on the diagonal element [Δ]𝑖𝑖. They are also organised so that 𝛿1 > 𝛿2 > … > 𝛿𝑟.

• an orthonormal matrix V𝑝×𝑝 with right singular vectors: v𝑇
𝑗 v𝑘 = 1 if 𝑘 = 𝑗 and v𝑇

𝑗 v𝑘 = 0 if 𝑗 ≠ 𝑘
otherwise, i.e.

V𝑇 V = I

Note, that there are only 𝑟 non-zero singular values, with 𝑟 the rank of matrix 𝑋: 𝑟 ≤ min(𝑛, 𝑝). So we
have 𝑘 = 1 … 𝑟 non-zero singular values. Hence, we can also rewrite the approximation by restricting us to
the rank of matrix X. Indeed, the n times p matrix Δ only contains 𝑟 non-zero diagonal elements!

• So
X = U𝑛×𝑟Δ𝑟×𝑟V𝑇

𝑝×𝑟

⎡
⎢
⎢
⎢
⎣

− x𝑇
1 −

⋮ ⋮ ⋮
− x𝑇

𝑖 −
⋮ ⋮ ⋮

− x𝑇
𝑛 −

⎤
⎥
⎥
⎥
⎦𝑛×𝑝

= ⎡⎢
⎣

∣ ∣
u1 … u𝑟
∣ ∣

⎤⎥
⎦𝑛×𝑟

⎡⎢
⎣

𝛿1
⋱

𝛿𝑟

⎤⎥
⎦𝑟×𝑟

⎡⎢
⎣

∣ ∣
v1 … v𝑟
∣ ∣

⎤⎥
⎦

𝑇

𝑝×𝑟

Also note that

V𝑇 = ⎡⎢
⎣

− v𝑇
1 −

⋮ ⋮ ⋮
− v𝑇

𝑟 −
⎤⎥
⎦𝑟×𝑝

• For high dimensional data 𝑝 >>> 𝑛 → max(𝑟) = 𝑛 and

• equivalently for multivariate data with 𝑛 > 𝑝 → max(𝑟) = 𝑝

We can also rewrite the decomposition using the properties of matrix multiplication

X = 𝛿1
⎡⎢
⎣

∣
u1
∣

⎤⎥
⎦

[ − v𝑇
1 − ]

+ … + 𝛿𝑟
⎡⎢
⎣

∣
u𝑟
∣

⎤⎥
⎦

[ − v𝑇
𝑟 − ]

(1)

X =
𝑟

∑
𝑘=1

𝛿𝑘u𝑘v𝑇
𝑘 (2)

• Because both U and V are orthonormal all their 𝑟 vectors are having unit length and they are thus
reshaped by the singular values.

• Hence, the singular values determine the importance of the rank one matrices 𝛿𝑘u𝑘v𝑇
𝑘 in the recon-

struction of the matrix X and they are ordered so that 𝛿1 > … > 𝛿𝑟.

Note, that for symmetric matrices X ⟶ U = V.
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1.5 Interpretation of singular vectors: face example

1.5.1 Convert images to vectors

1. Convert images to vectors and store them as a matrix

• We use an sapply loop to loop over all faces
• We extract the grey intensities from the pictures
• We convert the matrix in a long skinny vector (c)
• We transpose the resulting matrix from sapply

allFacesMx <- sapply(facesList,
function(x)

getChannels(x) %>% c
) %>% t

dim(allFacesMx)

#> [1] 2432 32256

Save memory by removing facesList object

rm(facesList)
gc()

Hence we obtain a matrix for n = 2432 images with p = 32256 intensities for each pixel of an image.

Before we do the svd we typically center the data by substracting the average of the columns, i.e. the average
face.

We will only work with the first 36 people: 𝑛 = 36 × 64 = 2304 pictures.

allFacesCenteredMx <- allFacesMx[1:(36*64),]
meanFace <- colMeans(allFacesCenteredMx)

allFacesMxCentered <- allFacesCenteredMx -
matrix(1, nrow=nrow(allFacesCenteredMx), ncol=1) %*% matrix(meanFace,nrow=1)

1.5.2 Visualisation of mean image

plotFaceVector <- function(faceVector,nrow=192,ncol=168) {
matrix(faceVector,nrow=nrow,ncol=ncol) %>%
ggimage()

}

meanFace %>%
plotFaceVector
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1.5.3 SVD

1.5.3.1 Perform SVD in R

1. We adopt svd on the centered matrix
2. We cache the result because the calculation takes 10 minutes.

faceSvd <- svd(allFacesMxCentered)

1.5.3.2 SVD Dimensions of U, V?

n <- nrow(allFacesCenteredMx)
p <- ncol(allFacesCenteredMx)
dim(faceSvd$u)

#> [1] 2304 2304

dim(faceSvd$v)

#> [1] 32256 2304

Indeed, for the face example 𝑛 < 𝑝 so 𝑟 = 𝑛
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Check orthogonality?
We do not do it for all vectors because it takes too long. First left singular vector and second left singular
vector. Happens in U𝑇 U

t(faceSvd$u[,1])%*%faceSvd$u[,1]

#> [,1]
#> [1,] 1

t(faceSvd$u[,1])%*%faceSvd$u[,2]

#> [,1]
#> [1,] 4.575333e-17

t(faceSvd$u[,2])%*%faceSvd$u[,2]

#> [,1]
#> [1,] 1

So we see that the left singular vectors are orthonormal.
We check if it also holds for the rows i.e. UU𝑇

t(faceSvd$u[1,])%*%faceSvd$u[1,]

#> [,1]
#> [1,] 1

t(faceSvd$u[2,])%*%faceSvd$u[1,]

#> [,1]
#> [1,] 2.11311e-16

t(faceSvd$u[2,])%*%faceSvd$u[2,]

#> [,1]
#> [1,] 1

We also see that the rows of U are orthonormal.

t(faceSvd$v[,1])%*%faceSvd$v[,1]

#> [,1]
#> [1,] 1

t(faceSvd$v[,1])%*%faceSvd$v[,2]

#> [,1]
#> [1,] -3.330669e-16
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t(faceSvd$v[,2])%*%faceSvd$v[,2]

#> [,1]
#> [1,] 1

So we see that the right singular vectors are orthonormal.

t(faceSvd$v[1,])%*%faceSvd$v[1,]

#> [,1]
#> [1,] 0.1198462

t(faceSvd$v[1,])%*%faceSvd$v[2,]

#> [,1]
#> [1,] 0.08732068

t(faceSvd$v[2,])%*%faceSvd$v[2,]

#> [,1]
#> [1,] 0.1015896

This, however does not hold for the rows of V. This is because the matrix V no longer is a square matrix!
𝑟 = 𝑛 and 𝑟 < 𝑝!

grid.arrange(
grobs=apply(
faceSvd$v[,1:36],
2,
plotFaceVector
)

)
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1.5.3.3 Visualize right singular vectors V

• Hence, the right singular vectors (in V of X = UΔV) are also faces and we can thus reconstruct the
original faces by linear combinations of the singular faces.

• The first singular faces are most important to capture overall patterns in the matrix.

• Here it are mainly characteristics and shadows that are important for all faces.

• From singular face 5 onwards we start to see specific features.

• In this case: 𝑛 < 𝑝, so 𝑟 = 𝑛.

X𝑛×𝑝 = U𝑛×𝑛Δ𝑛×𝑛V𝑇
𝑝×𝑛

⎡
⎢
⎢
⎢
⎣

− x𝑇
1 −

⋮ ⋮ ⋮
− x𝑇

𝑖 −
⋮ ⋮ ⋮
− x𝑇

𝑛 −

⎤
⎥
⎥
⎥
⎦𝑛×𝑝

�

�

�

= ⎡⎢
⎣

∣ ∣
u1 … u𝑛
∣ ∣

⎤⎥
⎦𝑛×𝑛

⎡⎢
⎣

𝛿1
⋱

𝛿𝑛

⎤⎥
⎦𝑛×𝑛

⎡⎢
⎣

∣ ∣
v1 … v𝑛
∣ ∣

⎤⎥
⎦

𝑇

𝑝×𝑛
� �

• Or upon transposing the matrix V
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⎡
⎢
⎢
⎢
⎣

− x𝑇
1 −

⋮ ⋮ ⋮
− x𝑇

𝑖 −
⋮ ⋮ ⋮

− x𝑇
𝑛 −

⎤
⎥
⎥
⎥
⎦𝑛×𝑝

�

�

�

= ⎡⎢
⎣

∣ ∣
u1 … u𝑛
∣ ∣

⎤⎥
⎦𝑛×𝑛

⎡⎢
⎣

𝛿1
⋱

𝛿𝑟

⎤⎥
⎦𝑛×𝑛

⎡⎢
⎣

− v𝑇
1 −

⋮ ⋮ ⋮
− v𝑇

𝑝 −
⎤⎥
⎦𝑛×𝑝

�

�

1.5.3.4 Reconstruction of faces via linear combination of singular faces. In left singular vectors
𝑢𝑖𝑗 we quantify the contribution of the 𝑗th singular face in the reconstruction of face 𝑖 and we rescale the
importance of each singular face by its corresponding singular value 𝛿𝑗.

⎡
⎢
⎢
⎢
⎣

− x𝑇
1 −

⋮ ⋮ ⋮
− x𝑇

𝑖 −
⋮ ⋮ ⋮
− x𝑇

𝑛 −

⎤
⎥
⎥
⎥
⎦𝑛×𝑝

�

�

�

= 𝛿1
⎡⎢
⎣

∣
u1
∣

⎤⎥
⎦

[ − v𝑇
1 − ] �

+ … + 𝛿𝑟
⎡⎢
⎣

∣
u𝑟
∣

⎤⎥
⎦

[ − v𝑇
𝑟 − ] �

If we truncate the singular faces say at 𝑘 < 𝑟 we can approximate faces using a limited number of singular
faces!

approximateFace <- function(meanFace,faceSvd,k){
reconstruct <- (meanFace + faceSvd$u[1,1:k] %*%
diag(faceSvd$d[1:k]) %*%

t(faceSvd$v[,1:k]) %>%
c)

}

approxHlp <- sapply(
c(25,100,500),
approximateFace,
meanFace=meanFace,
faceSvd=faceSvd)

grid.arrange(
grobs=apply(
cbind(
approxHlp,
allFacesMxCentered[1,]+meanFace

),
2,
plotFaceVector
)

)

2 SVD as a Matrix Approximation Method

• We have seen that we can use the truncted SVD to approximate matrix X by X̃, with 𝑘 < 𝑟 and

X̃ = U𝑛×𝑘Δ𝑘×𝑘V𝑇
𝑝×𝑘

• It can be shown that SVD: optimal approximation

11



Figure 1: approximation with 25 (top left), 100 (top right) and 500 (bottom left) singular faces and original
face (bottom right, or with all singular faces)
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– Let X be an 𝑛 × 𝑝 matrix of rank 𝑟 ≤ min(𝑛, 𝑝), and let A denote an 𝑛 × 𝑝 matrix of rank 𝑘 ≤ 𝑟,
with elements denoted by 𝑎𝑖𝑗.

– The matrix A of rank 𝑘 ≤ 𝑟 that minimises the Frobenius norm

||X − A||2fr =
𝑛

∑
𝑖=1

𝑝
∑
𝑗=1

(𝑥𝑖𝑗 − 𝑎𝑖𝑗)2

is given by the truncated SVD

X𝑘 =
𝑘

∑
𝑗=1

𝛿𝑗u𝑗v𝑇
𝑗 .

– The truncated SVD has 𝑘 < 𝑟 terms. Hence, generally X𝑘 does not coincide with X. It is
considered as an approximation.

– Note, that the truncated SVD thus approximates the matrix by minimising a kind of sum of least
squared errors between the elements of matrix X and A and that

– the truncated SVD X𝑘 is the best rank-k approximation of X in terms of this Frobenius norm.
– Also, note that upon truncation

V𝑇
𝑝×𝑘V𝑝×𝑘 = I𝑘×𝑘

U𝑇
𝑛×𝑘U𝑛×𝑘 = I𝑘×𝑘

– But, that
V𝑝×𝑘V𝑇

𝑝×𝑘 ≠ I𝑝×𝑝!!!
U𝑛×𝑘U𝑇

𝑛×𝑘 ≠ I𝑛×𝑛!!!

Some informal statement about the truncated SVD

X𝑘 =
𝑘

∑
𝑗=1

𝛿𝑗u𝑗v𝑇
𝑗 .

• It can be considered as a weighted sum of matrices u𝑗v𝑇
𝑗 , with weights 𝛿𝑗.

• The terms are ordered with decreasing weights 𝛿1 ≥ 𝛿2 ≥ ⋯ ≥ 𝛿𝑘 > 0.

• The matrices u𝑗v𝑇
𝑗 are of equal “magnitude” (constructed from normalised vectors).

• Truncation at 𝑘 results in 𝑘 𝛿𝑗’s, 𝑘 × 𝑛 elements in the u𝑗 and 𝑘 × 𝑝 elements in the v𝑗. Hence a total
of 𝑘 + 𝑘𝑛 + 𝑘𝑝 = 𝑘(1 + 𝑛 + 𝑝) elements (usually much smaller than 𝑛𝑝). (Note that restrictions apply
to u𝑗 and v𝑗; hence even less independent elements).

⟶ data compression

2.1 Example 1: Image compression

2.1.1 Painting Mondriaan: Composition_No.III with red, blue, yellow and black (1929).

• Have a look at this painting of Mondriaan (1872 – 1944), here shown in black-and-white.
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2.1.1.1 Load the original painting

1. fetch image from the web
2. convert into greyscale
3. plot
4. save as Matrix

mondriaan <- load.image("https://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Piet_Mondrian_-_Composition_No._III%2C_with_red%2C_blue%2C_yellow_and_black%2C_1929.jpg/1920px-Piet_Mondrian_-_Composition_No._III%2C_with_red%2C_blue%2C_yellow_and_black%2C_1929.jpg")
mondriaan <- grayscale(mondriaan)
plot(mondriaan,axes=FALSE)

X <- matrix(as.data.frame(mondriaan)[,3],nrow=nrow(mondriaan),ncol=ncol(mondriaan))

• This picture can be represented as a 1920×1913 matrix X with gray scale intensities ∈ [0, 1]. (≈ 4×106

data entries)

• We will here not transform the image in a vector, but will look at the performance of the SVD to
compress this image. The SVD can be applied to any matrix!

monSvd <- svd(X)

p1 <- data.frame(x=1:length(monSvd$d),y=monSvd$d) %>%

14



ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

p2 <- data.frame(x=1:10,y=monSvd$d[1:10]) %>%
ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

grid.arrange(p1,p2,nrow=1)

2.1.1.2 Singular values
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• The singular values decay very quickly!

2.1.1.3 Data compression

• We make the plot for a reconstruction with 1 singular vector. This leads to a data compression of
1 − (1+1920+1913)

1920×1913 = 99.9%. We only use 1 left singular vector (1920), 1 singular value, 1 right singular
vector (1913).

k <- 1
approxMon <- monSvd$u[,1:k] %*%
diag(monSvd$d[1:k],ncol=k) %*%
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t(monSvd$v[,1:k])

approxMon[approxMon < 0] <- 0
approxMon[approxMon > 1] <- 1

as.cimg(approxMon) %>%
plot(.,main=paste0("Approximation with ",k," singular vectors"),axes=FALSE)

Approximation with 1 singular vectors

• We make the plot for a reconstruction with 2 singular vector. This leads to a data compression of
1 − 2×(1+1920+1913)

1920×1913 = 99.8%. We only use 2 left singular vectors (2 × 1920), 2 singular values, 2 right
singular vectors (2 × 1913).

k <- 2
approxMon <- monSvd$u[,1:k] %*%
diag(monSvd$d[1:k],ncol=k) %*%
t(monSvd$v[,1:k])

approxMon[approxMon < 0] <- 0
approxMon[approxMon > 1] <- 1

as.cimg(approxMon) %>%
plot(.,main=paste0("Approximation with ",k," singular vectors"),axes=FALSE)
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Approximation with 2 singular vectors

par (mfrow=c(3,3))
par(mar=c(1,2,1,1))
for (k in c(1:8))
{
approxMon <- monSvd$u[,1:k] %*%
diag(monSvd$d[1:k],ncol=k) %*%
t(monSvd$v[,1:k])

approxMon[approxMon < 0] <- 0
approxMon[approxMon > 1] <- 1

approxMon %>%
as.cimg %>%
plot(.,main=paste0(k," singular vectors"),axes=FALSE)

}
plot(as.cimg(X),main=paste0("Original image"),axes=FALSE)
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1 singular vectors 2 singular vectors 3 singular vectors

4 singular vectors 5 singular vectors 6 singular vectors

7 singular vectors 8 singular vectors Original image

2.1.2 More complex painting: Composition A, Piet Mondriaan

mondriaan <- load.image("https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Composition_A_by_Piet_Mondrian_Galleria_Nazionale_d%27Arte_Moderna_e_Contemporanea.jpg/1920px-Composition_A_by_Piet_Mondrian_Galleria_Nazionale_d%27Arte_Moderna_e_Contemporanea.jpg")
mondriaan <- grayscale(mondriaan)
plot(mondriaan,axes=FALSE)
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2.1.2.1 Load the original painting

X <- matrix(as.data.frame(mondriaan)[,3],nrow=dim(mondriaan)[1],ncol=dim(mondriaan)[2])

monSvd <- svd(X)

p1 <- data.frame(x=1:length(monSvd$d),y=monSvd$d) %>%
ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

p2 <- data.frame(x=1:10,y=monSvd$d[1:10]) %>%
ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

grid.arrange(p1,p2,nrow=1)
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2.1.2.2 Singular values
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• The singular values decay a bit slower. The painting is a bit more complex. More lines and colors.

par (mfrow=c(3,3))
par(mar=c(1,2,1,1))
for (k in c(1,seq(3,21,3)))
{
approxMon <- monSvd$u[,1:k] %*%
diag(monSvd$d[1:k],ncol=k) %*%
t(monSvd$v[,1:k])

approxMon[approxMon < 0] <- 0
approxMon[approxMon > 1] <- 1

approxMon %>%
as.cimg %>%
plot(.,main=paste0(k," singular vectors"),axes=FALSE)

}
plot(as.cimg(X),main=paste0("Original image"),axes=FALSE)
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2.1.2.3 Evaluate data compression

1 singular vectors 3 singular vectors 6 singular vectors

9 singular vectors 12 singular vectors 15 singular vectors

18 singular vectors 21 singular vectors Original image

2.1.3 Self portret Piet Mondriaan

mondriaan <- load.image("https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Mondrian_Zelfportret.jpg/1920px-Mondrian_Zelfportret.jpg")
mondriaan <- grayscale(mondriaan)
plot(mondriaan,axes=FALSE)

21



2.1.3.1 Load the painting

X <- matrix(as.data.frame(mondriaan)[,3],nrow=dim(mondriaan)[1],ncol=dim(mondriaan)[2])

monSvd <- svd(X)

p1 <- data.frame(x=1:length(monSvd$d),y=monSvd$d) %>%
ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

p2 <- data.frame(x=1:10,y=monSvd$d[1:10]) %>%
ggplot(aes(x=x,y=y)) +
geom_point() +
xlab("k") +
ylab("singular value")

grid.arrange(p1,p2,nrow=1)
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2.1.3.2 Singular values
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• The singular values decay much slower. The painting is more complex.

par (mfrow=c(3,3))
par(mar=c(1,2,1,1))
for (k in c(1,5,10,20,30,40,50,100))
{
approxMon <- monSvd$u[,1:k] %*%
diag(monSvd$d[1:k],ncol=k) %*%
t(monSvd$v[,1:k])

approxMon[approxMon < 0] <- 0
approxMon[approxMon > 1] <- 1

approxMon %>%
as.cimg %>%
plot(.,main=paste0(k," singular vectors"),axes=FALSE)

}
plot(as.cimg(X),main=paste0("Original image"),axes=FALSE)
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2.1.3.3 Evaluate compression

1 singular vectors 5 singular vectors 10 singular vectors

20 singular vectors 30 singular vectors 40 singular vectors

50 singular vectors 100 singular vectors Original image

Here we need at least 40 singular vector. This leads to a data compression of 1 − 40×(1+1920+2494)
1920×2494 = 96.3%.

We only use 40 left singular vectors (40 × 1920), 40 singular values, 40 right singular vector (40 × 2494).

3 Geometric interpretation

We introduce the geometric interpretation of the svd by using a toy example.

3.1 Iris dataset

The iris dataset is a dataset on iris flowers.

• Three species (setosa, virginica and versicolor)
• Length and width of Sepal leafs
• Length and width of Petal Leafs

For didactical purposes we will use a subset of the data.

• Virginica Species
• 3 Variables: Sepal Length, Sepal Width, Petal Length
• This allows us to visualise the data in 3D plots
• Illustrate the data compression of the SVD from 3 to two dimensions.
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3.1.1 Subset the data

library(tidyverse)
library(plotly)
irisSub <- iris %>%
filter(Species == "virginica") %>%
dplyr::select("Sepal.Length","Sepal.Width","Petal.Length")

3.1.2 Center the data

X <- irisSub %>% scale(scale=FALSE)

The data is translated to a mean of [0, 0, 0].

We zoom in and add the original axis in grey in the origin.

3.2 SVD iris dataset

1. We adopt the SVD on the centered data

irisSvd <- svd(X)

2. We extract

• the right singular vectors V and
• the projections Z

V <- irisSvd$v
Z <- irisSvd$u %*% diag(irisSvd$d)

Note, that

• the SVD is essentially a rotation to a new coordinate system.
• we plotted V3 with dots because we will use the SVD for dimension reduction

3D → 2D

Rotate the plot

• Note, that

– V1 points in the direction of the largest variability in the data
– V2 points in a direction orthogal on V1 pointing in the direction of the second largest variability

in the data.
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3.3 Truncated SVD

Write the truncated SVD as
X𝑘 = U𝑘Δ𝑘V𝑇

𝑘 = Z𝑘V𝑇
𝑘

with
Z𝑘 = U𝑘Δ𝑘

an 𝑛 × 𝑘 matrix.

Each of the 𝑛 rows of Z𝑘, say z𝑇
𝑘,𝑖, represents a point in a 𝑘-dimensional space.

V2 <- V[,1:2]
Z2 <- Z[,1:2]
X2 <- Z2 %*% t(V2)

Because of the orthonormality of the singular vectors, we also have

X𝑘V𝑘 = Z𝑘V𝑇
𝑘 V𝑘

X𝑘V𝑘 = Z𝑘.

Thus the matrix V𝑘 is a transformation matrix that may be used to transform X𝑘 into Z𝑘, and Z𝑘 into
X𝑘.

Note that

• The matrix V𝑘 transforms the 𝑝-dimensional X𝑘 into the 𝑘-dimensional Z𝑘: Z𝑘 = X𝑘V𝑘. Note,
however, that the matrix X𝑘 must not necessarily be used for this transformation, because the SVD
of the original matrix X also gives directly Z𝑘 = U𝑘Δ𝑘.

• The inverse transformation from the 𝑘-dimensional Z𝑘 to the 𝑝-dimensional X𝑘 is given by the transpose
of V𝑘: Z𝑘V𝑇

𝑘 = X𝑘. Often inverse transformations are given by the inverse of a matrix, but thanks to
the orthonormality of the columns of V𝑘, we get V𝑇

𝑘 V𝑘 = I, and thus V𝑇
𝑘 acts as an inverse.

• The transformation from the 𝑘-dimensional Z𝑘 to the 𝑝-dimensional X𝑘 is transforming points from
a low dimensional space (𝑘) to a high dimensional space (𝑝). You may not interpret this as if this
transformation adds information; the transformed points in X𝑘 still live in a 𝑘-dimensional subspace
of the larger 𝑝-dimensional space; the matrix X𝑘 is only of rank 𝑘 and thus contains less information
than the original data matrix X (if rank(X)= 𝑟 > 𝑘).

More importantly, it can be shown that (thanks to orthonormality of V)

XV𝑘 = Z𝑘.

This follows from (w.l.g. rank(X)=𝑟)
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XV𝑘 = UDV𝑇 V𝑘 = UD ⎛⎜
⎝

v𝑇
1
⋮

v𝑇
𝑟

⎞⎟
⎠

(v1 … v𝑘)

= UDV𝑇 V𝑘 = UD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ 0
0 0 … 1
0 0 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= U𝑘Δ𝑘 = Z𝑘

The 𝑝 × 𝑘 matrix V𝑘 acts as a transformation matrix: transforming 𝑛 points in a 𝑝 dimensional space to 𝑛
points in a 𝑘 dimensional space.

Z2proj <- X %*% V2
range(Z2 - Z2proj)

#> [1] -6.661338e-16 1.054712e-15

3.4 Projection of a single data point

We take a closer look at

Z𝑘 = XV𝑘 = ⎛⎜
⎝

x𝑇
1
⋮

x𝑇
𝑛

⎞⎟
⎠

(v1 … v𝑘) .

The 𝑖th row (observation) in Z𝑘 equals

z𝑇
𝑘,𝑖 = x𝑇

𝑖 V𝑘 = (x𝑇
𝑖 v1, x𝑇

𝑖 v2, … , x𝑇
𝑖 v𝑘) .

Hence, z𝑇
𝑘,𝑖 = x𝑇

𝑖 V𝑘 is the orthogonal projection of x𝑖 onto the 𝑘-dimensional subspace spanned by the
columns of V𝑘.

• Zoom in to see projection.
• The projection is indicated for the blue point 𝑋44 to the red point 𝑋2,44 in the plane spaned by V2.

3.5 Projection of all datapoints: project all rows of X on V2

• Zoom in first look orthonal via direction V2 (rotate until text V2 is viewed in the origin)
• Zoom in first look orthonal via direction V1 (rotate until text V1 is viewed in the origin)
• Note, that

– V1 points in the direction of the largest variability in the data
– V2 points in a direction orthogal on V1 pointing in the direction of the second largest variability

in the data.

• Projection only.
• This clearly shows that the projected points X2 (X projected on V2) live in a two dimensional space
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Hence, the truncated SVD transforms the data set to a lower dimensional data set: The SVD thus gives a
transformation of the 𝑝 dimensional data to 𝑘 ≤ 𝑟 dimensional data:

Z𝑘 = XV𝑘.

This is essentially a dimension reduction.

Note that,

• The transformation from 𝑝-dimensional X to 𝑘-dimensional Z𝑘 is important. It shows that the 𝑛 points
in the rows of Z𝑘 are the result of projecting the 𝑛 points in X onto the columns of V𝑘 (i.e. the first
𝑘 singular vectors of X). We say that the space of Z𝑘 is spanned by the columns of V𝑘.

• The points (rows) in X live in a 𝑝-dimensional space (or rank(X)= 𝑟 if 𝑟 < 𝑝) and they are thus
projected onto a lower dimensional space. This is in contrast to the projection X𝑘V𝑘 = Z𝑘, because
the points in X𝑘 live in a 𝑘-dimensional subspace of X.

• Note that with 𝑘 < 𝑟 there is no unique transformation to transform Z𝑘 back to X. On the previous
slide we only established the transformation Z𝑘V𝑇

𝑘 = X𝑘. Indeed, starting from XV𝑘 = Z𝑘, and
right-multiplying with V𝑇

𝑘 does not give the backtransformation, because V𝑘V𝑇
𝑘 is not the identity

matrix.

4 Interpretation of SVD in terms of variance covariance matrices

For a matrix X the sample variance covariance matrix estimator is 𝑝 × 𝑝 matrix

S = 1
𝑁 − 1(X − X̄)𝑇 (X − X̄) (3)

= 1
𝑁 − 1 [X𝑇 X − X̄𝑇 X̄] (4)

So X𝑇 X defines up to a constant the variance covariance matrix of X! When the matrix is column centered
S = 1

𝑛−1 X𝑇 X.

The same holds for the rows of X! The covariance between the subjects can be estimated as

S = 1
𝑝 − 1XX𝑇

upon row centering.

Note, that

X𝑇 X = VΔU𝑇 UΔV𝑇 (5)
= VΔ2V𝑇 (6)

If we rewrite the expression

X𝑇 XV = VΔ2V𝑇 V (7)
= VΔ2 (8)
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So, if the data are centered, the SVD can be used to perform a spectral decomposition of the sample
covariance matrix where the right singular vectors correspond to the eigen vectors of the covariance matrix
and the eigen values are the squared singular values!
Similarly the left singular values can be used to estimate the covariance matrix of the rows of X. So in our
notation covariance between subjects.

XX𝑇 = UΔ2U𝑇 (9)

This link is for instance very useful for recommender systems, i.e. to propose movies based on the subjects
with whom you correlate. We will also exploit this when we discuss on PCA.

5 SVD and inverse of a matrix

A linear system of equations with 𝑛 equations and 𝑛 unknowns

A𝑛×𝑛𝛽 = b

can be solved by
𝛽 = A−1

𝑛×𝑛b

A unique solution exists if A is full rank.
Note, that a singular value decomposition of the square matrix A = UΔV𝑇 enables the inverse to be written
as

A−1 = VΔ−1U𝑇

indeed
A−1A = VΔ−1U𝑇 UΔV𝑇 = I

Note, that the SVD generalizes this to systems of under (n<p, fat short matrices) and over determined
systems (n>p tall skinny matrices):
Let

A = UΔV𝑇 (10)

and we want to solve

A𝛽 = b (11)
UΔV𝑇 𝛽 = b (12)

U𝑇 UΔV𝑇 𝛽 = U𝑇 b (13)
ΔV𝑇 𝛽 = U𝑇 b (14)

Δ−1ΔV𝑇 𝛽 = Δ−1U𝑇 b (15)
VV𝑇 𝛽 = VΔ−1U𝑇 b (16)

𝛽 = VΔ−1U𝑇 b (17)

Note, that for an overdetermined system 𝑛 > 𝑝 so 𝑟 ≤ 𝑝. Generally, 𝑟 = 𝑝 and V is thus a square matrix so
both V𝑇 V = I and VV𝑇 = I. However, U𝑇 U = I but UU𝑇 ≠ I because 𝑟 < 𝑛.

A† = VΔ−1U𝑇 is also referred to as the pseudo inverse and it enables us to solve under and overdetermined
systems of equations.
Note, that for
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• underdetermined systems there typically does not exist a unique solution
• for overdetermined systems usually there does not exist an exact solution. We will focus on the latter

in the next section where we explore the link between linear regression and SVD.

6 Linear regression and SVD

Suppose we have the linear regression problem with 𝑛 > 𝑝:

Y = X𝛽 + 𝜖

X is a tall skinny matrix with 𝑛 >> 𝑝.

We know that
𝛽̂ = (X𝑇 X)−1 X𝑇 Y

If we replace X by its SVD

𝛽̂ = (VΔ2V𝑇 )
−1

VΔU𝑇 Y (18)

𝛽̂ = VΔ−2V𝑇 VΔU𝑇 Y (19)
𝛽̂ = VΔ−1U𝑇 Y (20)

So the SVD also solves the linear regression problem by using the pseudoinverse! If we now think about the
fit:

Ŷ = X𝛽̂ (21)
= UΔ−1V𝑇 VΔU𝑇 Y (22)
= UU𝑇 Y (23)

• For an overdetermined system UU𝑇 is not equal to the unity matrix I (for an overdetermined system
only U𝑇 U = I because 𝑛 > 𝑟).

• So Ŷ ≠ Y. Hence, we typically do not have an exact solution.

• Note, that UU𝑇 spans the same space as the columns of X, and will define the same 𝑝-dimensional
plane in the 𝑛 dimensional space ℛ𝑛, e.g. cfr X (X𝑇 X)−1 X𝑇 . So it projects Y in the column space of
X and the errors will be orthogonal onto this plane.

6.1 Example prostate dataset

6.1.1 Fit with lm

prostate <- read_csv(
"https://raw.githubusercontent.com/GTPB/PSLS20/master/data/prostate.csv",
col_types = cols()

)
lm1 <- lm(lpsa ~ lcavol + lweight + svi, prostate)
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6.1.2 Fit with SVD

X <- prostate[,c(1:2,5)]
X[,3] <- as.double(X[,3]!="healthy")
X <- cbind(Intercept=1,X)

svdX <- svd(X)
betaSvd <- svdX$v %*% diag(1/svdX$d) %*% t(svdX$u) %*% prostate$lpsa

cbind(lm1$coef,betaSvd)

#> [,1] [,2]
#> (Intercept) -0.2680724 -0.2680724
#> lcavol 0.5516386 0.5516386
#> lweight 0.5085359 0.5085359
#> sviinvasion 0.6661583 0.6661583

7 SVD and Multi-Dimensional Scaling (MDS)

7.1 Example

In this section we will use a dataset on food consumption in the UK. The data originate from the UKs
‘Department for Environment, Food and Rural Affairs’ (DEFRA), showing the consumption in grams (per
person, per week) of 17 different types of foodstuff measured and averaged in the four countries of the United
Kingdom in 1997. We would like to explore the data and interpret how the food patterns of the different
countries differ.

uk <- read_csv(
"https://raw.githubusercontent.com/statOmics/HDA2020/data/ukFoods.csv",
col_types = cols()

)
knitr::kable(uk, caption = "The full UK foods data table")

Note, that here the matrix is displayed with the p variables in the rows and the n experimental units
(countries) in the columns. This is often done for high dimensional data where 𝑝 >> 𝑛 because this makes
it easier to look at to the raw data table. Note, that the svd calculates left and right singular vectors so it
will also provide the correct solution, we just should look to the other set of singular vectors in order to get
to the correct interpretation.

7.2 Motivation

The objective of Multidimensional Scaling (MDS) is to find a low-dimensional representation, say 𝑘-
dimensional, of 𝑛 data points such that the distances between the 𝑛 points in the 𝑘-dimensional space is a
good approximation of a given squared distance matrix, say D𝑋.

• The squared distance matrix D𝑋 may be given without knowledge of the original observations (not
even the dimensionality), or it may be computed from a given set of 𝑛 𝑝-dimensional data points.

• Note that the distances between points in a 𝑘-dimensional subspace coincide with the distances between
these points in the larger 𝑝-dimensional space.
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Table 1: The full UK foods data table

...1 England Wales Scotland N.Ireland
Cheese 105 103 103 66
Carcass_meat 245 227 242 267
Other_meat 685 803 750 586
Fish 147 160 122 93
Fats_and_oils 193 235 184 209
Sugars 156 175 147 139
Fresh_potatoes 720 874 566 1033
Fresh_Veg 253 265 171 143
Other_Veg 488 570 418 355
Processed_potatoes 198 203 220 187
Processed_Veg 360 365 337 334
Fresh_fruit 1102 1137 957 674
Cereals 1472 1582 1462 1494
Beverages 57 73 53 47
Soft_drinks 1374 1256 1572 1506
Alcoholic_drinks 375 475 458 135
Confectionery 54 64 62 41

Use of MDS:

• A high dimensional data matrix X is given, and one wants to get a visual representation (in 2 or
3 dimensions) of the observations. In this graph each point represents an observation (row of data
matrix). From this graph one wants points close to one another to be similar, and observations far
away from one another to be dissimilar. Thus the distances between the 𝑛 points in the original
𝑝-dimensional space should be well preserved in the 2 or 3 dimensional space.

• In some applications the researcher only has knowledge of the similarity (or dissimilarity) between
observations. For example, food products can be evaluated by a taste panel and a dissimilarity matrix
can be completed. This dissimilarity matrix shows for each pair of food products their dissimilarity
(numerical values provided by taste panel, but not objectively quantified). Given this dissimilarity
matrix, a 2 or 3 dimensional graph could be helpful if the distances between the points (food products)
in this graph are monotonically related to the dissimilarities provided by the taste panel. Food products
close to one another in this graph, taste similarly.

• Here we discuss the “metric” MDS, which actually requires the Euclidean distances between obser-
vations. However, the method works also well if the matrix D𝑋 contains dissimilarities rather than
squared Euclidean distances.

In this chapter we assume that the data matrix X is column-centered (i.e. each column has mean zero).

Centering can be accomplished by multiplying the original data matrix X with the 𝑛×𝑛 centering matrix

H = I − 1
𝑛11𝑇 ,

in which 1 is an 𝑛-vector with all entries equal to 1. Hence, HX is the column-centered data matrix.

We will assume that X is already column-centered, and therefore HX = X.

(Note, that the matrix 11𝑇 is an 𝑛 × 𝑛 matrix with all entries set to 1. )

32



We will need the following interesting relationship between the Gram matrix XX𝑇 and the distance matrix.

• For an 𝑛 × 𝑝 data matrix X, the matrix D𝑋 with squared distances has elements

(x𝑖 − x𝑗)𝑇 (x𝑖 − x𝑗) = ‖x𝑖‖2 − 2x𝑇
𝑖 x𝑗 + ‖x𝑗‖.2

-The 𝑛 × 𝑛 squared distance matrix can then be written as

D𝑋 = N − 2XX𝑇 + N𝑇 ,

with N the 𝑛 × 𝑛 matrix with 𝑖th row filled with ‖x𝑖‖2.

• Note that the elements of N can also be found on the diagonal of XX𝑇 .

• Given the structure of the H and N matrices, it is easy to verify that

−1
2HD𝑋H = XX𝑇 .

This gives an important relation between the distance matrix and the Gram matrix. We will use the
notation G𝑋 = − 1

2 HD𝑋H.

• The 𝑛 × 𝑛 Gram matrix XX𝑇 equals

⎛⎜
⎝

x𝑇
1
⋮

x𝑇
𝑛

⎞⎟
⎠

(x1 … x𝑛)

and has thus on its (𝑖, 𝑗)th position the inner product

x𝑇
𝑖 x𝑗 = ‖x𝑖‖‖x𝑗‖ cos < x𝑖, x𝑗 > .

• On the diagonal we find x𝑇
𝑖 x𝑖 = ‖x𝑖‖2, the squared norm of the 𝑖th observation.

• The relation − 1
2 HD𝑋H = XX𝑇 tells us that the distance matrix and the Gram matrix contain the

same information. The distances, however, are in most situations easier to interpret.

7.3 Link with the SVD

Note, that we have shown that we can rewrite XX𝑇 using the SVD:

XX𝑇 = UΔ2U𝑇

see section 4.

Because the truncated SVD of X minimises the Frobenius norm ‖X − X𝑘‖2
𝐹 , it this has an important

consequence:

• Let D𝑋 denote the 𝑛 × 𝑛 matrix with the squared Euclidian distances between the 𝑛 data points x𝑖 in
the original 𝑝-dimensional space.
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• Let D𝑍𝑘 denote the 𝑛 × 𝑛 matrix with the squared Euclidian distances between the 𝑛 transformed
data points z𝑘,𝑖 in the reduced 𝑘-dimensional space.

Then, it can be shown that the truncated SVD also minimises

‖D𝑋 − D𝑍𝑘‖2
𝐹 .

Or in other words: The n points z𝑘,𝑖 in the k-dimensional subspace spanned by the columns of V𝑘 are the
best approximation of the 𝑛 original points x𝑖 in the original p-dimensional space in the sense that the
Euclidean distances between the n original points are best approximated by the Euclidean distances between
the n transformed points, among all possible k-dimensional linear subspaces.

• If X is known, we can readily obtain the k-dimensional projection by the SVD of X

• If we only know the distance matrix D

1. We can readily obtain the Gram matrix

−1
2HD𝑋H = XX𝑇

2. The truncated SVD of the squared and symmetric Gram matrix

U𝑘Δ′
𝑘U𝑇

𝑘

3. from which also can obtain
Z𝑘 = U𝑘Δ𝑘,

with Δ𝑘 = �′
1
2

𝑘

7.4 Example

X <- as.matrix(t(uk[,-1]))
n <- nrow(X)
H <- diag(n) - matrix(1/n,nrow=n,ncol=n)
X <- H%*%X
svdUk <- svd(X)

k <- 2
Uk <- svdUk$u[,1:k]
Dk <- diag(svdUk$d[1:k])
Zk <- Uk%*%Dk
rownames(Zk) <- colnames(uk)[-1]
colnames(Zk) <- paste0("Z",1:k)
Zk

#> Z1 Z2
#> England -144.99315 -2.532999
#> Wales -240.52915 -224.646925
#> Scotland -91.86934 286.081786
#> N.Ireland 477.39164 -58.901862
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Zk %>%
as.data.frame %>%
ggplot(aes(x=Z1,y=Z2,label=rownames(Zk))) +
geom_point(size = 3) +
geom_text(nudge_x = 50) +
coord_fixed()

England

Wales

Scotland

N.Ireland

−200

−100

0

100

200

300

−200 0 200 400
Z1

Z
2

• The graph suggests that Wales and England are quite similar in terms of food consumption, and North
Ireland seem to have a very different food consumption pattern.

• Also note that England is close to the origin, meaning that the food consumption pattern is close to
the average pattern in the UK.

• A few questions remain:

– How well can the 17-dimensional data be represented in a 2-dimensional subspace?
– How can we interpret the distances (differences) between the data points in terms of the original

17 variables?

7.5 The biplot

The biplot is a single 2-dimensional graph which displays the information in both Z2 = U2Δ2 and V2.

The plot of Z2 has been discussed previously (e.g. best approximation of distances).

The name “bi”plot refers to the plotting of two parts of the SVD (Z and V) in a single graph.
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From the geometric interpretation of the SVD we know that Z2 is the orthogonal projection of X on V2 the
basis spanned by the first two singular values. Thus for the 𝑖th individual we get

z2,𝑖 = x𝑖 [ v1 v2 ]

We also know that we can approximate X by X2 which equals:

X2 = Z2V𝑇
2 (24)

= Z2 [ v𝑇
1

v𝑇
2

] = Z2 [ ṽ2,1 … ṽ2,𝑝 ] (25)

with v1 and v2 the first two right singular vector and ṽ𝑗 the jth column of the matrix V𝑇
2 .

• This basically shows us that the orthogonal projection of z2,𝑖 for subject/experimental unit i on ṽ2,𝑗
gives us the approximation of the value for jth variable that was observed for the 𝑖th experimental unit,
i.e. 𝑥2,𝑖𝑗.

𝑥2,𝑖𝑗 = z𝑇
2,𝑖ṽ2,𝑗

7.5.1 UK example

Vk <- svdUk$v[,1:k]
rownames(Vk) <- uk[[1]]
colnames(Vk) <- colnames(Zk)
scaleFactor <- mean(svdUk$d[1:k])

diyBiplot <- ggplot() +
geom_point(
data=Zk %>% as.data.frame,
aes(x=Z1,y=Z2),
size = 3) +

geom_text(
data=Zk %>% as.data.frame,
aes(x=Z1,y=Z2,label=rownames(Zk)),
nudge_x = 50) +

geom_segment(
data=Vk %>% as.data.frame,
aes(x=0, y=0, xend=Z1*scaleFactor, yend=Z2*scaleFactor),
arrow=arrow(length=unit(0.4,"cm")),
alpha=0.25) +

geom_text(
data=Vk %>% as.data.frame,
aes(x=Z1*scaleFactor, y=Z2*scaleFactor, label=rownames(Vk)),
alpha=0.5,
size=3) +

coord_fixed()

diyBiplot
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7.5.1.1 Biplot
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biplot(Zk,Vk)
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The R code shows two ways of constructing a biplot: the first method starts from the SVD of X and plots
the p vectors ṽ2,𝑗 as arrows. Note that we used a scaling factor to give the arrows a convenient length in
the graph (not too small, not too large); it does not affect the interpretation. The second way of obtaining
the biplot is simply by using the R built-in function biplot.

7.5.1.2 Illustration of projection We project z2,𝑖 for N.Ireland on Fresh_potatoes.
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rownames(X) <- rownames(Zk)
colnames(X) <- rownames(Vk)
X[,"Fresh_potatoes"]

#> England Wales Scotland N.Ireland
#> -78.25 75.75 -232.25 234.75

Zk["N.Ireland",]%*%Vk["Fresh_potatoes",]

#> [,1]
#> [1,] 233.7418

We observe that N. Ireland has a consumption in Fresh_potatoes that is 234.75 above the average and this
is well approximated by the projection 233.74.
Also note that

• The origin corresponds to the sample average of the 17-dimensional observations in the data matrix

• England is close to the origin and thus one could say that the food consumption in England is as the
average in the UK

• Projecting the Z2 coordinates for North Ireland orthogonally onto the vector ṽ2,𝑗 of fresh potatoes,
we get a large and positive 𝑥2,𝑖𝑗. Hence, people in N. Ireland tend to eat more fresh potatoes than on
average in the UK.

• We can do the same for the other vectors.
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7.5.2 Further interpretation of the Biplot

From x𝑇
𝑘,𝑖 = z𝑇

𝑘,𝑖V𝑇
𝑘 we learnt that the original data can be (approximately) reconstructed from the z𝑘,𝑖.

We now show how the dimensions of Z𝑘 (columns or variables) can be interpreted. Remember,

z𝑇
𝑘,𝑖 = x𝑇

𝑖 V𝑘 = (x𝑇
𝑖 v1, x𝑇

𝑖 v2, … , x𝑇
𝑖 v𝑘) .

The 𝑗th column of Z𝑘 can be written as
z𝑘,𝑗 = Xv𝑗,

An individual element of Z𝑘 can be written as

𝑧𝑘,𝑖𝑗 = x𝑇
𝑖 v𝑗,

which is a linear combination of the observations on the 𝑝 variables in x𝑖, with coefficients given by the
𝑝 elements in v𝑗. Understanding the elements in v𝑗 will give us insight into the interpretation of the 𝑗th
dimension of Z𝑘.

7.6 Illustration Uk food

p1 <- ggplot() +
geom_bar(
aes( x=rownames(Vk), y=Vk[,1]),
stat="identity") +

xlab("V1") +
ylab("contribution") +
coord_flip()

p2 <-
ggplot() +
geom_bar(
aes( x=rownames(Vk), y=Vk[,2]),
stat="identity") +

xlab("V2") +
ylab("contribution") +
coord_flip()

grid.arrange(p1,p2,ncol=2)
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In giving an interpretation to the elements in v1 and v2, we ignore the elements close to zero (this is a
subjective decision; later we see more objective methods).

For v1 (1st dimension of Z2):

• contrast of soft drinks and fresh potatoes versus fresh fruit and alcoholic drinks

• a large value of 𝑧𝑖1 can result from eating many fresh potatoes and drinking a lot of soft drinks, but
eating only few fresh fruit and drinking not much alcoholic drinks

• a small value of 𝑧𝑖1 can result from eating few fresh potatoes and drinking only few soft drinks, but
eating a lot of fresh fruit and drinking much alcoholic drinks

For v2 (2nd dimension of Z2):

• contrast of soft drinks versus fresh potatoes

• a large value of 𝑧𝑖2 can result from eating many fresh potatoes, but drinking not much soft drinks

• a small value of 𝑧𝑖2 can result from eating few fresh potatoes, but drinking much soft drinks .

The elements in v1 and v2 are also shown in the biplot.
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grid.arrange(p1, p2, diyBiplot, ncol=2, layout_matrix = rbind(c(1,2),c(3,3)))
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From the graph we see e.g. that N. Ireland has a high score for the first dimension. Now that we can give
an interpretation to the dimension, we conclude that in Northern Ireland people eat relatively much fresh
potatoes and drink many soft drinks, but they do not drink much alcoholic drinks and eat not much fresh
fruit. We had already come to these findings by projecting N. Ireland on the vectors of these four food
products. This comes to no surprise: both interpretations arise from the same data set and its SVD, and so
no contradictory results should arise. Other conclusions can be found in a similar fashion.

We have derived the interpretation of the first dimension from the barplot of the elements of v1. However,
there is actually no need to make a separate plot to read the elements of v1; they can also be read from
projecting the vectors in the biplot onto the first dimension (i.e. basis vector of the first dimension). For
example, fresh potatoes is in the 7th column of X and thus in the biplot its vector is ṽ2,7; it is a 2-dimensional
vector (2-dimensional biplot is shown). In the space of the biplot (i.e. the column space of Z2), the first
basis vector is given by (1, 0). Projecting ṽ𝑇

2,7 orthogonally onto (1, 0) gives

ṽ𝑇
2,7 (1

0) = (𝑣71, 𝑣72) (1
0) = 𝑣71

which is the seventh element of the first right-singular vector of X, which is thus the bar of fresh potatoes
in the barplot of the first dimension.

8 SVD and principal component analysis (PCA)

• PCA is basically a SVD
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• PCA adds another layer of interpretation

• PCA comes with its own terminology

• One of the most widely used algorithms for dimension reduction and data exploration of multivariate
and high dimensional data.

• It is motivated from the decomposition of the Variance covariance matrix of the data

8.1 Variance covariance matrix

• For a given centered data matrix X the 𝑝 × 𝑝 covariance matrix can be estimated by

Σ𝑋 = 1
𝑛 − 1X𝑇 X = 1

𝑛 − 1
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 ,

i.e. the (𝑖, 𝑗)th element is given by (column means are zero)

1
𝑛 − 1

𝑛
∑
𝑚=1

𝑥𝑚𝑖𝑥𝑚𝑗 = 1
𝑛 − 1

𝑛
∑
𝑚=1

(𝑥𝑚𝑖 − ̄𝑥𝑖)(𝑥𝑚𝑗 − ̄𝑥𝑗).

Note, that when we forget to write the factor 1/(𝑛−1) all the derivations still hold. It is only a proportionality
factor and it does not affect the interpretation.

8.2 Conventional derivation of PCA

PCA is usually introduced as follows.

Let
𝑦𝑖 = x𝑇

𝑖 a

with a a 𝑝-vector of constants. Hence 𝑦𝑖 is a linear combination (or transformation) of x𝑖.

PCA aims at finding a such that the sample variance among the 𝑛 𝑦𝑖’s is maximal, with

1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

𝑦2
𝑖

= 1
𝑛 − 1

𝑛
∑
𝑖=1

(x𝑇
𝑖 a)2

= 1
𝑛 − 1a𝑇 (

𝑛
∑
𝑖=1

x𝑖x𝑇
𝑖 ) a

= 1
𝑛 − 1a𝑇 X𝑇 Xa

= a𝑇 Σ𝑋a

in which Σ𝑋 = 1
𝑛−1 X𝑇 X is the sample covariance matrix of X.
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8.2.1 Problem for optimisation

Finding a that maximises
var[𝑦] = a𝑇 Σ𝑋a

has a trivial solution (set all elements of a equal to ∞). To avoid the trivial solution, the solution must
satisfy a restriction, e.g.

‖a‖2 = a𝑇 a = 1.

The solution of the constrained maximisation problem may be formulated as

a = ArgMax𝑏∶‖𝑏‖2=1b𝑇 Σ𝑋b.

By introducing a Lagrange multiplier 𝜆, we get an unconstrained maximisation problem,

a = ArgMax𝑏 (b𝑇 Σ𝑋b − 𝜆(b𝑇 b − 1)) .

Note that,

• If the constraint is linear, then the constrained optimisation problem (here: maximisation) may be
replaced by an unconstrained optimisation problem of the same criterion but with an “penalty term’ ’
added. This method is due to Lagrange. The penalty term vanishes when the constraint is satisfied.

• If the constraint is satisfied, b𝑇 b = ‖b‖2 = 1 and thus b𝑇 b − 1 = 0 and the “penalty’ ’ term in the
unconstrained criterion vanishes.

• The Lagrange multiplier 𝜆 is to be considered as an extra parameter that may have to be estimated
from the data.

The solution of
a = ArgMax𝑏 (b𝑇 Σ𝑋b − 𝜆(b𝑇 b − 1))

is obtained by differentiating b𝑇 Σ𝑋b − 𝜆(b𝑇 b − 1) w.r.t. b, equating it to zero and solving for b.

𝜕
𝜕b (b𝑇 Σ𝑋b − 𝜆(b𝑇 b − 1)) = 0

2Σ𝑋b − 2𝜆b = 0.

Hence, we need the solution of
Σ𝑋b = 𝜆b.

This equation has 𝑟 solutions:

• b = e𝑗: the 𝑗th eigen vector of Σ𝑋

• 𝜆 = 𝜆𝑗: the 𝑗th eigen value of Σ𝑋.

The eigen vectors are orthonormal, i.e. e𝑇
𝑖 e𝑗 = 1 if 𝑖 = 𝑗 and e𝑇

𝑖 e𝑗 = 0 otherwise.
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Consider the following calculations, with b = e𝑗, the 𝑗the eigen vector of Σ𝑋.

var[𝑦] = e𝑇
𝑗 Σ𝑋e𝑗

= e𝑇
𝑗 (Σ𝑋e𝑗)

= e𝑇
𝑗 (𝜆𝑗e𝑗)

= 𝜆𝑗e𝑇
𝑗 e𝑗

= 𝜆𝑗.
By convention the eigen vectors/eigen values are ordered so that

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟.
Hence, the first eigen vector e1 gives the largest variance 𝜆1. Hence, this is the solution we were looking for.

We now switch notation and from now onwards we denote 𝑦 by 𝑧.
The observations on the first principal component (PC) are then given by

𝑧𝑖1 = x𝑇
𝑖 e1.

In PCA terminology they are referred to as the scores of the first PC. The elements in the eigen vector e𝑖
that make up the transformation are known as the loadings of the first PC.
The first PC is thus a new variable (construct) that has the largest variance among all linear transformations
of the original variables.
Variability between observations is considered as informative to understand differences between the obser-
vations.

The equation
Σ𝑋b = 𝜆b

has 𝑟 = rank(Σ𝑋) solutions. The eigen vectors are orthonormal, i.e.

∀𝑖 ≠ 𝑗 ∶ e𝑇
𝑖 e𝑗 = 0 and 𝑖 = 𝑗 ∶ e𝑇

𝑖 e𝑗 = 1
Hence (for 𝑖 ≠ 𝑗)

cov [x𝑇 e𝑖, x𝑇 e𝑗] = e𝑇
𝑖 var[x]e𝑗

= e𝑇
𝑖 Σ𝑋e𝑗

= e𝑇
𝑖 (𝜆𝑗e𝑗)

= 𝜆𝑗e𝑇
𝑖 e𝑗

= 0

If 𝑧𝑗 = x𝑇
𝑖 e𝑗 denotes the 𝑗th PC, then

cov [𝑧𝑖, 𝑧𝑗] = cov [x𝑇 e𝑖, x𝑇 e𝑗] = 0 if 𝑖 ≠ 𝑗

var [𝑧𝑗] = 𝜆𝑗.
We say that the 𝑗th PC maximises the variance among all linear transformations such that it is uncorrelated
with the previous PCs.
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8.2.2 Interpretation of PCA

A PCA is a transformation of the original 𝑝 variables to 𝑟 PCs such that

• the first PC has largest variance, equal to first eigen value of Σ𝑋

• the next PCs have decreasing variances (decreasing information content)

• all PCs are mutually uncorrelated (no information-overlap).

8.3 Link with SVD

If we write the eigen value decomposition in matrix form:

Σ𝑋B = BΛ.

with Λ is a diagonal matrix with diagonal elements [𝜆𝑖]𝑖𝑖.
We recognise an expression that we have seen when discussing the link between the SVD and the sample
covariance matrix, see section 4.

X𝑇 XV = VΔ2 (26)

• So, the SVD can be used to solve the spectral decomposition (eigen value eigen vector) problem and
the eigen vectors coincide with the right singular vectors and the eigen values are the singular values
squared!

8.4 Conservation of variance

• The total variance in a data set X is given by the sum of the variances of the variables,

𝜎2
tot =

𝑝
∑
𝑗=1

var [𝑋𝑗] = trace(Σ𝑋)

• For a symmetric matrix it holds that

trace(Σ𝑋) =
𝑟

∑
𝑗=1

𝜆𝑟.

• Since 𝜆𝑟 = var [𝑍𝑗], we find

𝜎2
tot =

𝑝
∑
𝑗=1

var [𝑋𝑗] =
𝑟

∑
𝑗=1

var [𝑍𝑗] .

⟶ Thus no information is lost by the PCA transformation from the original 𝑝-dimensional space to the
𝑟-dimensional PCA space.
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8.5 Choosing the number of dimensions

For PCA the reasoning is usually based on the relative variance of a PC,

var [𝑍𝑗]
𝜎2

tot
= 𝜆𝑗

∑𝑟
𝑖=1 𝜆𝑖

= 𝛿2
𝑗

∑𝑟
𝑖=1 𝛿2

𝑖
.

If the first 𝑘 PCs are selected for further use, then they represent

100 ×
∑𝑘

𝑗=1 𝜆𝑗

∑𝑟
𝑖=1 𝜆𝑖

% = 100 ×
∑𝑘

𝑗=1 𝛿2
𝑗

∑𝑟
𝑖=1 𝛿2

𝑖
%

of the total variance (or information) of the original data set X.

8.5.1 UK example

A scree plot is often used to look at the eigen values. Here it is shown for the UK consumption data.

n <- nrow(X)
r <- ncol(svdUk$v)
totVar <- sum(svdUk$d^2)/(n-1)
vars <- data.frame(comp=1:4,var=svdUk$d^2/(n-1)) %>%
mutate(propVar=var/totVar,cumVar=cumsum(var/totVar))

pVar1 <- vars %>%
ggplot(aes(x=comp:r,y=var)) +
geom_point() +
geom_line() +
xlab("Component") +
ylab("Variance")

pVar2 <- vars %>%
ggplot(aes(x=comp:r,y=propVar)) +
geom_point() +
geom_line() +
xlab("Component") +
ylab("Proportion of Total Variance")

pVar3 <- vars %>%
ggplot(aes(x=comp:r,y=cumVar)) +
geom_point() +
geom_line() +
xlab("Component") +
ylab("Cum. prop. of tot. var.")

grid.arrange(pVar1, pVar2, pVar3, nrow=1)
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From these graphs we may conclude that with using k = 2 dimensions, more than 95% of the total variance
is retained.

8.5.2 Choosing the number of dimensions SVD

More generally, scree plots are also informative for the SVD.
The motivation comes from

Min𝐴∶rank(𝐴)=𝑘‖X − A‖2
𝐹 = ‖X − X𝑘‖2

𝐹

=
𝑟

∑
𝑗=𝑘+1

𝛿2
𝑗

=
𝑟

∑
𝑗=𝑘+1

𝜆𝑗.

This is known as the approximation error of the matrix X𝑘.
Hence,

∑𝑘
𝑗=1 𝛿2

𝑗

∑𝑟
𝑗=1 𝛿2

𝑗
=

∑𝑘
𝑗=1 𝜆𝑗

∑𝑟
𝑗=1 𝜆𝑗

still makes sense as a relative quality measure for the SVD in general (including matrix approximation and
MDS).
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8.5.3 Rules of thumb to select number of dimensions

Select k such that

• at least 80% of the total variance is retained in the PC space, or, equivalently, at most 20% relative
approximation error

• adding more dimensions does not add more information (in a relative sense); this can often be visually
detected as the “knee” or “elbow” in the scree plot

• none of the dimensions has a variance smaller than the variance of one of the p original variables (this
rule is typically only used when the variables are first standardised - see later).

8.6 Covariance vs Correlation Matrix

8.6.1 Direction of largest variability

Now that we know how the PCs are constructed, we can give an additional interpretation to the first eigen
vector / right-singular vector of Σ𝑋.

• The first eigen vector of Σ𝑋 is the direction in the original 𝑝-dimensional space of the largest variability.

• The second eigen vector of Σ𝑋 is the direction in the original 𝑝-dimensional space of the second largest
variability, among all directions orthogonal to the first eigen vector

8.6.1.1 Iris example The iris dataset in R contains information on leaves of iris flowers from different
species. Here, we will focus on the setosa species and on the sepal length and sepal width.

irisSetosa <- iris %>%
filter(Species == "setosa") %>%
dplyr::select("Sepal.Length","Sepal.Width")

nIris <- nrow(irisSetosa)
hIris <- diag(nIris) - matrix(1/nIris, nIris, nIris)
irisX <- irisSetosa %>%
as.matrix

irisX <- hIris %*% irisX

irisSvd <- svd(irisX)

pIris <- irisX %>%
as.data.frame %>%
ggplot(aes(x=Sepal.Length,y=Sepal.Width)) +
geom_point()

pIris <- pIris +
geom_segment(
aes(
x = 0,
y = 0,
xend = -irisSvd$v[1,1]*irisSvd$d[1]/sqrt(nIris-1),
yend = -irisSvd$v[2,1]*irisSvd$d[1]/sqrt(nIris-1)
),
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arrow = arrow(length=unit(0.4,"cm"))
) +

geom_segment(
aes(
x = 0,
y = 0,
xend = irisSvd$v[1,2]*irisSvd$d[2]/sqrt(nIris-1),
yend = irisSvd$v[2,2]*irisSvd$d[2]/sqrt(nIris-1)
),

arrow = arrow(length=unit(0.4,"cm"))
) +

geom_text(
aes(
x = -irisSvd$v[1,1]*irisSvd$d[1]/sqrt(nIris-1),
y = -irisSvd$v[2,1]*irisSvd$d[1]/sqrt(nIris-1)+.1,
label=paste0("\u03BB","1e1")
)

) +
geom_text(
aes(
x = irisSvd$v[1,2]*irisSvd$d[2]/sqrt(nIris-1),
y = irisSvd$v[2,2]*irisSvd$d[2]/sqrt(nIris-1)+.1,
label=paste0("\u03BB","2e2")
)

) +
xlim(-1, 1) +
ylim(-1,1) +
coord_fixed()

pIris
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8.6.2 Covariance versus correlation matrix

So far we have worked with

• the column-centered data matrix X

• the SVD of X and Σ𝑋 ∝ X𝑇 X (the covariance matrix).

In some situations it is better to start from the standardised variables:

• substract from each element in X the column-mean
• divide each centered element in X by the column-specific standard deviation

Thus each element 𝑥𝑖𝑗 is replaced with
𝑥𝑖𝑗 − ̄𝑥𝑗

𝑠𝑗
,

with ̄𝑥𝑗 and 𝑠𝑗 the column mean and column standard deviation.

• In matrix notation, the standardisation, starting from the centered matrix X is computed as

XS′−1

where S′ is a diagonal matrix with the column-specific standard deviations.
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var(irisX)

8.6.2.1 Iris Example

#> Sepal.Length Sepal.Width
#> Sepal.Length 0.12424898 0.09921633
#> Sepal.Width 0.09921633 0.14368980

Sprime <- diag(sqrt(diag(var(irisX))))
Xs <- irisX%*%solve(Sprime)
var(Xs)

#> [,1] [,2]
#> [1,] 1.0000000 0.7425467
#> [2,] 0.7425467 1.0000000

Much faster to use the scale function. By default center=TRUE and scale=TRUE.

Xs <- irisSetosa %>% scale
var(Xs)

#> Sepal.Length Sepal.Width
#> Sepal.Length 1.0000000 0.7425467
#> Sepal.Width 0.7425467 1.0000000

Show problem of different units:

• Sepal length in cm
• Sepal width in mm

irisX2 <- irisX
irisX2[,2] <- irisX2[,2]*10

pIris2 <- irisX2 %>%
as.data.frame %>%
ggplot(aes(x=Sepal.Length,y=Sepal.Width)) +
geom_point() + coord_fixed()

irisSvd2 <- svd(irisX2)

pIris2 <- pIris2 +
geom_segment(
aes(
x = 0,
y = 0,
xend = irisSvd2$v[1,1]*irisSvd2$d[1]/sqrt(nIris-1),
yend = irisSvd2$v[2,1]*irisSvd2$d[1]/sqrt(nIris-1)
),
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arrow = arrow(length=unit(0.4,"cm"))
) +

geom_segment(
aes(
x = 0,
y = 0,
xend = irisSvd2$v[1,2]*irisSvd2$d[2]/sqrt(nIris-1),
yend = irisSvd2$v[2,2]*irisSvd2$d[2]/sqrt(nIris-1)
),

arrow = arrow(length=unit(0.4,"cm"))
) +

geom_text(
aes(
x = irisSvd2$v[1,1]*irisSvd2$d[1]/sqrt(nIris-1)*1.2,
y = irisSvd2$v[2,1]*irisSvd2$d[1]/sqrt(nIris-1)*1.2,
label=paste0("\u03BB","1e1")
)

) +
geom_text(
aes(
x = irisSvd2$v[1,2]*irisSvd2$d[2]/sqrt(nIris-1)*1.2,
y = irisSvd2$v[2,2]*irisSvd2$d[2]/sqrt(nIris-1)*1.2,
label=paste0("\u03BB","2e2")
)

) +
xlim(-10, 10) +
ylim(-10,10)

grid.arrange(pIris, pIris2,ncol=2)
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Left: original matrix – Right: second column of X multiplied by 10 (e.g. moving from cm to mm).

Directions of maximal variability are affected by the units of the variables.

8.6.3 Recommendations

When to use correlation and when covariance?

• use correlation when columns of X are expressed in different units

• use covariance when columns of X are expressed in the same units.

There may be exceptions.

8.7 PCA and the Multivariate Normal Distribution

The density function of a multivariate normal distribution (MVN) is given by

𝑓(x) = (2𝜋)−𝑝/2|Σ|−1/2 exp (−1
2(x − 𝜇)𝑇 Σ−1(x − 𝜇)) ,

where
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• 𝜇 is the multivariate mean vector (𝑝-dimensional). The 𝑗th element is 𝜇𝑗 = E [𝑋𝑗]

• Σ is the 𝑝 × 𝑝 covariance matrix. The (𝑖, 𝑗)th element is 𝜎𝑖𝑗 = cov [𝑋𝑖, 𝑋𝑗].

To get a better understanding of the MVN we focus on the exponential which has the factor

(x − 𝜇)𝑇 Σ−1(x − 𝜇)

This factor

• is the only factor in the density function that depends on x

• is a quadratic form

• is constant in points x with constant density 𝑓(x).

Consider 𝑝 = 2 (bivariate normal). Then, all x ∈ ℝ2 for which

(x − 𝜇)𝑇 Σ−1(x − 𝜇) = constant 𝑐2

lie on an ellipse with center 𝜇.

These ellipses are known as constant density ellipses.

8.7.1 Iris example

pIris +
stat_ellipse() +
stat_ellipse(level=.68) +
stat_ellipse(level=.1)
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Now plug in the SVD of Σ = VΔ2V𝑇 , see section 4.

(x − 𝜇)𝑇 Σ−1(x − 𝜇) = 𝑐2

(x − 𝜇)𝑇 VΔ−2V𝑇 (x − 𝜇) = 𝑐2

Note that x − 𝜇 is the centered x. Without loss of generality, take 𝜇 = 0. Hence,

x𝑇 VΔ−2V𝑇 x = 𝑐2

(x𝑇 V) Δ−2 (x𝑇 V)𝑇 = 𝑐2

𝑝
∑
𝑗=1

(x𝑇 v𝑗)2/𝛿2
𝑗 = 𝑐2

𝑝
∑
𝑗=1

(𝑧𝑗)2/(𝑐2𝛿2
𝑗 ) = 1.

The last equation is the equation of an ellipse with axes parallel to the basis of (𝑧1, … , 𝑧𝑝) and with half axis
lengths 𝑐√𝜆𝑗 = 𝑐𝛿𝑗 with 𝜆𝑗 the 𝑗th eigen value of Σ.
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pIris +
stat_ellipse() +
stat_ellipse(level=.68) +
stat_ellipse(level=.1)
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This graphs shows 𝑛 = 50 data points on 𝑝 = 2 dimensions. The two ellipses are constant density ellipses for
three different values of 𝑐 (i.e. three different constant densities). The inner ellipse corresponds to the largest
constant density and the outer to the smallest constant density. The arrows show the two eigen vectors /
singular vectors and they are scaled according to the square root of the eigen values and they form the axes
of the constant density ellipses. It is clear that the first axis is pointing to the larger variance.

8.8 Biplot

• Because of the close connection between PCA and the SVD, the biplot as discussed before is still
meaningful, with the first axis pointing into the direction of largest variance.

8.9 Ovarian Cancer Example

The ovarian cancer data set consists of proteomics data for 216 patients, 121 of whom have ovarian cancer,
and 95 of whom do not. For each subject, the expression of 4000 spectral features is assessed. The first 121
rows consist of data for the cancer patients.
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8.9.1 Importing the data

ovarian <- read_csv(
"https://raw.githubusercontent.com/statOmics/HDA2020/data/ovarian.csv",
col_names = FALSE,
col_types = cols()

)
grid.arrange(
qplot(1:4000,
ovarian[1,] %>% unlist,
geom="line",
ylab="centered intensity",
xlab="",main="cancer",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[2,] %>% unlist,
geom="line",
ylab="centered intensity",
xlab="",main="cancer",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[200,] %>% unlist,
geom="line",
ylab="centered intensity",
xlab="",main="Normal",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[200,] %>% unlist,
geom="line",
ylab="centered intensity",
xlab="",main="Normal",
ylim=range(ovarian[c(1,2,200,201),])),

ncol=1
)
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Centering

ovarian <- scale(ovarian, scale=FALSE)
grid.arrange(
qplot(1:4000,
ovarian[1,],
geom="line",
ylab="centered intensity",
xlab="",main="cancer",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[2,],
geom="line",
ylab="centered intensity",
xlab="",main="cancer",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[200,],
geom="line",
ylab="centered intensity",
xlab="",main="Normal",
ylim=range(ovarian[c(1,2,200,201),])),

qplot(1:4000,
ovarian[201,],
geom="line",
ylab="centered intensity",
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xlab="",main="Normal",
ylim=range(ovarian[c(1,2,200,201),])),

ncol=1
)
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8.9.2 SVD Analysis

svdOvarian <- svd(ovarian)

nOvarian <- nrow(ovarian)
r <- ncol(svdOvarian$v)

totVar <- sum(svdOvarian$d^2)/(nOvarian-1)
vars <- data.frame(comp=1:r,var=svdOvarian$d^2/(nOvarian-1)) %>%
mutate(propVar=var/totVar,cumVar=cumsum(var/totVar))

pVar2 <- vars %>%
ggplot(aes(x=comp:r,y=propVar)) +
geom_point() +
geom_line() +
xlab("Component") +
ylab("Proportion of Total Variance")
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pVar3 <- vars %>%
ggplot(aes(x=comp:r,y=cumVar)) +
geom_point() +
geom_line() +
xlab("Component") +
ylab("Cum. prop. of tot. var.")

grid.arrange(pVar2, pVar3, nrow=1)
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We see that we can explain a lot of the variability using a few PC’s!

Zk <- svdOvarian$u[,1:6]%*%diag(svdOvarian$d[1:6])
colnames(Zk) <- paste0("Z",1:6)
Vk <- svdOvarian$v[,1:6]
colnames(Vk) <- paste0("V",1:6)
reduced <- data.frame(Zk,cancer=c(rep(1,121),rep(2,95)))

pOv1 <- reduced %>%
ggplot(aes(x=Z1,y=Z2,col=cancer)) +
geom_point() +
theme(legend.position = "none")

pOv2 <- Vk %>%
as.data.frame %>%
ggplot(aes(x=1:4000,y=V1)) +
geom_line() +
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xlab("")

pOv3 <- Vk %>%
as.data.frame %>%
ggplot(aes(x=1:4000,y=V2)) +
geom_line() +
xlab("")

grid.arrange(pOv1,pOv2,pOv3,layout_matrix = rbind(c(1,3),c(2,NA)))
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Reconstruction of profiles:

i <- 1
pOv4 <- qplot(1:4000,
ovarian[i,],
geom="line",
ylab="centered intensity",
xlab="",main="Cancer",
ylim=range(ovarian[c(1,2,200,201),]))

pOv5 <- qplot(1:4000,
Vk[,1:2] %*%Zk[i,1:2],
geom="line",
ylab="centered intensity",
xlab="",main="Reconstructed",
ylim=range(ovarian[c(1,2,200,201),]))

62



grid.arrange(
pOv1 +
annotate("point", x = reduced[i,1], y = reduced[i,2], colour = "red",cex=3),

pOv2,
pOv3,
pOv4,
pOv5,
layout_matrix = rbind(c(1,2,3),c(4,5,NA)))
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i <- 3
pOv4 <- qplot(1:4000,
ovarian[i,],
geom="line",
ylab="centered intensity",
xlab="",main="Cancer",
ylim=range(ovarian[c(1,2,200,201),]))

pOv5 <- qplot(1:4000,
Vk[,1:2] %*%Zk[i,1:2],
geom="line",
ylab="centered intensity",
xlab="",main="Reconstructed",
ylim=range(ovarian[c(1,2,200,201),]))
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grid.arrange(
pOv1 +
annotate("point", x = reduced[i,1], y = reduced[i,2], colour = "red",cex=3),

pOv2,
pOv3,
pOv4,
pOv5,
layout_matrix = rbind(c(1,2,3),c(4,5,NA)))
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#> [1] "2024-10-03 06:28:35 UTC"

#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 4.1.3 (2022-03-10)
#> os Ubuntu 22.04.5 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C.UTF-8
#> ctype C.UTF-8
#> tz UTC
#> date 2024-10-03
#> pandoc 3.1.11 @ /opt/hostedtoolcache/pandoc/3.1.11/x64/ (via rmarkdown)
#>
#> - Packages -------------------------------------------------------------------
#> ! package * version date (UTC) lib source
#> P assertthat 0.2.1 2019-03-21 [?] CRAN (R 4.1.3)
#> P backports 1.4.1 2021-12-13 [?] CRAN (R 4.1.3)
#> P BiocManager 1.30.16 2021-06-15 [?] CRAN (R 4.1.3)
#> P bit 4.0.4 2020-08-04 [?] CRAN (R 4.1.3)
#> P bit64 4.0.5 2020-08-30 [?] CRAN (R 4.1.3)
#> P bitops 1.0-7 2021-04-24 [?] CRAN (R 4.1.3)
#> P bmp 0.3 2017-09-11 [?] CRAN (R 4.1.3)
#> P bookdown 0.24 2021-09-02 [?] CRAN (R 4.1.3)
#> P broom 0.7.11 2022-01-03 [?] CRAN (R 4.1.3)
#> P bslib 0.3.1 2021-10-06 [?] CRAN (R 4.1.3)
#> P cellranger 1.1.0 2016-07-27 [?] CRAN (R 4.1.3)
#> P cli 3.1.1 2022-01-20 [?] CRAN (R 4.1.3)
#> P colorspace 2.0-2 2021-06-24 [?] CRAN (R 4.1.3)
#> P crayon 1.4.2 2021-10-29 [?] CRAN (R 4.1.3)
#> P crosstalk 1.2.0 2021-11-04 [?] CRAN (R 4.1.3)
#> P curl 4.3.2 2021-06-23 [?] CRAN (R 4.1.3)
#> P data.table 1.14.2 2021-09-27 [?] CRAN (R 4.1.3)
#> P DBI 1.1.2 2021-12-20 [?] CRAN (R 4.1.3)
#> P dbplyr 2.1.1 2021-04-06 [?] CRAN (R 4.1.3)
#> P digest 0.6.29 2021-12-01 [?] CRAN (R 4.1.3)
#> P downloader * 0.4 2015-07-09 [?] CRAN (R 4.1.3)
#> P dplyr * 1.0.7 2021-06-18 [?] CRAN (R 4.1.3)
#> P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 4.1.3)
#> P emo 0.0.0.9000 2024-10-02 [?] Github (hadley/emo@3f03b11)
#> P evaluate 0.14 2019-05-28 [?] CRAN (R 4.1.3)
#> P fansi 1.0.2 2022-01-14 [?] CRAN (R 4.1.3)
#> P farver 2.1.0 2021-02-28 [?] CRAN (R 4.1.3)
#> P fastmap 1.1.0 2021-01-25 [?] CRAN (R 4.1.3)
#> P forcats * 0.5.1 2021-01-27 [?] CRAN (R 4.1.3)
#> P fs 1.5.2 2021-12-08 [?] CRAN (R 4.1.3)
#> P generics 0.1.1 2021-10-25 [?] CRAN (R 4.1.3)
#> P ggmap * 3.0.0 2019-02-05 [?] CRAN (R 4.1.3)
#> P ggplot2 * 3.3.5 2021-06-25 [?] CRAN (R 4.1.3)
#> P glue 1.6.1 2022-01-22 [?] CRAN (R 4.1.3)
#> P gridExtra * 2.3 2017-09-09 [?] CRAN (R 4.1.3)
#> P gtable 0.3.0 2019-03-25 [?] CRAN (R 4.1.3)
#> P haven 2.4.3 2021-08-04 [?] CRAN (R 4.1.3)
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#> P highr 0.9 2021-04-16 [?] CRAN (R 4.1.3)
#> P hms 1.1.1 2021-09-26 [?] CRAN (R 4.1.3)
#> P htmltools 0.5.2 2021-08-25 [?] CRAN (R 4.1.3)
#> P htmlwidgets 1.5.4 2021-09-08 [?] CRAN (R 4.1.3)
#> P httr 1.4.2 2020-07-20 [?] CRAN (R 4.1.3)
#> P igraph 1.2.11 2022-01-04 [?] CRAN (R 4.1.3)
#> P imager * 0.42.11 2021-11-18 [?] CRAN (R 4.1.3)
#> P jpeg 0.1-9 2021-07-24 [?] CRAN (R 4.1.3)
#> P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 4.1.3)
#> P jsonlite 1.7.3 2022-01-17 [?] CRAN (R 4.1.3)
#> P knitr 1.37 2021-12-16 [?] CRAN (R 4.1.3)
#> P labeling 0.4.2 2020-10-20 [?] CRAN (R 4.1.3)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.3)
#> P lazyeval 0.2.2 2019-03-15 [?] CRAN (R 4.1.3)
#> P lifecycle 1.0.1 2021-09-24 [?] CRAN (R 4.1.3)
#> P lubridate 1.8.0 2021-10-07 [?] CRAN (R 4.1.3)
#> P magrittr * 2.0.2 2022-01-26 [?] CRAN (R 4.1.3)
#> MASS 7.3-55 2022-01-16 [2] CRAN (R 4.1.3)
#> P modelr 0.1.8 2020-05-19 [?] CRAN (R 4.1.3)
#> P munsell 0.5.0 2018-06-12 [?] CRAN (R 4.1.3)
#> P pillar 1.6.5 2022-01-25 [?] CRAN (R 4.1.3)
#> P pixmap * 0.4-12 2021-01-29 [?] CRAN (R 4.1.3)
#> P pkgconfig 2.0.3 2024-10-02 [?] Github (r-lib/pkgconfig@b81ae03)
#> P plotly * 4.10.0 2021-10-09 [?] CRAN (R 4.1.3)
#> P plyr 1.8.6 2020-03-03 [?] CRAN (R 4.1.3)
#> P png 0.1-7 2013-12-03 [?] CRAN (R 4.1.3)
#> P purrr * 0.3.4 2020-04-17 [?] CRAN (R 4.1.3)
#> P R6 2.5.1 2021-08-19 [?] CRAN (R 4.1.3)
#> P Rcpp 1.0.8 2022-01-13 [?] CRAN (R 4.1.3)
#> P readbitmap 0.1.5 2018-06-27 [?] CRAN (R 4.1.3)
#> P readr * 2.1.1 2021-11-30 [?] CRAN (R 4.1.3)
#> P readxl 1.3.1 2019-03-13 [?] CRAN (R 4.1.3)
#> renv 0.15.2 2022-01-24 [1] CRAN (R 4.1.3)
#> P reprex 2.0.1 2021-08-05 [?] CRAN (R 4.1.3)
#> P RgoogleMaps 1.4.5.3 2020-02-12 [?] CRAN (R 4.1.3)
#> P rjson 0.2.21 2022-01-09 [?] CRAN (R 4.1.3)
#> P rlang 1.0.0 2022-01-26 [?] CRAN (R 4.1.3)
#> P rmarkdown 2.11 2021-09-14 [?] CRAN (R 4.1.3)
#> P rstudioapi 0.13 2020-11-12 [?] CRAN (R 4.1.3)
#> P rvest 1.0.2 2021-10-16 [?] CRAN (R 4.1.3)
#> P sass 0.4.0 2021-05-12 [?] CRAN (R 4.1.3)
#> P scales 1.1.1 2020-05-11 [?] CRAN (R 4.1.3)
#> P sessioninfo 1.2.2 2021-12-06 [?] CRAN (R 4.1.3)
#> P sp 1.4-6 2021-11-14 [?] CRAN (R 4.1.3)
#> P stringi 1.7.6 2021-11-29 [?] CRAN (R 4.1.3)
#> P stringr * 1.4.0 2019-02-10 [?] CRAN (R 4.1.3)
#> P tibble * 3.1.6 2021-11-07 [?] CRAN (R 4.1.3)
#> P tidyr * 1.1.4 2021-09-27 [?] CRAN (R 4.1.3)
#> P tidyselect 1.1.1 2021-04-30 [?] CRAN (R 4.1.3)
#> P tidyverse * 1.3.1 2021-04-15 [?] CRAN (R 4.1.3)
#> P tiff 0.1-10 2021-11-05 [?] CRAN (R 4.1.3)
#> P tzdb 0.2.0 2021-10-27 [?] CRAN (R 4.1.3)
#> P utf8 1.2.2 2021-07-24 [?] CRAN (R 4.1.3)
#> P vctrs 0.3.8 2021-04-29 [?] CRAN (R 4.1.3)
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#> P viridisLite 0.4.0 2021-04-13 [?] CRAN (R 4.1.3)
#> P vroom 1.5.7 2021-11-30 [?] CRAN (R 4.1.3)
#> P withr 2.4.3 2021-11-30 [?] CRAN (R 4.1.3)
#> P xfun 0.29 2021-12-14 [?] CRAN (R 4.1.3)
#> P xml2 1.3.3 2021-11-30 [?] CRAN (R 4.1.3)
#> P yaml 2.2.2 2022-01-25 [?] CRAN (R 4.1.3)
#>
#> [1] /home/runner/work/HDDA23/HDDA23/renv/library/R-4.1/x86_64-pc-linux-gnu
#> [2] /opt/R/4.1.3/lib/R/library
#>
#> P -- Loaded and on-disk path mismatch.
#>
#> ------------------------------------------------------------------------------
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