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1.1 Brain imaging study

• Diffusion Tensor Imaging (DTI) data
• DTI measures fluid flows in the brain
• Comparing brain activity of six dyslexic children versus six normal controls
• From each child, DTI produced observations on 15443 voxels (voxel = small volume at a particular (x,

y, x) coordinate)
• For each voxel, a two-sided two-sample t-test has been performed, resulting in a z-value (15443 z-values)

for fractional anisotropy.
• Low values for FA indicate diffusion in all directions, high values indicates directional diffusion.
• Research question: at what brain locations (voxels) show dyslexic children a different brain activity as

compared to children without dyslexia?

For each voxel separately, this is a simple problem, but the large scale of the problem (15443 simultaneous
hypothesis tests) causes the problem of multiplicity.

1.1.1 Data Exploration

The dataset dti contains

• Spatial location (x, y, z) of each voxel
• z-statistic for assessing differential brain activity between dyslexic and non-dyslexic children

library(tidyverse)
library(locfdr)
library(gganimate)
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dti <- read_csv("https://raw.githubusercontent.com/statOmics/HDA2020/data/dti.csv",
col_types = cols())

pZ <- dti %>%
ggplot(

aes(
coord.y,
coord.x,
color=z.value)

) +
geom_point() +
scale_colour_gradient2(low = "blue",mid="white",high="red") +
transition_manual(coord.z) +
labs(title = "transection z = {frame}") +
theme_grey()

We will now plot the animated graph

pZ

WARNING: The animated graph will only be visible in the HTML output, not in PDF format. If you’re
reading the PDF version, check online for the animated graph.

We visualised the test-statistic of each test per voxel!

Note, that it is difficult to see structure in the data.

1.1.2 Inference

We can convert the z-statistic in a two-sided p-value for each voxel to assess

H0 : There is on average no difference in brain activity in voxel xyz between dyslexic and non-dyslexic children

µd = µnd

vs

H0 : There is on average a difference in brain activity in voxel xyz between dyslexic and non-dyslexic children

µd 6= µnd

Below, we calculate the p-values and a variable zP for which we keep the z-value if it is statistical significant
at the 5% level otherwise we set it equal to zP=0.

dti <- dti %>%
mutate(

p.value = pnorm(abs(z.value),lower=FALSE)*2,
zP = (p.value < 0.05) * z.value)

pPval <- dti %>%
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ggplot(
aes(

coord.y,
coord.x,
color=zP)

) +
geom_point() +
scale_colour_gradient2(low = "blue",mid="white",high="red") +
transition_manual(coord.z) +
labs(title = "transection z = {frame}") +
theme_grey()

We will now plot the animated graph

pPval

It is much more easy to observe patterns of activity.

Note, however that

• Higher average FA (z > 0 and p < 0.05) in dyslexic children is appearing in spatial patterns in some
locations.

• Lower average FA (z < 0 and p > 0.05) in dyslexic children is scattered throughout the brain.
• Multiple testing problem.
• If there would be no association between brain activity and dyslexia we can expect on average 772.15

false positive voxels.
• Note, that only 1241 were significant at the 5% significance level, so we can expect that the majority

of the returned voxels are false positives.

FPexpected <- nrow(dti) * 0.05
Preported <- sum(dti$p.value < 0.05)

FPexpected

## [1] 772.15

Preported

## [1] 1241

1.2 Challenges

Large Scale Inference implies

• Many hypothesis to be evaluated
• Huge multiple testing problem
• Many false positives can be expected if we do not correct for multiple testing

Issue is widespread in many disciplines
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• genomics
• transcriptomics
• proteomics
• brain imaging
• high throughput single cell technologies
• detection of anomalous events: e.g. credit card fraud
• evaluation of trading rules
• academic performance of schools

1.3 Multiplicity Problem

Suppose only a single hypothesis test is required for answering the research question. A statistical test
controls the probability of making a type I error (type I error rate),

α = P [reject H0 | H0] .

The type I error is also known as a false positive (i.e. H0 expresses an negative result, and H1 a positive
result): α = P [false positive].

An important property:

When H0 is true, and the assumptions underlying the test hold true, then

P ∼ U [0, 1].

Hence, for any 0 < α < 1,
P [reject H0 | H0] = P [P < α | H0] = α.

The distribution of the z-statistic and the p-values under H0 are illustrated below:

library(gridExtra)

simData <- tibble(
z.value = rnorm(20000)
)

simData <- simData %>% mutate(p.value = 2*(1-pnorm(abs(z.value))))

p1 <- simData %>%
ggplot(aes(x = z.value)) +
geom_histogram(

aes(y=..density..),
color = "black") +

stat_function(fun = dnorm, args=list(mean=0, sd=1))

p2 <- simData %>%
ggplot(aes(x = p.value)) +
geom_histogram(color = "black", breaks = seq(0,1,.05))

grid.arrange(p1, p2, ncol=2)

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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We indeed observe that the p-values are uniform under the null hypothesis. So statistical hypothesis testing
provides a uniform testing strategy.

1.3.1 Notation

In the multiple testing literature the number of features that for which a test is conducted is denoted by m
instead of p to avoid confusion with the symbol for a p-value.

1.3.2 Familywise error rate

Suppose that m hypotheses have to be tested simultaneously for answering a single research question.
Let H0i denote the ith null hypothesis (i = 1, . . . ,m) and let H0 denote the intersection of all these partial
null hypotheses.
In this case the type I error rate is no longer relevant. Instead one may consider the Familywise Error
Rate (FWER)

FWER = P [reject at least one H0i | H0] .

Assuming independence among the m tests and assuming that all individual tests are performed at the α
level of significance, the FWER can be computed as

FWER = P [reject at least one H0i | H0]
= 1− P [reject no H0i | H0]
= 1− P [not reject H01 and . . . and not reject H0m | H0]
= 1−

∏m
i=1 P [not reject H0i | H0]

= 1− (1− α)m.
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Examples:

α = 0.05 and m = 5: FWER= 0.23

α = 0.05 and m = 100: FWER= 0.99

α = 0.05 and m = 15443: FWER≈ 1.

These calculations illustrate the problem of multiplicity: the more tests that are performed, the larger the
probability that at least one false positive conclusion is obtained. Thus if all significant results are listed,
and suppose that all null hypotheses hold true, then the FWER is the probability that at least one of the
listed positive results is a false positive. Sometimes, a list of significant results represent the “discoveries”
from the study, and therefore a false positive result is often also referred to as a false discovery.

For example, with m = 100 and α = 0.05 the chance that at least one of the “discoveries” is false, is about
99%. Even worse, with m ≈ 15000 the FWER increases to virtually 100%. In general we also expect that
lists of significant results (discoveries) get longer with increasing m.

Many researchers, however, when presented a long list of significant results (or discoveries), would not mind
too much if one or a few false discoveries appear in the list. Hence, the FWER is not the most relevant risk
measure, as the FWER is allowed to be 100% in case researchers do not mind to have a few false discoveries
among the (perhaps many) positive results in the list of discoveries. A better solution will be given later,
but first we continue with the use of FWER.

1.3.3 Invert FWER to significant level for individual test

The identity FWER= 1 − (1 − α)m may be inverted to find the significance level at which each individual
test should be tested to attain the nominal familywise error rate at FWER,

α = 1− (1− FWER)1/m

so that the simultaneous testing procedure controls the FWER at the desired level (method of Sidàk).

Examples:

FWER= 0.05 and m = 5: α = 0.0102

FWER= 0.05 and m = 100: α = 0.00051

FWER= 0.05 and m = 15443: α = 0.0000033.

We will argue that this procedure is too stringent for large m.

To attain the familywise error rate at level FWER the individual hypotheses should be tested at very
stringent significance levels when m is large. The consequence of testing at a small significance level α is
that it is hard to find significant results, and thus the lists of significant results (discoveries) is likely to
be short. Controlling the FWER means that the chance is small that these lists contain one or more false
positives. A negative consequence, however, is that many of the true positive hypothesis (i.e. H1 is true)
will not appear in these short lists. Hence, the “power” is small (power is not well defined in this multiple
testing setting – extensions of the concept are possible). Thus, avoiding false positives by controlling the
FWER comes at a price: many of the true positive hypothesis may be missed.

7



1.3.4 Adjusted p-value

First we give a very general definition of an adjusted p-value.

Define the adjusted p-value as

p̃i = {inf α ∈ [0, 1] : reject H0i at FWER α}.

With these adjusted p-value, the ith partial null hypothesis may be rejected when

p̃i < α

while controlling the FWER at α.

The corrected p-value should be reported. It accounts for the multiplicity problem and it can be compared
directly to the nominal FWER level to make calls at the FWER level.

2 False Discovery Rate

2.1 Introduction

The table shows the results of m hypothesis tests in a single experiment.

accept H0i reject H0i Total
null TN FP m0
non-null FN TP m1
Total NR R m

• TN : number of true negative: random and unobserved
• FP : number of false positives: random and unobserved
• FN : number of false negatives: random and unobserved
• TP : number of true positives: random and unobserved
• NR: number of acceptances (negative results): random and observed
• R: number of rejections (positive results): random and observed
• m0 and m1: fixed and unobserved
• m: fixed and observed

Note that the table is not completely observable. It is introduced to better understand the concept of FWER
and to introduce the concept of the false discovery rate (FDR).

accept H0i reject H0i Total
null TN FP m0
non-null FN TP m1
Total NR R m
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The FWER can now be reexpressed as

FWER = P [reject at least one H0i | H0] = P [FP > 0] .

The False Discovery Rate (FDR) is defined as

FDR = E
[
FP

R

]
= E [FDP]

with FP/R = FDP the false discovery proportion and is also referred to as the false positive proportion
(FPP).

Before providing more details on how to perform multiple hypothesis testing with control of the FDR, we
illustrate the difference between FWER and FDR control.

The examples illustrate the problem when controlling the FWER and they demonstrate the meaning of the
FDR as a more realistic risk measure.

The idea is to look at tables as on the previous slide, but from many repeated experiments. In its most
restrictive interpretation, repeated experiments refer to replicating the same experiment many times. In the
case study (brainscan) this means that each repeated experiment consists of randomly sampling 6 normal and
6 dyslectic children from a population. This is of course more like a thought experiment. The interpretation
of the FWER and FDR in terms of repeated experiments, however, relates to relative frequencies and averages
over tables (as on the previous slide) resulting from different independent experiments. For examples, suppose
that you work for a biotech company, and each week a microarray experiment is performed (each experiment
is based on e.g. 20 biological samples and aims at testing differential expression for 10,000 genes) and for
each of such experiments you can think of a table as on the previous slide. The FWER and FDR may then
also be interpreted as relative frequencies and averages over tables of these experiments. These experiments
are not literally “repeated” experiments, but still the FWER and FDR retain their interpretation.

FWER control at 5%. Suppose 100 repeated experiments have been performed. Each experiment consists
of 10, 000 hypothesis tests. Suppose that we know (this is however irrealistic) that 1, 500 null hypotheses are
not true. Below you see a few hypothetical results.

A. accept H0i reject H0i Tot.
true N 8499 1 8500
true P 1490 10 1500
Total 9989 11 10000

B. accept H0i reject H0i Tot.
true N 8497 3 8500
true P 1463 37 1500
Total 9960 40 10000

9



C. accept H0i reject H0i Tot.
true N 8500 0 8500
true P 1498 2 1500
Total 9998 2 10000

• When controlling the FWER at 5%, results as in the tables A and B are only allowed in 5% of the
experiments.

• The other 95% of the experiments result in tables similar to C.

• Table A gives a list of 11 discoveries, and table B gives 40 discoveries. Both lists of discoveries contain
at least 1 false positive.

• Table C gives a shorter list with only 2 discoveries which are both true positives.

• When controlling the FWER at 5%, tables with no false discoveries (table C) should make up 95% of
all repeated experiments.

• Hence, when controlling the FWER at 5% most experiments will have to result in short lists.

• Longer lists imply a larger risk of false positives so that the FWER cannot be controlled at a level as
low as 5%.

FDR control at 5%. Suppose 100 repeated experiments have been performed. Each experiment consists of
10, 000 hypothesis tests. Suppose that we know (this is however irrealistic) that 1, 500 null hypotheses are
not true. Below you see a few hypothetical results.

A. accept H0i reject H0i Tot.
true N 8491 9 8500
true P 1444 56 1500
Total 9935 65 10000

B. accept H0i reject H0i Tot.
true N 8497 3 8500
true P 1412 88 1500
Total 9909 91 10000

C. accept H0i reject H0i Tot.
true N 8500 0 8500
true P 1498 2 1500
Total 9998 2 10000

When controlling the FDR at 5%,

• results as in the tables A and B are very common, but
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• results as in table C are rather rare.
• On overage FP/R is expected to be 5%.

Tables A and B now give lists with 65 and 91 discoveries, respectively. Both lists contain false discoveries:
9/65 = 13.8% false discovery proportion for table A and 3/91 = 3.3% false discovery proportion for table B.
Table C gives a short list with no false discoveries, i.e. 0% false discoveries proportion. When controlling the
FDR at 5% each list may contain false discoveries, averaged over repeated experiments the false discoveries
proportion must be equal to 5% (definition of false discovery rate). Hence, many tables as tables A and B
are allowed. There is thus no need to have many tables as table C.

In summary: controlling the FDR allows for more discoveries (i.e. longer lists with significant results), while
the fraction of false discoveries among the significant results in well controlled on average. As a consequence,
more of the true positive hypotheses will be detected.

FWER control is too stringent:

Setting 1: BH95 with nominal FDR set at 10% and m1 = 500

Consider 10 repeated experiments, with the following outcomes for TP and R

FP 11 14 8 20 12 0 11 10 13 18
R 102 110 101 159 88 91 102 140 110 171

Based on these 10 repeated experiments

• FDR = E [FP/R] ≈ 9.8%
• FWER = P [FP > 0] ≈ 90%
• sensitivity = E [TP ] /m1 = E [R− FP ] /m1 ≈ 21%

Setting 2: Bonferroni with nominal FWER set at 10% and m1 = 500

Consider 10 repeated experiments, with the following outcomes for TP and R:

FP 0 0 3 0 0 0 0 0 0 0
R 10 11 10 15 9 9 13 18 9 9

Based on these 10 repeated experiments

• FDR = E [FP/R] ≈ 3%
• FWER = P [FP > 0] ≈ 10%
• sensitivity = E [TP ] /m1 = E [R− FP ] /m1 ≈ 2%
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The first setting shows results from simulations in which the FDR is controlled with the BH95 method
(see further) at 10% (which is good). This gives a sensitivity of 21% (not large, but realistic in large scale
genomics studies). The FWER, however, is very large: 90%, but we do not mind, because we do not mind
that in a large scale study we find one or more false discoveries (i.e. V > 0), as long as the relative number
of false discoveries is on average under control (FDR control).

The second setting shows results from simulations in which the FWER is controlled at 10%. The FDR, on
the other hand, is now as small as 3% and the sensitivity as small as 2%. Hence, hardly any truly DE gene
can be discovered, and, also, hardly any false discovery will end up in the conclusions of the data analysis.
This analysis with FWER control is too stringent in large scale genomics context.

2.2 The Benjamini and Hochberg (1995) method

Procedure for controlling the FDR at α:

1. Let p(1) ≤ . . . ≤ p(m) denote the ordered p-values.

2. Let k = max{i : p(i) ≤ iα/m}, i.e. k is the largest integer so that p(k) ≤ kα/m.

3. If such a k exists, reject the k null hypotheses associated with p(1), . . . , p(k). Otherwise none of the
null hypotheses is rejected.

The adjusted p-value (also known as the q-value in FDR literature):

q(i) = p̃(i) = min
[

min
j=i,...,m

(
mp(j)/j

)
, 1
]
.

• Benjamini and Hochberg published their method in 1995; it was one of the first FDR control methods.
• The same authors published later yet other FDR control methods.
• For this reason their 1995 method is often referred to as the Benjamini and Hochberg 1995 method, or

BH95.
• As input the method only needs the p-values from the m hypotheses tests.
• When controlling FDR, the adjusted p-values are often referred to as q-values.

Example: m = 5 and FDR controlled at α = 0.05.

p(i) < or > iα/m reject?
0.001 < 1× 0.05/5 = 0.01 yes
0.007 < 2× 0.05/5 = 0.02 yes
0.014 < 3× 0.05/5 = 0.03 yes
0.031 < 4× 0.05/5 = 0.04 yes
0.042 < 5× 0.05/5 = 0.05 yes

Note that the last column can only be filled in after the largest k is detected!

12



Example: m = 7 and FDR controlled at α = 0.05.

p(i) < or > iα/m reject?
0.001 < 1× 0.05/7 = 0.007 yes
0.007 < 2× 0.05/7 = 0.014 yes
0.014 < 3× 0.05/7 = 0.021 yes
0.031 < 4× 0.05/7 = 0.029 yes
0.035 < 5× 0.05/7 = 0.036 yes
0.048 > 6× 0.05/7 = 0.043 no
0.052 > 7× 0.05/7 = 0.050 no

2.3 Intuition of BH95?

Consider m = 10, 000 tests

• We will expect 0.001 ×m0 tests to return false positives. A conservative estimate of the number of
false positives that we can expect can be obtained by considering that the null hypotheses are true for
all features, m0 = m = 10000. We then would expect 0.001× 10, 000 = 10 false positives (FP = 10).

• Suppose that the researcher found 200 genes with p < 0.001 (R = 200).

• The proportion of false positive results (FDP = false positive proportion) among the list of R = 200
genes can then be estimated as

F̂DP = FP

R
= 10

200 = 0.001× 10000
200 = 0.05.

Recall that the B&H (1995) procedure involves finding the largest integer k so that p(k) ≤ kα/m, or,
equivalently, p(k)m/k ≤ α.

In this example: k = 200, p(k) = 0.001, m = 10, 000 and α = 0.05.

2.3.1 Comments

• It is a linear step-up procedure : it starts from the least significant result (largest p-value) and
steps-up to more significant results (lower p-values).

• In FDR terminology the adjusted p-value is often referred to as a q-value.
• The BH95 method assumes that all tests are mutually independent (or at least a particular form of

positive dependence between the p-values).

• When the assumptions hold, it guarantees

FDR = E [TP/R] = E [FDP] ≤ m0

m
α ≤ α.

Thus, if we knew m0 (the number of true nulls), we could improve the method by applying it to the level
αm/m0 (cfr. Bonferroni).

−→ many FDR methods consist in estimating m0 or the fraction of null genes m0/m.
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The inequality
FDR ≤ m0

m
α ≤ α

shows that BH1995 is a conservative method, i.e. it controls the FDR at the safe side, i.e. when one is
prepared to control the FDR at the nominal level α, the BH95 will guarantee that the true FDR is not larger
than the nominal level (when the assumptions hold).

More interestingly is that m0
m α is in between the true FDR and the nominal FDR. Suppose that m0 were

known and that the BH95 method were applied at the nominal FDR level of α = m/m0α
∗, in which α∗ is

the FDR level we want to control. Then the inequality gives

FDR ≤ m0

m
α = m0

m

m

m0
α∗ = α∗,

and hence BH95 would better control the FDR at α∗.

Note that α = m/m0α
∗ > α∗ and hence the results is less conservative than the original BH95 method.

The above reasoning implies a generalized adaptive linear step-up procedure:

• estimate m0: m̂0
• of m̂0 = 0, reject all null hypotheses; otherwise, apply the step-up procedure of BH 95 at the level
α = mα∗/m̂0 to control the FDR at α∗.

The adjusted p-values (=q-values) are obtained as

p̃(i) = m̂0

m
min

{
min

j=i,...,m
{mp(j)/j}, 1

}
.

• Many FDR procedures can be fit into this definition (e.g. Benjamini and Hochberg (2000) and Tibshi-
rani (2003)).

• We do not give details on the methods for estimating m0, but some of them are implemented in the R
software. On the next page we illustrate with simulated data that BH can be improved with estimated
m0.

2.3.2 Other important considerations

• It can be shown that the BH-FDR method weakly controls the FWER, i.e. it controls the FWER if
all features are false (m0 = m).

• The BH-FDR is derived under the assumption of independence of the features and has been shown to
be only valid under special forms of dependence between the features.

2.4 Brain Example
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dti %>%
ggplot(aes(x = p.value)) +
geom_histogram(color = "black",breaks = seq(0,1,.05))
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• The graph shows the histogram of the m = 15443 p-values. It shows a distribution which is close to
a uniform distribution for the larger p-values, but with more small p-values than expected under a
uniform distribution.

• This is a trend that would arise if most of the hypotheses are nulls (resulting in p-values from a uniform
distribution), but some are non-nulls (more likely to result in small p-values).

dti <- dti %>%
mutate(

padj = p.adjust(p.value, method="fdr"),
zFDR = (padj < 0.05) * z.value)

pPadj <- dti %>%
ggplot(aes(p.value,padj)) +
geom_point() +
geom_segment(x=0,y=0,xend=1,yend=1) +
ylab("adjusted p-value (BH, 1995)")
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grid.arrange(pPadj,
pPadj + ylim(c(0,0.05)),
ncol=2)

## Warning: Removed 15411 rows containing missing values (geom_point).
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# uncorrected p-values
table(dti$p.value < 0.05)

##
## FALSE TRUE
## 14202 1241

# BH corrected p-values
table(dti$padj < 0.05)

##
## FALSE TRUE
## 15411 32

At the 5% FDR, 32 voxels are returned as significantly differentially active between dyslexic and non-dyslexic
children.
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pFDR <- dti %>%
ggplot(

aes(
coord.y,
coord.x,
color=zFDR)

) +
geom_point() +
scale_colour_gradient2(low = "blue",mid="white",high="red") +
transition_manual(coord.z) +
labs(title = "transection z = {frame}") +
theme_grey()

3 local fdr

3.1 Introduction

Suppose that the test statistic for testing H0i is denoted by zi, and that the test statistics have a N(0, 1)
null distribution.

If all m null hypotheses are true, the histogram of the m test statistics should approximate the theoretical
null distribution (density f0(z)).

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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Assuming that the test statistic has a standard normal null distribution is not restrictive. For example,
suppose that t-tests have been applied and that the null distribution is td, with d representing the degrees
of freedom. Let Ftd denote the distribution function of td and let Φ denote the distribution function of the
standard normal distribution. If T denotes the t-test statistic, then, under the null hypothesis,

T ∼ td

and hence
Ftd(T ) ∼ U [0, 1]

and
Z = Φ−1(Ftd(T )) ∼ N(0, 1).

If all m null hypotheses are true, then each of the Zi is N(0, 1) and the set of m calculated zi test statistics
may be considered as a sample from N(0, 1). Hence, under these conditions we expect the histogram of the
m zi’s to look like the density of the null distribution.

3.2 Two group model

• Suppose that under the alternative hypothesis the test statistic has density function f1(z).

• We use the term “null” to refer to a case i for which H0i is true, and “non-null” for a case i for which
H0i is not true.

• Consider the prior probabilities

π0 = P [null] and π1 = P [non-null] = 1− π0.

• The marginal distribution of the m test statistics is then given by the mixture distribution

f(z) = π0f0(z) + π1f1(z)

3.2.1 Examples of mixture distributions

We have already explored mixture distributions in detail in the paper reading session on model based
clustering.

• blue: f0: N(0, 1), red: f1: N(1, 1)

components <- tibble(z = seq(-6,6,.01)) %>%
mutate(

f0 = dnorm(z),
f1 = dnorm(z, mean = 1))

components %>%
gather(component, density, -z) %>%
ggplot(aes(z,density,color = component)) +
geom_line() +
scale_color_manual(values=c("blue","red"))
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The graphs shows the two component distributions separately.

• blue: π0 × f0 with π0 = 0.9 and f0 = N(0, 1)
• red: π1 × f1 with π1 = 1− π0 = 0.1 and f1 = N(1, 1)

p0 <- 0.9
p1 <- 1-p0
mu1 <- 1
scaledComponents <- tibble(z = seq(-6,6,.01)) %>%

mutate(
p0xf0 = dnorm(z) * p0,
p1xf1 = dnorm(z, mean = mu1)*p1
)

scaledComponents %>%
gather(component, density, -z) %>%
ggplot(aes(z,density,color = component)) +
geom_line() +
scale_color_manual(values=c("blue","red")) +
ggtitle("Scaled components")
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Scaled components

Mixture distribution

• blue: π0 × f0 with π0 = 0.9 and f0 = N(0, 1)
• red: π1 × f1 with π1 = 1− π0 = 0.1 and f1 = N(1, 1)
• black: f = π0f0 + π1f1

scaledComponents %>%
mutate(f=p0xf0+p1xf1) %>%
gather(component, density, -z) %>%
ggplot(aes(z,density,color = component)) +
geom_line() +
scale_color_manual(values=c("black","blue","red")) +
ggtitle("Mixture and scaled components")
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Mixture and scaled components

Mixture π0f0(z) + π1f1(z) with π0 = 0.65 and f1 = N(2, 1) and f0 = N(0, 1)

p0 <- 0.65
p1 <- 1-p0
mu1 <- 2
scaledComponents <- tibble(z = seq(-6,6,.01)) %>%

mutate(
p0xf0 = dnorm(z) * p0,
p1xf1 = dnorm(z, mean = mu1)*p1)

scaledComponents %>%
mutate(f=p0xf0+p1xf1) %>%
gather(component, density, -z) %>%
ggplot(aes(z,density,color = component)) +
geom_line() +
scale_color_manual(values=c("black","blue","red")) +
ggtitle("Mixture and scaled components (p0 = 0.35)")
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3.2.2 simulations

Simulated data: 20000 z-statistics with π1 = 0.10 non-nulls with f1 = N(1, 1).

p0 <- .9
p1 <- 1-p0
mu1 <- 1
m <- 20000

zSim <- c(
rnorm(m * p0),
rnorm(m * p1, mean=mu1)
)

zSim %>%
as_tibble %>%
ggplot(aes(x = zSim)) +
geom_histogram(

aes(y=..density..),
color = "black") +

stat_function(fun = dnorm,
args = list(

mean = 0,
sd=1),

color="blue")
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## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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It is hard to see the difference between the histogram and the density function of the null distribution (blue
curve), because the mean of f1 is not much larger than 0 and because only π1 = 10% non-nulls are included
and because the alternative is not far from the null distribution. However, this is not an unrealistic setting.

Note, that in most settings the non-null features will originate from a mixture of multiple distributions with
positive and negative means. Fortunately, the local fdr method does not require us to estimate f1 as we will
see further.

3.3 local fdr

We can now calculate the probability that a case is a null given the observed z,

P [null | z] = π0f0(z)
f(z) .

This probability is referred to as the local false discovery rate, and denoted by fdr(z).

If for an observed z, fdr(z) is sufficiently small, one may believe that the case is a true discovery (i.e. H0i
may be rejected).
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3.3.1 Link with FDR

Recall the definition of the FDR,

FDR = E [FP/R] (1)
= E [number of nulls among rejected/number of rejected] (2)
= P [null | rejected] (3)

• The FDR is to be interpreted as an overall risk: among all rejected hypotheses (discoveries) it gives
the expected fraction (or probability) of a null (false discovery).

• The local fdr, on the other hand, is to be interpreted as a risk for a specific decision: if a null hypothesis
is rejected based on a test statistic value of z, then the local fdr gives the probability of that single
discovery being a false discovery.

• Since the local fdr has a clear interpretation that applies to an individual hypothesis test, it can be
used to decide whether or not to reject a null hypothesis.

• In particular, reject a null hypothesis H0i if fdr(z) < α, where α is the nominal local fdr level at which
the multiple testing problem need to be controlled at.

• The local fdr method can only be applied if π0 and f can be estimated from the data (see later). The
density f0 can be either known (null distribution of the test statistic) or it can be estimated from the
observed m test statistics.

For the sake of simplicity, suppose that H0i is tested against a one-sided alternative and that H0i is rejected
for small z, i.e.

H0 : z = 0 vs H1 : z < 0

Suppose that all H0i are rejected for which the observed test statistic is at most z, then we can write

FDR(z) = P [null | rejected] (4)
(5)

= P [null | Z ≤ z] (6)
(7)

= EZ {P [null | Z] | Z ≤ z} (8)
(9)

= EZ [fdr(Z) | Z ≤ z] (10)
(11)

=
∫ z
−∞ fdr(u)f(u)du∫ z
−∞ f(u)du

(12)

(13)

=
π0
∫ z
−∞ f0(u)du
F (z) (14)

(15)

= π0F0

F (z) . (16)
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This shows that fdr(z) = π0f0(z)
f(z) and FDR(z) = π0F0(z)

F (z) have similar expression. The former is expressed in
terms of density functions, and the latter in terms of the corresponding cumulative distribution functions.

From the equality

FDR(z) =
∫ z
−∞ fdr(u)f(u)du∫ z
−∞ f(u)du

we learn that the probability for a false discovery among hypotheses rejected by using threshold z, equals
the average of the local false discovery rates fdr(u) of the discoveries (u ≤ z here).

Note, that the BH-FDR adopts

• π0 = 1, which is a conservative estimate
• uses the theoretical null for p = F0(z)
• uses the empirical cumulative distribution function F̄ (z) = #Z<z

m to estimate F (z).

A similar identity can be easily shown for two-sided tests.

3.3.2 Estimation of fdr(z) = π0f0(z)
f(z)

• f(z) can be estimated by nonparametric density estimation methods (f(z) is the marginal distribution
of the test statistics; no knowledge about null / non-null is needed)

• f0(z) is known or can be estimated from the data

• π0 can be estimated once f(z) and f0(z) are estimated for all z.

3.3.3 Brainscan example

library(locfdr)
lfdr <- locfdr(dti$z.value, nulltype = 0)
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• In the brainscan example the test statistics are supposed to be N(0, 1) distributed under the null
hypothesis. Tests are performed two-sided.

• The argument nulltype=0 specifies that the null distribution (f0) is N(0, 1).

• The dashed blue line gives f0 and the solid green line is the nonparametric estimate of the marginal
density function f . The two densities do not coincide and hence we may anticipate that some of the
voxels show differential brain activity.

• The purple bars indicate the estimated number of non-nulls (among the hypotheses/voxels for a given z-
value). The plots shows that more non-nulls are expected for the negative z-values than for the positive
z-values (sign of z corresponds to more or less brain activity in normal versus dyslectic children).

3.3.4 Problems?

Note, however, that

• we typically expect that the majority of the test statistics follow the null distribution.
• that the null distribution in the plot is rescaled
• So, we would expect that the two distributions to overlay in the middle part.
• However, we observe a shift.

In practise it often happens that the theoretical null distribution is not valid.

This can happen due to
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1. Failed mathematical assumptions: null distribution is incorrect
2. Correlation between the samples
3. Correlation between the features
4. Confounding that is not corrected for.

3.4 Advantage of having a massive parallel data structure

The massive parallel data structure enables us

• to spot deviations from the theoretical null distribution.
• to estimate the null distribution by using all features.

Efron relaxes the local fdr method by assuming that the null distribution is a Normal distribution but with
a mean and variance that can be estimated empirically (based on all the features).

This can be done by setting the argument nulltype in the locfdr function equal to nulltype = 1, which is
the default or be setting nulltype = 2.

The locfdr method then uses

1. nulltype = 1 maximum likelihood to estimate the null by only considering the middle part in the
distribution of the test statistics (MLE) or

2. nulltype = 2 a geometric method that places the best fitting normal under the peak of the estimate
of f(z). (CME)

3.4.1 Brainscan example

lfdr <- locfdr(dti$z.value)
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CME: delta: −0.191 sigma: 1.066 p0: 0.992
MLE: delta: −0.157 sigma: 1.052 p0: 0.977

The plot shows that the null distribution is shifted to negative values and has a standard deviation that
remains close to 1.

• This often happens if there is correlation between the features.

• Spatial correlation can be expected in the brain, so voxels that are close to each-other typically will be
correlated.

• The dashed blue line gives f0 and the solid green line is the nonparametric estimate of the marginal
density function f . The two densities do not coincide and hence we may anticipate that some of the
voxels show differential brain activity.

• The purple bars indicate the estimated number of non-nulls (among the hypotheses/voxels for a given
z-value). The plots shows that only non-nulls for positive z-values are expected (sign of z corresponds
to more or less brain activity in normal versus dyslectic children).

lfdr <- locfdr(dti$z.value, plot=2)
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Efdr=  0.468

• The plot at the left is the same as on the previous page.

• The plot at the right shows the local fdr as the black solid line. Close to z = 0 the fdr is about 1 (i.e. if
those hypotheses would be rejected, the probability of a false positive is about 100%). When moving
away from z = 0 to larger values the fdr drops.

• This means that we can only discover convincingly differential brain activity for large positive z.
Rejecting null hypotheses with large negative z would still be risky: large chance of false discovery.

• The reason can be read from the first graph: for negative z the ratio f0(z)/f(z) is almost 1, whereas
for large positive z the ratio f0(z)/f(z) becomes small.

• Note, that the result is atypically. In most applications we typically pick-up both downregulated
(negative z) and upregulated (positive z) features.

dti <- dti %>%
mutate(

lfdr = lfdr$fdr,
zfdr = (lfdr<0.2) * z.value)

pfdr <- dti %>%
ggplot(

aes(
coord.y,
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coord.x,
color=zfdr)

) +
geom_point() +
scale_colour_gradient2(low = "blue",mid="white",high="red") +
transition_manual(coord.z) +
labs(title = "transection z = {frame}") +
theme_grey()

Note, that the local fdr method allows us to detect differential brain activity in a specific region in the front
part of the brain for which a larger fractional anisotropy is observed on average for childeren having dyslexia.

We can also estimate the FDR of the set that we return as the average local fdr in this set.

dti %>%
filter(lfdr < 0.2) %>%
pull(lfdr) %>%
mean

## [1] 0.1034925

3.5 Power

The local false discovery rate may also be used to get power diagnostics.

General idea: for z’s supported by the alternative hypothesis (i.e. large f1(z)), we hope to see small fdr(z).

The expected fdr is an appropriate summary measure:

Efdr = Ef1 [fdr(Z)] =
∫ +∞

−∞
fdr(z)f1(z)dz.

With estimates of fdr(z) and f1(z), the Efdr can be computed.

A small Efdr is an indication of a powerful study.

lfdr <- locfdr(dti$z.value, plot = 3)
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0.24

With α the nominal local fdr level, the vertical axis gives

Ef1 [fdr(Z) < α] .

where Z is the test statistic distributed under the alternative hypothesis (f1).

• This probability Pf1 [fdr(Z) < α] is a kind of extension of the definition of the power of a test: it is
the probability that a non-null can be detected when the nominal local fdr is set at α.

• The graph shows, for examples, that with α = 0.20 we only have Pf1 [fdr(Z) < α] = 0.24, i.e. only 24%
of the non-nulls are expected to be discovered.

• At the bottom of the graph we read Efdr= 0.486. Hence, the local fdr for a typical non-null feature is
expected to be 48.6% which is rather large. The study is not well powered!
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